

コヒーレント中間子生成とデルタ領域の スピン・アイソスピン物理

Introduction

(Same as summary)

Spin-isospin responses have been widely studied via

GT at small q&w Unexplored (target) region • (3He,t), (p,p'), (p,n) QES at large q (1-2 fm⁻¹) and medium ω (100 MeV) 400 • (p,n) (as well as (p,p')) ∆-h - Spin-longitudinal at wide q and small ω region 300 (p,n), (p,p') (Dispersion matching) ω (MeV) Pionic atoms at small q and large ω (m_{π}) 200 • (d,³He), (p,²He) Pionic Atom In progress p-h Region 100– GT at small q and medium ω ICHO/SHARAQ at RIBF by U-Tokyo Pion Condensation 3.0 1.040**NOT** sufficiently explored region $q \,({\rm fm}^{-1})$ Δ region at large ω (200-400 MeV)

Goal: Understand spin-isospin responses in wide (q, ω) in a unified way HowTo: 1. Polarization transfer observables of (p, n)2. Coherent Pion Production (CPP) via $(p, n\pi^{+})$ with GeV "pol." beam

Nuclear Correlations and \Delta Effects

GT Strength and Landau-Migdal Parameters

3

2

B(GT) (MeV⁻¹

- g' Dependence of GTGR
 - RPA(1p1h) by Ichimura group
 - GTGR peak position
 - Strongly depends on $g'_{N\!N}$
 - -g'_{NN}=0.6±0.1
 - Weak $g'_{\scriptscriptstyle N\!\varDelta}$ dependence
 - GTGR strength
 - Quenched with $g'_{N\Delta} > 0$
- $g'_{N\Delta}$ Dependence of Q

Q=0.86±0.07(quadratic sum of errors)
− Q evaluated in RPA

• Strongly depends on $g'_{N\!arDelta}$

 $-g'_{NA} = 0.35 \pm 0.16$

 90 Zr(p,n) $T_n = 295 \,\mathrm{MeV}$ MDA $g'_{N\Delta} = 0.9$ 20 10 30 40 Mass difference ω (MeV) $g'_{NA} = 0.35 \pm 0.16$ 1.0 9 Quenching factor $Q = 0.86 \pm 0.07$ 0.9 0.8 0.7 $g'_{NN} = 0.6$ $g'_{\Delta\Delta} = 0.5$ 0.6 Continuum RPA 0.5 0.2 0.4 0.6 0.8 1.0 $g'_{N\Delta}$

GT Strength and g'_{NN} for ⁴⁸Ca and ²⁰⁸Pb

Pion Condensation in Neutron Star

-EOS and Pion Cooling-

Under universality ansatz $-g'_{NN}=g'_{NA}=g'_{AA}=0.6 \sim 0.7$ - Critical density: $\rho_c \sim 4\rho_0$ Pion condensation "does not" occur With new information on g' Universality ansatz "does not" hold • $g'_{NN}=0.6\pm0.1$, $g'_{NA}=0.35\pm0.16$ $-\rho_{c} \sim 2\rho_{0}$ (for $g'_{AA}=0.5$) Pion condensation would be realized in N.S. (3C58 etc.) π -cond. accelerates NS cooling Critical density ρ_0 is sensitive to $g'_{\Lambda\Lambda}$ \rightarrow Experimental determination g'_{AA} is important

Pionic Enhancement in QES Precursor of Pion Condensation Pionic ID_a (${}^{12}C, {}^{40}Ca$) at q=1.7 fm⁻¹ @RCNP @LAMPF 0.20 **RCNP** data • RCNP 0.15 LAMPF d D • $\theta = 22$ °, $T_p = 346 MeV$ 0.10 <u>g</u>N N LAMPF data 0.05 • $\theta = 18^{\circ}, T_p = 494 \, MeV$ 0.00 **Pionic Enhancement** S S Exp. Data > Free (w/o Correlation) 0.15 d b - RPA is sensitive to g'_{NN} and g'_{NA} o 0.10 g'N∆ - RPA is insensitive to g'_{AA} 0.05 Landau-Migdal Parameters 0.00 50 100 0 50 100 150 0 • $g'_{NN} \sim 0.7$ Energy transfer ω_{lab} (MeV) • $g'_{NA} = 0.2(LAMPF) - 0.4(RCNP)$ T. Wakasa et al. Consistent with g's deduced from GT Phys. Rev. C 69, 054609 (2004) T. N. Taddeucchi et al. • $g'_{NN}=0.6\pm0.1, g'_{NA}=0.35\pm0.16$ Phys. Rev. Lett. 73, 3516 (1994) q-dependence of g's is weak

Summary of our previous experiments

-Remaining subjects -

Other evidences for pionic correlations and enhancements observed at RCNP

¹²C(p,n)¹²N(g.s.,1⁺) at 296 MeV M.Dozono, T.W. et al., PLB 656(2007)38.

¹⁶O(p,p')¹⁶O(0⁻,T=1) at 295 MeV T.Wakasa et al., PLB 632(2007)485.

High resolution and/or PTO(D_{ii}) measurements are important and powerful

Physical Processes Important in \Delta Region

Spin-isospin responses important in Δ region

- Coherent Pion Production
 - Pions in final state

- Quasi-free Δ decay

- Δ (in Δ -h) decays into π + N
- Pions in final state
- $-\Delta$ spreading
 - Δ (in Δ-h) interacts with N
 (Δ conversion process)
 - $\Delta + N \rightarrow N + N$
 - No pions in final state

Inclusive Charge-Exchange Spectra in GeV region

Signatures of CPP process in previous exp. ?

