

Atsushi Tamii

Research Center for Nuclear Physics, Osaka University, Japan

関西核多体セミナー,2023年8月4日,阪大中之島センター

1

slide: <u>https://www.rcnp.osaka-u.ac.jp/~tamii</u> →頁の下の方

an image of Nuclear ground states

_

 \oplus

 $\begin{array}{ll} \text{mean-field like component (low-momentum)} & \leftarrow \text{single particle orbit} \\ & \text{occupation} \end{array}$

d-like correlation (inc. high-momentum) $\leftarrow \alpha$ -cluster も含まれる

?

d-like correlation の定量的記述

Experimental Methods Briefly

AVF Cyclotron Facility

High-Resolution Spectrometer "Grand Raiden" RCNP High resolution of 20-30 keV: D2 dispersion matching. Proton scattering at very forward angles MP DSR Q1-F.C. Focal Plane Detectors (GR=2.5,4.5° Scattering Q 12 m Chamber ²⁰⁸Pb target: 5.2 mg/cm² Dump-Q Intensity : 1-8 nA Grand Raiden (GR) 0 deg. Beam Dump **Polarized Proton** (GR = 0 deg.)Beam at 295 MeV 3m 2

Probing the E1 Response by Proton Scattering

• Missing mass spectroscopy:

Total strength is measured independently from the decaying channels.

- **Multipole decomposition** of the strength in the continuum: Includes the contribution of unresolved small states
- Coulomb excitation: EM Interaction Absolute determination of the transition strength.

Probes for the Electric Dipole Response of Nuclei

- 1. Virtual photon excitation (Coulomb excitation)
 - proton inelastic scattering at 0 deg.

Proton beams at RCNP and iThemba LABS E_x distribution in one shot measurement total photo-absorption c.s. up to 32 (24) MeV at RCNP (iThemba)

- 2. Real photon absorption
 - (γ,γ') Nuclear Resonance Fluorescence
 - $(\gamma,n), (\gamma,2n), (\gamma,p), \dots$ photodisintegrations

Real γ-beam at ELI-NP

pure EM probe precise absolute c.s. partial strength including *n* up to 20 MeV at ELI-NP

Photo-Nuclear Reaction

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

Systematic Measurement on E1 Strength Distribution and n,p,α,γ decays up to A=60

inter-galactic propagation of UHECRs

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics Systematic Measurement on E1 Strength Distribution and n,p,α,γ decays up to A=60

Understanding of photo-nuclear reactions for light nuclei

- photo-absorption c.s. \simeq B(E1) distribution
- decay process

E1遷移

統計崩壊計算では不十分

PANDORA White paper, AT et al., to be published in EPJA

軽い核の光核反応の記述の重要性

宇宙核物理・素粒子物理:

元素合成

超高エネルギー宇宙線のエネルギー損失過程

中性カレントニュートリノ検出: 巨大共鳴のγ放出、(n,γ)反応

放射線遮蔽、放射線施設のdecomissioning、原子炉内の核反応 光放射化分析、非破壊検査

γ-イメージング、CT診断、生体物質の放射線への影響

Home-Land Security、核分裂物質・爆発性物質の探査

光照射による医療用RI製造

雷雲内の核反応、ガンマ放射

宇宙の元素の99.99999%は A=60以下の原子核から成る

Extragalactic Propagation of UHECR Nuclei

Photo-disintegration Pass of ⁵⁶Fe

 $(\gamma, xn), (\gamma, \alpha)$ reactions also take place. Several unstable nuclei also contribute.

Photo-disintegration Pass of ⁵⁶Fe

PANDORA Project: Collaborator

Nuclear Experiments_{Osaka Univ.}

Propagation

and production

		Osumi Gillo.
	RCNP	A. Tamii, N. Kobayashi, T. Sudo, M. Murata, A. Inoue, R. Niina , T. Kawabata, T.
		Furuno, S. Adachi, K. Sakanashi, K. Inaba, Y. Fujikawa, S. Okamoto
	ELI-NP	ELI-NP
		PA. Söderström , D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y. Xu
	iThemba LABS	iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.
		L. Pellegri, R. Neveling, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khumal, M.
		Wiedeking, P. Adsley, L.M. Donaldson, E. Sideras-Haddado, K.L. Malatji, S. Jongile,
	TUDarmatadt	A. Netshiya Baan Naumann Casal N. Biatualla I. Isaali I. Klaamann M. Snall
		P. von Neumann-Cosel, N. Pietrana, J. Isaak, J. Kieemann, M. Span
	U. Milano/INFN	A. Bracco, F. Camera, F. Crespi, O. Wieland
	Shanghai	H. Utsunomiya
ΝТ	Ų. Os <u>lo</u>	K.C.W. Li, S. Siem,
Nuclear Theory		
	AMD	M. Kimura, Y. Taniguchi, H. Motoki Large Scale
		Shell Modle
	NIRET	E Litvinova P Ring H Wibowo
		Y Utsuno N Shimizu
		RPA by T Inskurs OPM by N Teoneys
	$\mathbf{KI}\mathbf{A}/\mathbf{D}\mathbf{\Gamma}\mathbf{I}$	Rindby I. makula, QI W by R. Isoneva
		S Corialy F Khan
	IAL15	S. Gollery, E. Khan
Uł	HECR Theory	
	Dramanation	D. Allard , B. Baret, I. Deloncle, J. Kiener, E. Parizot, V. Tatischeff

