RCNP 研究会「核子と中間子の多体問題の統一的描像に向けて」 2007年12月14日 – 15日

sd 殻原子核の束縛エネルギーにおける monopole および quadrupole 相互作用

梅谷 篤史(大阪電通大) 金子 剛樹(東工大) 武藤 一雄(東工大)

u-atusi@isc.osakac.ac.jp

イントロダクション

原子核は、構成する核子間の相互作用 (核力)のみで束縛する多体系である。 Reid soft-core potential

核力は、中心力、スピン・軌道力、テ ンソルカなどからなり, さらにTriplet-Even, Singlet-Even などの2核子状態の チャネルごとに異なるポテンシャルを もつ。

原子核は、こうしたいくつものポテン シャルが複雑に絡み合って束縛してい る。

中心力

R.V. Reid, Ann. Phys. 50 (1968) 411

イントロダクション 殻模型ハミルトニアン $H = E^{\text{core}} + \sum_{jm} \varepsilon_{j}^{\text{core}} a_{jm}^{\dagger} a_{jm} + \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J [a_{j_1}^{\dagger} \otimes a_{j_2}^{\dagger}]_M^{(J)} [a_{j'_1} \otimes a_{j'_2}]_M^{(J)}$

 $E^{core}: コアのエネルギー$ $<math>\varepsilon_{j}^{core}: コアからみた核子の1粒子エネルギー$ $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_J: 2体相互作用の行列要素$ $<math>a_{jm}^{\dagger}, a_{jm}: 1$ 粒子の生成消滅演算子 (2体の行列要素側は正確な表現ではないが,わかりやすさを優先。)

コアのエネルギーは考えない。

 $\varepsilon_{j}^{\text{core}}$ と $\langle j_{1}j_{2}|V|j_{1}'j_{2}'\rangle_{J}$ のそれぞれの値が、エネルギー準位の実験データを再現するように決定されている。(Empirical interaction)

→ ポテンシャルの形や核子の波動関数の形はわからない(仮定されていない)。
 → 核力のどのような成分が束縛エネルギーに寄与しているかわからない。

イントロダクション 殻模型ハミルトニアン $H = E^{\text{core}} + \sum_{jm} \varepsilon_{j}^{\text{core}} a_{jm}^{\dagger} a_{jm} + \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J \left[a_{j_1}^{\dagger} \otimes a_{j_2}^{\dagger} \right]_M^{(J)} \left[a_{j'_1} \otimes a_{j'_2} \right]_M^{(J)}$

W	Wildenthal USD B. H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5(A = 18)													
	j_1	j_2	j'_1	j'_2	T	J	$\langle j_1 j_2 V j_1' j_2' \rangle_{TJ}$	j_1	j_2	j'_1	j'_2	T	J	$\langle j_1 j_2 V j_1' j_2' \rangle_{TJ}$
	$d_{5/2}$	$d_{5/2}$	$d_{5/2}$	$d_{5/2}$	1	0	-2.8197	$d_{5/2}$	$d_{3/2}$	$d_{5/2}$	$d_{3/2}$	1	1	1.0334
	·	·		·		2	-1.0020		·		·		2	-0.3248
						4	-0.1641						3	0.5894
					0	1	-1.6321						4	-1.4497
						3	-1.5012					0	1	-6.5058
						5	-4.2256						2	-3.8253
	$d_{5/2}$	$d_{5/2}$	$d_{5/2}$	<i>s</i> _{1/2}	1	2	-0.8616						3	-0.5377
					0	3	-1.2420						4	-4.5062
	$d_{5/2}$	$d_{5/2}$	$d_{5/2}$	$d_{3/2}$	1	2	-0.2828	$d_{5/2}$	$d_{3/2}$	<i>s</i> _{1/2}	$s_{1/2}$	0	1	2.1042
	•	•	•	•	•	:	:	:	•	•	• •	:	:	:

イントロダクション

Wildenthal USD (Empirical Interaction) による束縛エネルギーと実験値との比較 B. H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5

目的

Empirical interaction をいくつかの成分に分解し、どの成分が原子核の束縛エネル ギーに寄与するかを調べる。

Empirical interaction は2体行列要素として与えられているので、ポテンシャルの形や核子の波動関数の形はわからない(仮定されていない)。また核力のどのような成分が束縛エネルギーに寄与しているかわからない。

模型空間: sd 殻 (¹⁶O を core とする)