CPP has been considered as a reason of the downward energy shift of the ∆ resonance peak

- (³He,t) at 2 GeV
 - D. Contardo et al. PLB168,331 (1986)

 $p(^{3}\text{He},t)$ peaks at T_{t} =1675 MeV (ω =325 MeV)

- Shift from $m_{\Delta}-m_N=294$ MeV is due to the q-dependence of form factors.
- $A({}^{3}\text{He},t)$ peaks at T_{t} =1745 MeV (ω =255 MeV)
 - 70 MeV shift from *p*(³He,*t*)

- 40 MeV shift is due to change in the ∆ self-energy (mass) in nuclear mean field
- Leaving 30 MeV shift would be due to nuclear correlation effects including CPP

Sensitivity to pionic correlations

Ratio of spin-longitudinal and spin-transverse modes —

Real (Experimental) impact is spin-isospin interaction via (p,n)

- NOT a pure (virtual) pion
- Excite several J^{π} modes
 - Spin-longitudinal (LO:pionic)
 - Spin-transverse (TR:non-pionic)

Theoretical calculations

- ¹²C(p,n) at 800 MeV and 0°
- Residual int. with $g'_{NN}=0.6$, $g'_{N\Delta}=g'_{\Delta\Delta}=0.33$
 - T.Udagawa et al. Phys. Rev. C 49, 3162 (1994)
- TR (non-pionic) modes are dominant in Quasi-free and ∆-spreading
 - PT measurements are needed to study LO (pionic) modes
- LO (pionic) is dominant in CPP
 - Sensitive to pionic correlations in nuclei

PT Observables in \Delta region ¹²C(p,n) at 795 MeV (LAMPF)

Unpolarized cross section

- Peak shift to lower ω
 - \Rightarrow Nuclear correlation ?

Significant enhance from DWIA+RPA

- Same as QES (@q=1.7fm-1)
- Same reason ?

Polarized cross section

- Spin-longitudinal ID_L
 - Consistent with DWIA+RPA g'_{NN}=0.6, g'_{NΔ}=g'_{ΔΔ}=0.4
- Spin-transverse ID_T
 - Significant enhancement
 - Contribution from 2p2h etc. ?

Physics with GeV Polarized Beams

E_{_} (MeV)

D.L.Prout et al., PRC 63(2000)014603

How to distinguish CPP from other processes

- Measure correlation between momentum-transfer q and momentum p_{π^+} of pion
 - Strong (parallel) correlation has been expected
 - T.Udagawa et al.
 Phys. Rev. C 49, 3162 (1995)

CPP Experiment at Saturne

- ¹²C(³He,t π ⁺)¹²C(g.s.) at 2 GeV and $\theta_t \sim 0^\circ$
 - T_t=2GeV: Dispersion matching was tried
 - poor energy resolution?
 - $\theta_{3He} = -1^{\circ} \sim 4^{\circ}$
 - Analyzed by D-magnet and detected by DCs
 - Poor energy resolution of 15 MeV
 - θ_π=20° ~ 132°
 - Analyzed and detected by CDC

Results of CPP Experiment at Saturne

Poor missing mass resolution of 25 MeV (FWHM)

- Could not separate ¹²C(g.s.) (CPP)
 from excited states
- Strong (parallel) correlation between q and p_{π}
 - Signature of CPP
 - Consistent with theoretical prediction
- Downward energy shift of the ∆ resonance peak for CPP
 - Signature of (attractive)
 pionic correlations in nuclei

High resolution (g.s. separated) measurement are highly desired

 $^{12}C(g.s.) =$

11.175GeV

CPP Experiment at RCNP ${}^{12}C(p,n\pi^+){}^{12}C(g.s.)$ at 400 MeV K.Fujita, Y.Sakemi et al.

NPOL2 $\Delta E = 300 \text{ keV}, \varepsilon = 15\%$

GEM Counter (NEW!!)

Neutron+Pion "True" Coincidence

Preliminary Results for CPP at RCNP K.Fujita, Y.Sakemi et al.

ω M 2

0.5

80

60

100

120

140 160

180

200

Pion energy spectrum for CPP

Exp. Data

Theory (×1/2)

Theory×Acceptance(×1/2)

Acceptance

Selection of CPP

- 11.14 GeV < ∆M < 11.19 MeV
- Including both
 - ¹²C(g.s.) (CPP)
 - ¹²C(4.4MeV,2⁺)
- Pion energy
 - Exp. (GEM pion counter)
 - Less acceptance at T_{π} <120 MeV
 - Theory (Universality of g'=0.6)
 - Peak at T_{π} =90 MeV

Acceptance effects are large (significant)

- Preliminary results for CPP peak
 - Exp. (140 MeV) > Theory (110 MeV) after acceptance correction

220 240

T_ (MeV)

0.8

0.6

0.4

0.2

 \searrow g'_{$\Delta\Delta$} would be larger than g'_{$\Delta\Delta$}=0.6 (universality) (More experimental and theoretical works are needed!!)

Summary

"Unified" understanding of spin-isospin responses of nuclei is very interesting and challenging

• N-D coupling affects the phenomena in both N-region and Δ -region ($\omega = 300 \text{ MeV}$)

 $g'_{N\Delta}$ determined in N-region is adequate in Δ -region ?

- Experiments
 - Polarization transfer measurements
 - Transferred spin and J^{π} determination
 - CPP measurements
 - Sensitive to spin-longitudinal (pionic) mode

Polarized GeV beams as well as excellent equipments

- Other facilities
 ICHO/SHARAQ at RIBF
 - $-{}^{12}C(v_{\mu},\mu^{-}\pi^{+}){}^{12}C(g.s.)$ at J-PARC
 - First v-CPP data from K2K: no-evidence for CPP

Density dependence of g' could be investigated (?)

A.Hosaka and H.Toki, PTP 76, 1306 (1986)