

「蓄積リングにおける核子移行反応」

阪大RCNP ONG Hooi Jin

核子移行反応

原子核構造の理解

(p,d)及び(d,p)反応

不安定核における核子移行反応実験

- MSU では、主に中重核領域 Mg、Ar、Ca において精力的に行われている
- GANIL は軽い不安定核側
- RIKEN/東大CNS では、最近¹³B、²³F など(α,t) を用いた反応

RCNP proposal: Spectroscopy of ^{13,14}B via transfer reactions

Order of $0p_{1/2}$ and $1s_{1/2}$ in B lsotopes

N. Aoi et al, PRC 66, 014301(2002)

逆運動学での核子移行反応

- □ 反跳粒子あるいは重イオンのどちらかを測定する □ Breakup、非弾性散乱及び標的不純物による バックグラウンドが生じる
- γ線+重イオンの測定(終状態が束縛状態の場合):
 出光学ポテンシャルの問題が残る
- □ 反跳粒子+重イオンの測定:
 - □ バックグラウンドの除去
 - □ 弾性散乱も同時に測定 ⇔ 光学ポテンシャル問題をクリア
 - □ 非束縛状態も測定できる

逆運動学(p,d)反応:(例)¹³B 30A MeV

逆運動学(d,p)反応:(例)¹³B 30A MeV

重イオンを測定する場合

J. S. Winfield et al, NIMA 396, 147(1997)

Table 2

Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of	Origin of contribution					
			$\Delta \theta$	Δp	Estragg	$\Theta_{1,2}$	dE/dx		
p(¹² Be, ¹¹ Be)d	30	1.07°	172	147	101	74	23	259	
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169	
p(77Kt, 76Kr)d	30	0.16°	1404	811	808	723	56	1952	
p(77Kr, 76Kr)d	10	0.10°	334	143	502	570	268	883	
d(76Kr,77Kr)p	10	0.21°	1140	614	2177	1859	1321	3408	

反跳粒子を測定する場合

Table 3

Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Reaction	E_i/A (MeV)	θ_{lab}	Origin o	f contribution				Σ_{quad}
			$\Delta \theta$	ΔE_{f}	ΔE_i	$\boldsymbol{\varTheta}_{1/2}$	dE/dx	
p(¹² Be, d) ¹¹ Be	30	19.0°	136	74	114	96	649	685
p(12Be, d)11Be	15	17.8°	66	72	55	89	984	995
p(⁷⁷ Kr, d) ⁷⁶ Kr	30	15.0°	124	55	64	63	186	249
p(⁷⁷ Kr, d) ⁷⁶ Kr	10	6.0°	26	24	23	19	775	777
d(⁷⁶ Kr, p) ⁷⁷ Kr	10	155.3°	52	93	37	60	1309	1316

使い捨て vs リサイクル

- 水素標的(CH₂)_nを考える
- 検出器及びacceptanceは同じだとする

Yield ~ *I* [s⁻¹] x σ [mb] x *t* [mg/cm²]

	蓄積リング	従来のビームライン
ビーム強度	0.01 cps	100 cps
標的厚	o(0.01 mg/cm ²)	$o(1 \text{ mg/cm}^2)$
Ex 分解能	<300 keV	~300 keV

FAIR · NESRのEXL

EXL Silicon Particle Array (ESPA)

Reaction	Energy [MeV/ nucleon]	Θ _{lab} [deg]	Θ _{cm} [deg]	E _{lab} [MeV]	Resolution required for $\Delta E^*=300 \text{ keV}$		Resolution expected for proposed setup		⊖ _{lab} of projectile [deg]
	E* [MeV]				∆⊖ _{lab} [mrad]	ΔE _{lab} [keV]	∆⊖ _{lab} [mrad]	ΔE [*] [keV]	
¹³² Sn(p,p)	740	89 -80	1.1 -11	0.4 -39	8.0 -0.7	360 - 330	1.5	80 -550	0.01 -0.08
	0	80 -75	11 -17	39 -90	0.7 -0.6	330 - 390	1.5 -1.2	550 -820	0.08 -0.13
	0	75 - 6 5	17 -29	90 -260	0.6 -0.3	390 -420	1.2 -0.8	820 -1500	0.13 -0.21
$^{18}C(\alpha,\alpha)$	400	89 -80	1.6 -16	1 -87	28 -0.4	2400 - 360	1.5 -2.5	150 -1200	1.6 -2.7
	0	80 -75	16 -24	87 -196	0.4 -0.3	360 - 390	2.5 -1.5	1200 -1700	2.7 -4.0
	0	75 - 6 5	24 -40	196 -546	0.3 -0.2	390	1.5 -0.7	1700 -2500	4.0 -6.7
¹⁸ C(p,p')	400	74 -55	a) 10 -3	14 -1	2.1 -9.0	100 -30	1.5	130 -220	0.53 -0.13
	25		b) 13 -51	21 - 304	3.0 -0.5	700 -540	1.5 -0.8	260 -630	0.64 -2.3
	25	55 -30	a) 3 -1	1.1 -0.5	9.0 -26	30 -12	1.5 -1.7	220 -550	0.13 -0.05
¹⁹⁶ Pb(α, α')	400	80 -75	a) 1.5 -0.9	1.2 -0.5	3.5 -4.5	60 -18	1.5	200 - 270	0.03 -0.02
			b) 13 -21	91 -234	0.4 -0.2	510 -450	2.5 -1.2	1250 -2100	0.03 -0.4
	15	75 -55	a) 0.9 -0.3	0.5 -0.1	4.5 - 52	18 - 15	1.5 -1.6	270 -700	0.02 -0.01
			b) 21 -53	234 -1430	0.2 -0.1	450 -600	1.2 -0.5	2100 -4000	0.04 -0.9
¹⁹⁶ Pb(³ He,t)	400	80 -75	a) 0.9 -0.6	0.3 -0.15	6.5 -10	30 -12	1.5	250 -490	0.013 -0.009
	0		b) 13 -21	75 -184	0.5 -0.3	450	1.3 -0.8	850 -990	0.2 -0.3
	v	75 -55	a) 0.6 -0.2	0.15 -0.03	10 -78	12 -9	1.5	490 -1200	0.009 -0.003
			b)21-52	184 -1080	0.3 -0.1	450	0.8 -0.5	990 -1000	0.3 -0.7
¹² Be(³ He,t)	400	120 -91	0.5 -5	0.09 -5.1	0.2 -1.8	6 -150	8	1700 - 270	0.1 -0.9
		89 -80	6 -18	9 -77	1.4 -0.5	210 -330	1.5 -1.3	330 -990	1.2 -3.3
	0	80 -75	18 - 25	77 -156	0.5 -0.3	330 - 360	1.3 -0.8	990 -1400	3.3 -4.7
		75 55	25 50	156 702	0.3 0.2	360 420	0.8 0.4	1400 3000	4.7 10
²² C(p,d)	15	40 -10	a) 25 -4	6 -2.4	22 -100	430 -120	1.5	40 -60	1.6 -0.3
	0		b) 74 -156	32 -77	7 -18	980 -660	1.5 -1.3	80 -150	1.7 -3.7
¹³² Sn(d,p)	15	170 -120	3 -22	2.7 -6	150 -18	90 -160	15 -8	100 -250	0.03 -0.23
	0	120 -90	22 -45	6 -15	18 -10	160 -290	8	250 -430	0.23 -0.44

まとめ

Dripline 近傍の不安定核の反応実験を行う ためには、primaryビームの強度を上げる努力 だけでは、かなり厳しい

蓄積リングに期待すべき(?)