原子核:8 ≤ Z ≤ 20, 8 ≤ N ≤ 20 の偶々核

相互作用:Wildenthal USD

B. H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5

- •陽子・陽子間、中性子・中性子間、陽子・中性子間に分解する。
 - → 陽子・中性子間の相互作用の寄与が大きい。
- Monopole と Higher multipoles に分解する。
 - → Monopole の寄与が非常に大きい。 → Monopole についてもう少し調べる。
 - → それ以外の寄与は最大で 30 MeV 程度。 → 原子核の変形と Quadrupole の寄与。
- Triplet-Even, Singlet-Even などのチャネルに分解する。
 - → Triplet-Even の寄与が最も大きい。次いで Singlet-Even の寄与。

手法

- (1) 模型空間を設定して basis state を用意する。
- (2) ハミルトニアン行列を対角化してエネルギー固有値(束縛エネルギー)と波動関数(basis state への展開係数)を得る。
- (3) 2体相互作用を分解する。
- (4) (2) で得られた波動関数を用いて, (3) で分解されたそれぞれの成分ごとに期待値 を求める。

手法

(1) 模型空間を設定して basis state を用意する。

ハミルトニアンの固有状態 $|\psi\rangle$ は basis state $|\phi_k^{(\text{basis})}
angle$ を用いて

$$|\psi\rangle = \sum_{k} C_{k} |\phi_{k}^{(\text{basis})}\rangle$$

のように展開される。(C_k はこれから求める。)

(2) ハミルトニアン行列を対角化してエネルギー固有値(束縛エネルギー)と波動関数(basis state への展開係数)を得る。

手法

- (1) 模型空間を設定して basis state を用意する。 $|\psi\rangle = \sum_{k} C_{k} |\phi_{k}^{(\text{basis})}\rangle$
- (2) ハミルトニアンの行列を対角化してエネルギー固有値(束縛エネルギー)と波動 関数(basis state への展開係数)を得る。

シュレディンガー方程式
$$H |\psi\rangle = E |\psi\rangle$$
 より

$$\begin{pmatrix} H_{11} & H_{12} & \cdots & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} & H_{n2} & \cdots & H_{nn} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = E \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}$$
ただし
 $H_{k\ell} = \langle \phi_k^{(\text{basis})} |H| \phi_\ell^{(\text{basis})} \rangle$
 $H = \sum_{jm} \varepsilon_j^{\text{core}} a_{jm}^{\dagger} a_{jm} + \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J [a_{j_1}^{\dagger} \otimes a_{j_2}^{\dagger}]_M^{(J)} [a_{j'_1} \otimes a_{j'_2}]_M^{(J)}$

(3) 2体相互作用を分解する。

手法

- (1) 模型空間を設定して basis state を用意する。 $|\psi\rangle = \sum_{k} C_{k} |\phi_{k}^{(\text{basis})}\rangle$
- (2) ハミルトニアンの行列を対角化してエネルギー固有値(束縛エネルギー)と波動 関数(basis state への展開係数)を得る。

シュレディンガー方程式
$$H|\psi\rangle = E|\psi\rangle$$
 より

$$\begin{pmatrix} H_{11} & H_{12} & \cdots & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} & H_{n2} & \cdots & H_{nn} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = E \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}$$
ただし
 $H_{k\ell} = \sum_{jm} \varepsilon_j^{\text{core}} \langle \phi_k^{\text{(basis)}} | a_{jm}^{\dagger} a_{jm} | \phi_\ell^{\text{(basis)}} \rangle$
 $+ \sum \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J \langle \phi_k^{\text{(basis)}} | [a_{j_1}^{\dagger} \otimes a_{j_2}^{\dagger}]_M^{(J)} [a_{j_1'} \otimes a_{j_2'}]_M^{(J)} | \phi_\ell^{\text{(basis)}} \rangle$

(3) 2体相互作用を分解する。

 $j_1 j_2 j'_1 j'_2 JM$

手法

- (1) 模型空間を設定して basis state を用意する。 $|\psi\rangle = \sum_{k} C_{k} |\phi_{k}^{(\text{basis})}\rangle$
- (2) ハミルトニアンの行列を対角化してエネルギー固有値(束縛エネルギー)と波動 関数(basis state への展開係数)を得る。 E, C_k
- (3) 2体相互作用を分解する。

