Development of HTS magnets and UCN source at RCNP

K. Hatanaka, Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki,
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The Research Center for Nuclear Physics (RCNP) cyclotron cascade system has been operated to
provide high quality beams for various experiments in nuclear and fundamental physics and
applications. The accelerator cascade consists of an injector Azimuthally Varying Field (AVF)
cyclotron (K=140) and a ring cyclotron (K=400). Sophisticated experimental apparatuses are
equipped like a pair spectrometer, a neutron time-of-flight facility with a 100-m-long tunnel, a
radioactive nuclei separator, a super-thermal ultra cold neutron (UCN) source, a white neutron
source, and a RI production system for nuclear chemistry. In my talk, | will present the development
of the High Temperature Superconducting (HTS) magnets and the UCN source.

More than two decades have passed since the discovery of HTS materials in 1986. Significant effort
went into the development of new and improved conductor materials and it became possible to
manufacture relatively long HTS wires of the first generation. Although many prototype devices using
HTS wires have been developed, these applications are presently rather limited in accelerator and beam
line facilities. It is inevitable to downsize the system in order to install it in a town hospital. There have
been a lot of efforts to make accelerators compact. However, it is well known an accelerator is not the
main part to determine the size of a particle radiotherapy facility. A beam delivering system becomes
large and heavy for a heavy ion therapy system. For example, the gantry of the HIT facility at Heidelberg
is 13m in diameter and 25m long. The total weight of rotating parts amounts to 570t. At RCNP, we have
developed HTS magnets as a key device of the next generation particle radiotherapy system. Performance
of the fabricated scanning magnet is discussed. A 3T dipole magnet is designed and under fabrication
utilizing HTS wires. The magnets can be excited by alternating currents to study the applicability to
synchrotron magnets as well as gantry magnets.

The present UCN source is placed in a 400MeV proton beam line. Spallation neutrons are
evaporated from the lead target and are moderated to cold neutrons by the room temperature heavy
water and 10K heavy ice. Cold neutrons are cooled to UCN by exchanging phonons and rotons in
superfluid helium (He-11) at 0.8K. We achieved UCN density of 19/cm® at 90neV. We are preparing
for the measurements of the neutron electric dipole moment (nEDM). Ramsey fringe was
successfully observed at the magnetic field of 2uT and the correlation time of 30s. Efforts are being
continued to improve the T1 relaxation time and to apply the electric field to the EDM cell.

We expect the collaboration with researches at the Indiana University will be very beneficial to
promote developments in both the accelerator and neutron physics.
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Development of HTS magnets

(next generation particle
radiotherapy device)

The National Cancer Center (Chiba)

Irradiation control room

Size of a proton therapy system
is limited by gantries.

Diameter: 10~12mt
Compact irradiation system is required




AC loss measurement

Diameter:13m, Length: 25m, Weight of rotating parts: 570t

Application of HTS conductors
to magnets

Cu-oxide HTS materials

1986: discovery of (La, Ba,)-CuO,

4 Compact system
J.G. Bednorz and K.A. Milller

o132 Simple cooling system (No liquid He is required)

Hg1223
1%t generation HTS wires (T =110 K) D

sz
Bi,Sr,Ca,Cu;0,, (Bi-2223) vz

- Bolling point of iguig rifogen_ _ _

cryogenic refrigerators and conduction cooling
A wide temperature range of the operation
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27 generation HTS wires (T, = 95 K)

application to AC magnets as well as DC magnet
YBa,Cu,0, (Y-123) g8

for example,

cyclotron, synchrotron, beam line magnets
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eddy current losses in the metallic H.

~: current sharing in metallic sheath (I>Ic)
E.H. Brandt and M. Indenbom

Bi,Sr,Ca,Cu Phys. Rev. B 48 (1993) 12893
(Bi-2223)




A scanning magnet
by]

IZ 80 mrad
L= deflection

3 \
B,~coils w22
<

Studies have been limited to such simple structures
as tapes, cables and simple coils in both experimental
and theoretical points of view

Design parameter

Coils 1, 150 m, B, 150 mm x 380 mm
Cross section 50 tman x 30 mm
Separation 70 mm
Max. field 06T
Bi-2223/Ag alloy wire
B, d12m x 2, B,: 460w x 2
120 » 2 colls for_both B, and B,]
3 dout akes/coll = S
B,: 75mi, B,: 92 mll
Dutle paveskn
013 A G0 wensl
200A |
tempersture | 0K |
Cryastat | Cooling method g
Thermal insulation r-insulation
Cooling power of 15 W ot 20K
the GM refiigerator | 53 W at 80 |.I

=
£
@
o
©
pid
bar
o
>

Critical current (1.,) of coils at 77 K Cooling performance of a coil

Length
(m)
132

Coil No.

Temperature of the Front shield
Coul #283

Total tape length 132m Temperature of the By-coil

16 @ 13.2 nV = 811 Angs 3¢ 77K

Resistance of the By-coul

40
Current (Amps)

Temperature (K), Resistance (arb.)

| |
200 400
Cooling time (min.)




Magnetic field distributions
on the axis
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3T dipole magnet
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AC loss measurements at 20 K
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Specification of the 3T dipole magnet

- Orbit radius:400 mm
Deflection angle:60

- Pole gap:30 mm

- Cold pole

- Laminated pole and
yoke for AC operation

Schematic view.

Specification of HTS coils

Wire: DI-BISCCO Type-HT(SS20)
0.46 % 0.36

12.5um polyimide (Half
wrap)

Winding :600 turns x 2 coils
Operating temperature : 20K
Critical current (measured):
Wire: 160 ~ 178A
Double pancake:60 ~ 70A
Coil: 47A. 51A

Critical current of wire and
the load line of a coil




Super-thermal UCN source
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nEDM measurement

History of nEDM measurements
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Thank you for your attention