分解方法は次で述べる。2体行列要素ひとつひとつについて、各種成分に分解 できる。VをV = V_a + V_b + V_c + ··· のように分解するときは $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_{J=1} = \langle j_1 j_2 | V_a | j'_1 j'_2 \rangle_{J=1} + \langle j_1 j_2 | V_b | j'_1 j'_2 \rangle_{J=1} + \langle j_1 j_2 | V_c | j'_1 j'_2 \rangle_{J=1} + ···$ $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_{J=2} = \langle j_1 j_2 | V_a | j'_1 j'_2 \rangle_{J=2} + \langle j_1 j_2 | V_b | j'_1 j'_2 \rangle_{J=2} + \langle j_1 j_2 | V_c | j'_1 j'_2 \rangle_{J=2} + ···$ $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_{J=3} = \langle j_1 j_2 | V_a | j'_1 j'_2 \rangle_{J=3} + \langle j_1 j_2 | V_b | j'_1 j'_2 \rangle_{J=3} + \langle j_1 j_2 | V_c | j'_1 j'_2 \rangle_{J=3} + ···$:

(4) (2) で得られた波動関数を用いて, (3) で分解されたそれぞれの成分ごとに期待値 を求める。

手法

こ

- (1) 模型空間を設定して basis state を用意する。 $|\psi\rangle = \sum_{k} C_{k} |\phi_{k}^{(\text{basis})}\rangle$
- (2) ハミルトニアンの行列を対角化してエネルギー固有値(束縛エネルギー)と波動
 関数(basis state への展開係数)を得る。
 E, C_k
- (3) 2体相互作用を分解する。 $V = V_a + V_b + V_c + \cdots$

 $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_J = \langle j_1 j_2 | V_a | j'_1 j'_2 \rangle_J + \langle j_1 j_2 | V_b | j'_1 j'_2 \rangle_J + \langle j_1 j_2 | V_c | j'_1 j'_2 \rangle_J + \cdots$

(4) (2) で得られた波動関数を用いて, (3) で分解されたそれぞれの成分ごとに期待値 を求める。

$$\begin{split} E_{a} &= \langle \psi | V_{a} | \psi \rangle \\ &= \sum_{k\ell} C_{k}^{*} C_{\ell} \sum_{j_{1} j_{2} j_{1}' j_{2}' JM} \langle j_{1} j_{2} | V_{a} | j_{1}' j_{2}' \rangle_{J} \langle \phi_{k}^{(\text{basis})} | [a_{j_{1}}^{\dagger} \otimes a_{j_{2}}^{\dagger}]_{M}^{(J)} [a_{j_{1}'} \otimes a_{j_{2}'}]_{M}^{(J)} | \phi_{\ell}^{(\text{basis})} \rangle \\ \mathcal{ZC} \end{split}$$

$$E = E^{(\text{s.p.e.})} + \underline{E}_a + E_b + E_c + \cdots$$

2体行列要素の分解

- (1) 陽子・陽子間 V_{pp} ,中性子・中性子間 V_{nn} ,陽子・中性子間 V_{pn} にわける。
- (2) 多重極展開する。 $\rightarrow V = V^{(0)} + V^{(1)} + V^{(2)} + V^{(3)} + \cdots \rightarrow 8, 9$ ページで説明。
- (3) スピン・テンソル分解。
 - 中心力(スピン部分 Rank 0)

Triplet-Even (TE), Singlet-Even (SE), Triplet-Odd (TO), Singlet-Odd (SO)

スピン軌道力(スピン部分 Rank 1)

Even (T = 0) (**LSE**), odd (T = 1) (**LSO**)

• テンソルカ (スピン部分 Rank 2)

Even (T = 0) (TNE), odd (T = 1) (TNO)

2粒子状態のスピン S = 0, 1, アイソスピン T = 0, 1 の組み合わせで相対軌道角 運動量の Even, Odd をわけられる。

中心力,スピン軌道力,テンソル力のスピン部分の Rank の違いに注目し, Racah 代数を用いることでわけられる。

2体行列要素の分解

- (1) 陽子・陽子間 V_{pp} ,中性子・中性子間 V_{nn} ,陽子・中性子間 V_{pn} にわける。 (2) 多重極展開する。 $\rightarrow V = V^{(0)} + V^{(1)} + V^{(2)} + V^{(3)} + \cdots \rightarrow 8,9$ ページで説明。
- (3) スピン・テンソル分解。

			Central	Spin-orbit	Tensor
T	S	L	k = 0	k = 1	k = 2
0	0	Odd	SO	—	—
	1	Even	ТЕ	LSE	TNE
1	0	Even	SE	—	_
	1	Odd	ТО	LSO	TNO

多重極展開

2体の演算子 (Rank 0) を2つの1体の演算子 (Rank k) の内積で展開する。

$$\begin{split} V &= \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J \, [\boldsymbol{a}_{j_1}^{\dagger} \otimes \boldsymbol{a}_{j_2}^{\dagger}]_M^{(J)} \, [\boldsymbol{a}_{j'_1} \otimes \boldsymbol{a}_{j'_2}]_M^{(J)} \\ &= \sum_{j_1 j_2 j'_1 j'_2 kq} \, f_k(j_1 j_2, j'_1 j'_2) \, [\boldsymbol{a}_{j_1}^{\dagger} \otimes \boldsymbol{\tilde{a}}_{j'_1}]_q^{(k)} \, [\boldsymbol{a}_{j_2}^{\dagger} \otimes \boldsymbol{\tilde{a}}_{j'_2}]_{-q}^{(k)} \end{split}$$

多重極展開

2体の演算子(Rank 0)を2つの1体の演算子(Rank k)の内積で展開する。

$$V = \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J \left[\boldsymbol{a}_{j_1}^{\dagger} \otimes \boldsymbol{a}_{j_2}^{\dagger} \right]_M^{(J)} \left[\boldsymbol{a}_{j'_1} \otimes \boldsymbol{a}_{j'_2} \right]_M^{(J)}$$
$$= \sum_{j_1 j_2 j'_1 j'_2 kq} f_k(j_1 j_2, j'_1 j'_2) \left[\boldsymbol{a}_{j_1}^{\dagger} \otimes \tilde{\boldsymbol{a}}_{j'_1} \right]_q^{(k)} \left[\boldsymbol{a}_{j_2}^{\dagger} \otimes \tilde{\boldsymbol{a}}_{j'_2} \right]_{-q}^{(k)}$$

 $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_J \left[\boldsymbol{a}_{j_1}^{\dagger} \otimes \boldsymbol{a}_{j_2}^{\dagger} \right]_M^{(J)} \left[\boldsymbol{a}_{j'_1} \otimes \boldsymbol{a}_{j'_2} \right]_M^{(J)}$

多重極展開

2体の演算子(Rank 0)を2つの1体の演算子(Rank k)の内積で展開する。

$$V = \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J [\mathbf{a}_{j_1}^{\dagger} \otimes \mathbf{a}_{j_2}^{\dagger}]_M^{(J)} [\mathbf{a}_{j'_1} \otimes \mathbf{a}_{j'_2}]_M^{(J)}$$
$$= \sum_{j_1 j_2 j'_1 j'_2 kq} \mathbf{f}_k(j_1 j_2, j'_1 j'_2) [\mathbf{a}_{j_1}^{\dagger} \otimes \mathbf{\tilde{a}}_{j'_1}]_q^{(k)} [\mathbf{a}_{j_2}^{\dagger} \otimes \mathbf{\tilde{a}}_{j'_2}]_{-q}^{(k)}$$

 $f_{k}(j_{1}j_{2}, j_{1}'j_{2}') [a_{j_{1}}^{\dagger} \otimes \tilde{a}_{j_{1}'}]_{q}^{(k)} [a_{j_{2}}^{\dagger} \otimes \tilde{a}_{j_{2}'}]_{-q}^{(k)}$

多重極展開

$$V = \sum_{j_1 j_2 j'_1 j'_2 JM} \langle j_1 j_2 | V | j'_1 j'_2 \rangle_J [\mathbf{a}_{j_1}^{\dagger} \otimes \mathbf{a}_{j_2}^{\dagger}]_M^{(J)} [\mathbf{a}_{j'_1} \otimes \mathbf{a}_{j'_2}]_M^{(J)}$$
$$= \sum_{j_1 j_2 j'_1 j'_2 kq} \mathbf{f}_k(j_1 j_2, j'_1 j'_2) [\mathbf{a}_{j_1}^{\dagger} \otimes \mathbf{\tilde{a}}_{j'_1}]_q^{(k)} [\mathbf{a}_{j_2}^{\dagger} \otimes \mathbf{\tilde{a}}_{j'_2}]_{-q}^{(k)}$$

(1) k = 0 (Monopole) の部分だけ取り出す → $V = V^{(0)} + V^{(1)} + V^{(2)} + V^{(3)} + \cdots$

• $j_1 = j'_1, j_2 = j'_2$ 以外は 0 である。(配位混合を引き起こさない。) • 核力の平均に相当

$$V^{(0)} = \sum_{j_1 j_2} \Delta \varepsilon_{j_1 j_2} N_{j_1} N_{j_2}$$
$$\Delta \varepsilon_{j_1 j_2} = \frac{\sum_J (2J+1) \langle j_1 j_2 | V | j_1 j_2 \rangle_J}{\sum_J (2J+1)}, \qquad N_j = \sum_m a_{jm}^{\dagger} a_{jm}$$

(2) k = 2 (Quadrupole) の部分だけ取り出す → $V = V^{(0)} + V^{(1)} + V^{(2)} + V^{(3)} + \cdots$

• QQ-force に相当。

陽子・中性子間の相互作用の寄与が大きい。

結果(その1) 陽子・陽子間,中性子・中性子間,陽子・中性子間に分解

陽子・中性子間の相互作用の寄与が大きい。

結果(その1) 陽子・陽子間,中性子・中性子間,陽子・中性子間に分解

陽子・中性子間の相互作用の寄与が大きい。

結果(その2)多重極展開

Monopole の寄与が大きい。(spe ももともとは2体相互作用の Monopole の成分。)

結果(その2)多重極展開

Monopole の寄与が大きい。(spe ももともとは2体相互作用の Monopole の成分。)

結果(その2)多重極展開

Monopole の寄与が大きい。(spe ももともとは2体相互作用の Monopole の成分。)

結果(その3) Monopole をさらに分解

Triplet-Even (TE) の成分が最大。次いで Singlet-Even (SE)。 Triplet-Odd (TO) と Singlet-Odd (SO) は斥力。*LS* カやテンソルカの寄与は小さい。

結果(その3) Monopole をさらに分解

Triplet-Even (TE) の成分が最大。次いで Singlet-Even (SE)。 Triplet-Odd (TO) と Singlet-Odd (SO) は斥力。*LS* カやテンソルカの寄与は小さい。

結果(その3) Monopole をさらに分解

Triplet-Even (TE) の成分が最大。次いで Singlet-Even (SE)。 Triplet-Odd (TO) と Singlet-Odd (SO) は斥力。LS カやテンソルカの寄与は小さい。

Monopole と1粒子エネルギー

Monopole は1粒子エネルギーに寄与する。 Open Shell の原子核の状態 $|\Phi\rangle$ に対する1粒子エネルギー

$$\varepsilon_{j} = \varepsilon_{j}^{\text{core}} + \langle \Phi | \sum_{j'} \Delta \varepsilon_{jj'} N_{j'} | \Phi \rangle$$
$$\Delta \varepsilon_{jj'} = \frac{\sum_{J} (2J+1) \langle jj' | V | jj' \rangle_{J}}{\sum_{J} (2J+1)}, \qquad N_{j} = \sum_{m} a_{jm}^{\dagger} a_{jm}$$

2体相互作用の Monopole の成分

$$V^{(0)} = \sum_{jj'} \Delta \varepsilon_{jj'} N_j N_{j'}$$

Monopole と1粒子エネルギー

Monopole は1粒子エネルギーに寄与する。 Open Shell の原子核の状態 $|\Phi\rangle$ に対する1粒子エネルギー

$$\varepsilon_{j} = \varepsilon_{j}^{\text{core}} + \langle \Phi | \sum_{j'} \Delta \varepsilon_{jj'} N_{j'} | \Phi \rangle$$
$$\Delta \varepsilon_{jj'} = \frac{\sum_{J} (2J+1) \langle jj' | V | jj' \rangle_{J}}{\sum_{J} (2J+1)}, \qquad N_{j} = \sum_{m} a_{jm}^{\dagger} a_{jm}$$

軌道 j' に核子が1つ入ると $\Delta \varepsilon_{jj'}$ の分だけ軌道 jの1粒子エネルギーが下がる。

Monopole と1粒子エネルギー 同じ Shell 内における1次のテンソルカの効果

赤:1次のテンソル有(通常の計算),青:1次のテンソル無 魔法数から最も離れた領域では,最大2MeV程度 LS-splitting を弱める効果が見ら れる。

Monopole と1粒子エネルギー

2体相互作用をどこまで1体場(1粒子エネルギー)に繰り込めるか?

Open Shell の原子核の状態 $|\Phi\rangle$ に対する1粒子エネルギー

 $\varepsilon_{j} = \varepsilon_{j}^{\text{core}} + \langle \Phi | \sum_{j'} \Delta \varepsilon_{jj'} N_{j'} | \Phi \rangle$ $\Delta \varepsilon_{jj'} = \frac{\sum_{J} (2J+1) \langle jj' | V | jj' \rangle_{J}}{\sum_{J} (2J+1)}, \qquad N_{j} = \sum_{m} a_{jm}^{\dagger} a_{jm}$

2体相互作用の Monopole の成分

$$V^{(0)} = \sum_{jj'} \Delta \varepsilon_{jj'} N_j N_{j'}$$

2重閉殻の⁴⁰Ca (1つの配位であらわされる)では以下が成り立つ。

$$\langle {}^{40}\text{Ca}|\sum_{j} (\varepsilon_{j} - \varepsilon_{j}^{\text{core}})N_{j}|{}^{40}\text{Ca}\rangle = \langle {}^{40}\text{Ca}|V^{(0)}|{}^{40}\text{Ca}\rangle$$
$$\sum_{jj'} \Delta \varepsilon_{jj'} \langle {}^{40}\text{Ca}|N_{j}|{}^{40}\text{Ca}\rangle \langle {}^{40}\text{Ca}|N_{j'}|{}^{40}\text{Ca}\rangle = \sum_{jj'} \Delta \varepsilon_{jj'} \langle {}^{40}\text{Ca}|N_{j}N_{j'}|{}^{40}\text{Ca}\rangle$$

Monopole と1粒子エネルギー

2体相互作用をどこまで1体場(1粒子エネルギー)に繰り込めるか?

Open Shell の原子核(状態 Φ) では一般に

$$\langle \Phi | \sum_{j} (\varepsilon_{j} - \varepsilon_{j}^{\text{core}}) N_{j} | \Phi \rangle \neq \langle \Phi | V^{(0)} | \Phi \rangle$$

$$\sum_{jj'} \Delta \varepsilon_{jj'} \langle \Phi | N_{j} | \Phi \rangle \langle \Phi | N_{j'} | \Phi \rangle \neq \sum_{jj'} \Delta \varepsilon_{jj'} \langle \Phi | N_{j} N_{j'} | \Phi \rangle$$

$$\mathbf{C} \mathbf{\mathcal{B}} \mathbf{\mathcal{S}} \mathbf{\mathcal{N}}, \quad R = \frac{\langle \Phi | \sum_{j} (\varepsilon_{j} - \varepsilon_{j}^{\text{core}}) N_{j} | \Phi \rangle}{\langle \Phi | V^{(0)} | \Phi \rangle} \mathbf{\mathcal{I}} \mathbf{\mathcal{I}}$$

$$\frac{\Phi}{R} \frac{2^{0} \text{Ne}}{1.035} \frac{2^{4} \text{Mg}}{0.994} \frac{2^{8} \text{Si}}{1.009} \frac{3^{2} \text{S}}{1.004} \frac{3^{6} \text{Ar}}{1.000}$$

であるため、〈 Φ | $\sum_{j} (\varepsilon_{j} - \varepsilon_{j}^{\text{core}})N_{j}|\Phi$ 〉 $\approx \langle \Phi | V^{(0)} | \Phi \rangle$ がいえる。 2体相互作用の Monopole の成分はほとんど1粒子エネルギーに繰り込むことがで きる。

Quadrupole と変形

陽子・中性子間の相互作用がもたらす束縛エネルギーの上昇分のうち, Monopole の寄与以外を取り出す。濃い部分が Quadrupole によるもの。 Monopole 以外の寄与は *sd* 殻の原子核では²⁴Mg のときが最大で約 30 MeV。

> Ar S Si Mg Ne N = 10N = 12 N = 14 N = 16N = 18

Quadrupole と変形

波動関数のうち $0_p^+ \otimes 0_n^+ \geq 2_p^+ \otimes 2_n^+$ の成分を抜き出す。 $2_p^+ \otimes 2_n^+$ が変形の主成分。 束縛エネルギーにおける Quadrupole の寄与と相関がある。 sd の原子核で $2_p^+ \otimes 2_n^+$ の成分が最も多いのは ²⁴Mg。

Ar

まとめ

Empirical interaction をいくつかの成分に分解し,どの成分が原子核の束縛エネル ギーに寄与するかを調べた。

- 模型空間は sd 殻, ¹⁶O core で $8 \le Z \le 20, 8 \le N \le 20$ の偶々核について調べた。
- sd 殻に対する Empirical interaction である Wildenthal USD (B. H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5) について調べた。
- ◆ 陽子・中性子間の相互作用の寄与が大きい。
- ♦ Monopole の効果が非常に大きい。
- ♦ Monopole の中でも Triplet-Even 次いで Singlet-Even の寄与が大きい。
- ◆1粒子エネルギーにおいてテンソル力の1次は LS-splitting を弱める効果。
- ◆2体相互作用の Monopole の成分のほとんどを1粒子エネルギーに繰り込める。
- ♦ Higher multipoles の寄与は最大で 30 MeV 程度(²⁴Mg)。
- ◆配位混合によって最大で 30 MeV 程度の束縛エネルギーを獲得する。
- ♦ Higher multipoles では Quadrupole の寄与が大きく,原子核の波動関数中の $2_p^+ \otimes 2_n^+$ 成分と関係している。

補足

1

2体行列要素の分解(その1)

核力の平均を抜き出す

2体相互作用の平均(例として $j_1 \neq j_2$ の場合)

$$\langle j_1 j_2 | V^{\text{ave.}} | j_1 j_2 \rangle = \frac{\sum_J (2J+1) \langle j_1 j_2 | V | j_1 j_2 \rangle_J}{\sum_J (2J+1)}$$

→ Monopole 相互作用

$$\langle j_1 j_2 | V | j_1 j_2 \rangle_J = \underbrace{\langle j_1 j_2 | V^{\text{ave.}} | j_1 j_2 \rangle}_{J \text{ Iclosed}} + \langle j_1 j_2 | V^{\text{other}} | j_1 j_2 \rangle_J$$

2体行列要素の分解(その1)

多重極展開

ポテンシャルがわかっているときは、以下のような多重極に展開が可能。

(例として中心力の場合) Fourier 変換と逆 Fourier 変換 $(r = r_1 - r_2)$ $V(r) = \frac{1}{(2\pi)^3} \int dp \exp\{-ip \cdot (r_1 - r_2)\} \int dr \exp(ip \cdot r) V(r),$ $\exp(ip \cdot r) = 4\pi \sum_{k=0}^{\infty} i^k j_k(pr) \left(Y^{(k)}(\Omega) \cdot Y^{(k)}(\Omega_p)\right)$

多重極展開

$$V(r) = \sum_{k} \int_{0}^{\infty} p^{2} dp \, v(p) \left(2k+1\right) \left(F^{(k)}(p; \boldsymbol{r}_{1}) \cdot F^{(k)}(p; \boldsymbol{r}_{2})\right),$$

$$F^{(k)}(p; \boldsymbol{r}_{i}) = \sqrt{\frac{4\pi}{2k+1}} \, j_{k}(pr_{i}) \, Y^{(k)}(\Omega_{i}),$$

$$v(p) = \frac{2}{\pi} \int_{0}^{\infty} r^{2} dr \, V(r) \, j_{0}(pr) \qquad \text{(Fourier-Bessel Transform)}$$

2体行列要素の分解(その1)

多重極展開

ポテンシャルがわかっているときは、以下のような多重極に展開が可能。

(例として中心力の場合)

$$V(r) = \sum_{k} \int_{0}^{\infty} p^{2} dp \, v(p) \, (2k+1) \left(F^{(k)}(p; r_{1}) \cdot F^{(k)}(p; r_{2}) \right)$$

k = 0: Monopole 相互作用 \rightarrow 核力の平均に対応 k = 2: Quadrupole $\rightarrow QQ$ -force に対応

Racah 代数を利用すれば、2体行列要素を多重極に展開可能。 (ポテンシャルがわからなくてもよい。)

(例として $j_1 \neq j_2$ の場合) $\langle j_1 j_2 | V_{\mathbf{k}} | j'_1 j'_2 \rangle_J = \sum_{\mathbf{j}'} (-1)^{J-\mathbf{j}'} (2\mathbf{k}+1) (2\mathbf{j}'+1) \times W(j_1 j_2 j'_1 j'_2; \mathbf{j}'\mathbf{k}) \langle j_1 j_2 | V | j_1 j_2 \rangle_{\mathbf{j}'}$

$$\langle j_1 j_2 | V | j_1 j_2 \rangle_J = \sum_{\mathbf{k}} \langle j_1 j_2 | V_{\mathbf{k}} | j_1' j_2' \rangle_J$$

2体行列要素の分解(その1)

「多重極展開」と「核力の平均」の対応関係

$$\langle j_1 j_2 | V_{\mathbf{k}} | j'_1 j'_2 \rangle_J = \sum_{\mathbf{J}'} (-1)^{J-\mathbf{J}'} (2\mathbf{k}+1) (2\mathbf{J}'+1) \\ \times W(j_1 j_2 j'_1 j'_2; \mathbf{J}\mathbf{k}) \ W(j_1 j_2 j'_1 j'_2; \mathbf{J}'\mathbf{k}) \ \langle j_1 j_2 | V | j_1 j_2 \rangle_{\mathbf{J}'}$$

$$\langle j_1 j_2 | V^{\text{ave.}} | j_1 j_2 \rangle = \frac{\sum_J (2J+1) \langle j_1 j_2 | V | j_1 j_2 \rangle_J}{\sum_J (2J+1)}$$

2体行列要素の分解(その1)

ハミルトニアンの行列の対角成分と非対角成分

$$E = \begin{pmatrix} C_1^*, C_2^*, \cdots, C_n^* \end{pmatrix} \begin{pmatrix} H_{11} & H_{12} & \cdots & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} & H_{n2} & \cdots & H_{nn} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}$$
$$= \sum_k C_k^* C_k H_{kk} + \sum_{k \neq \ell} C_k^* C_\ell H_{k\ell}$$

$$H_{k\ell} = \sum_{jm} \varepsilon_{j}^{\text{core}} \langle \phi_{k}^{(\text{basis})} | a_{jm}^{\dagger} a_{jm} | \phi_{\ell}^{(\text{basis})} \rangle$$

+
$$\sum_{j_{1}j_{2}j_{1}'j_{2}'JM} \langle j_{1}j_{2} | V | j_{1}'j_{2}' \rangle_{J} \langle \phi_{k}^{(\text{basis})} | A^{\dagger}(j_{1}j_{2}; JM) A(j_{1}'j_{2}'; JM) | \phi_{\ell}^{(\text{basis})} \rangle$$

Monopole 相互作用の行列要素は対角成分にしかない。 非対角成分は配位混合をあらわす。 Monopole 以外の相互作用の行列要素が配位混合の度合いを決める。

2体行列要素の分解(その2)

Triplet-Even, Singlet-Even などの各チャネルに分解

(1) 2粒子状態はアイソスピン *T*, スピン *S*, 相対の軌道角運動量 *L* で区別される。
 反対称化により *T* と *S* がわかれば *L* の Even, Odd が決まる。

 \rightarrow S : Triplet or Singlet, L : Even or Odd

(2) 中心力、スピン・軌道力、テンソル力はテンソル構造が異なる。

中心力	$1, (\sigma_1 \cdot \sigma_2)$ など	k = 0
スピン・軌道力	$L \cdot S$	<i>k</i> = 1
テンソルカ	$S_{12} = (\boldsymbol{\sigma}_1 \cdot \boldsymbol{r})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{r})/r^2 - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)/3$	<i>k</i> = 2

			Central	Spin-orbit	Tensor
T	S	L	k = 0	k = 1	k = 2
0	0	Odd	SO	—	—
	1	Even	ТЕ	LSE	TNE
1	0	Even	SE	—	—
	1	Odd	ТО	LSO	TNO

2体行列要素の分解(その2)

Triplet-Even, Singlet-Even などの各チャネルに分解

(1) *jj* 結合から LS 結合へ移る。(A は全軌道角運動量, つまり重心を含む。)

 $\langle j_1 j_2 | V | j'_1 j'_2 \rangle_{TJ} \longrightarrow \langle \Lambda S | V | \Lambda' S \rangle_{TJ}$

- (2) 2粒子状態の反対称性から $S \ge T$ を決めるとLの Even, Odd が決まる。
- (3) 中心力 (*k* = 0), スピン・軌道力 (*k* = 1), テンソル力 (*k* = 2) はテンソルの構造が 違うので, Racah 係数を利用することによって, それぞれを分離できる。

$$\langle AS|V_{\boldsymbol{k}}|A'S\rangle_{TJ} = \sum_{\boldsymbol{J}'} (-1)^{\boldsymbol{J}-\boldsymbol{J}'} (2\boldsymbol{k}+1) (2\boldsymbol{J}'+1) \\ \times W(ASA'S; \boldsymbol{J}\boldsymbol{k}) W(ASA'S; \boldsymbol{J}'\boldsymbol{k}) \langle AS|V|A'S\rangle_{TJ'}$$

(4) (3) で得られた分解された行列要素を jj 結合に戻す。

 $\langle \Lambda S | V_k | \Lambda' S \rangle_{TJ} \longrightarrow \langle j_1 j_2 | V_k (S) | j'_1 j'_2 \rangle_{TJ}$

2体行列要素の分解(その2)

Triplet-Even, Singlet-Even などの各チャネルに分解

(1) *jj* 結合から *LS* 結合へ移る。

- (2) 2粒子状態の反対称性から <u>S</u> と <u>T</u> を決めると L の Even, Odd が決まる。
- (3) 中心力 (*k* = 0), スピン・軌道力 (*k* = 1), テンソル力 (*k* = 2) はテンソルの構造が 違うので, Racah 係数を利用することによって, それぞれを分離できる。
- (4) (3) で得られた分解された行列要素を jj 結合に戻す。

			Central	Spin-orbit	Tensor
T	S	L	k = 0	k = 1	<i>k</i> = 2
0	0	Odd	SO	—	—
	1	Even	ТЕ	LSE	TNE
1	0	Even	SE	—	—
	1	Odd	ТО	LSO	TNO