S. Nagataki, E. Kido, J. Oliver, H. Haoning

Y

Predictions

Theoretical Model Developments

AMD + Laplace Expansion (M. Kimura et al.,)

Isospin selection rule

RPA by T. Inakura

N. Shimizu, Y. Utsuno, et al.,

E1 Polarizability

Static Electric Dipole Polarizability (α_D)

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_D = \frac{8\pi e^2}{9} \int \frac{dB(E1)}{E_x}$$

first order perturbation calc. A.B. Migdal: 1944 dielectric theorem

Electric Dipole Polarizability: ²⁰⁸Pb, ¹²⁰Sn

E

Symmetry Energy (J and L parameters) Keys to Understand the Neutron Matter Equation of State (EOS)

Symmetry Energy of the Nuclear EOS

is fundamental information for stellar processes

https://www.youtube.com/watch?v=IZhNWh_lFuI

p(Im) Lattimer and Prakash, Science 304, 536 (2004).

Meditron Vortex Magnetic Flux falls http://www.astro.umd.edu/~miller/nstar.html 25 Quasi-Deuteron Excitation Contribution Photon absorption by a virtual deuteron in the nucleus Needs to be subtracted for comparison with EDF calculations. ²⁰⁸Pb

 $\alpha_{\rm D}(^{208}{\rm Pb}): 20.1 \pm 0.6 {\rm ~fm^3}$ quasi-d: $0.51 \pm 0.15 {\rm ~fm^3}$ w/o quasi-d: $19.6 \pm 0.6 {\rm ~fm^3}$ $\sim 2.5\%$

120Sn

 $\alpha_{\rm D}(^{120}{\rm Sn})$: 8.93 ± 0.36 fm³ quasi-d: 0.34 ± 0.08 fm³ w/o quasi-d: 8.59 ± 0.37 fm³ ~4%

Quasi-Deuteron Excitation Contribution

Levinger, PR84, 43(1951).

Tavares and Terranova, JPG18, 521 (1992)

現象論的?

Figure 1. Levinger's constant L plotted against mass number A. The dots represent L values calculated according to Levinger's model as explained in the text. The line is the trend obtained by least-squares fitting of the calculated L values (equation (9)). Full circles represent L values obtained from total nuclear photoabsorption cross section data [14]. Open symbols represent L values deduced from: \bigcirc , data by Stibunov [16]; \triangle , data by Homma *et al* [17, 18].

spin-Magnetic Excitation

Energy spectra at 0-degrees

IS/IV-spin-M1 distribution

スピンM1遷移行列要素

H. Matsubara et al., PRL115, 102501 (2015)

IV spin-M1遷移行列要素にquenching があるが

IS spin-M1遷移行列要素には quenching が見られない

(IS/IV spin-M1) Quenching機構の理解

GTなど他のmultipolarity遷移も "ab initio" couple-cluster model etc.

スピンM1遷移行列要素

H. Matsubara et al., PRL115, 102501 (2015)

スピンM1遷移行列要素

H. Matsubara et al., PRL115, 102501 (2015)

原子核の磁気的応答: スピン磁化率

- •核物質の磁化率のスピン成分
- 強磁場中の核物質の応答(マグネターなど)
- 超新星爆発コア中でのニュートリノ閉じ込め・透過度
- •中性子星の強磁性体状態発現の可能性
 - S. Fantoni et al., PRL87, 181101 (2001)
 - S. Reddy et al., PRC59, 2888 (1999)

マグネター 10¹⁴⁻¹⁶ Gauss

スピン磁化率

Damping of Giant Resonances

原子核の電気双極(E1)応答

counts/ch

巨大共鳴の減衰

巨大双極子共鳴(IVGDR)

巨視的な集団運動描像

→陽子と中性子の相対双極振動

振動の減衰は、陽子中性子流体間の粘性

によって引き起こされる

wikipedia

- 減衰(共鳴幅)の生成機構 $\Gamma = \Delta \Gamma + \Gamma \downarrow + \Gamma^{\uparrow}$ (教科書的説明)
 - △ ランダウ減衰: 戸口状態の1p1h配位分布 複数の1p1h共鳴モードの合成
 - 「↑ エスケープ幅: 戸口状態からの粒子・光子放出による直接崩壊過程

エネルギーを放出して別の状態へ遷移する 「↓ 分散幅:戸口状態からより複雑な配位(複合核) への遷移 共鳴がコヒーレンスを失っていく過程

巨大共鳴は最終的にはエネルギーを失って別の形態へ崩壊する。 崩壊チャンネルは放出粒子(光子)とそのエネルギーによって分類される

$$\Gamma = \sum \Gamma_n + \sum \Gamma_p + \sum \Gamma_{\gamma} + \dots$$

実験では、各崩壊チャンネル毎に分岐比を測定することが可能

分岐比:
$$b_i = \frac{\Gamma_i}{\Gamma}$$
 全幅: $\Gamma = \sum \Gamma_i$

今回の研究では<u>基底状態へのγ崩壊</u>に着目 Γ_{γ0} 分岐比~1%

基底状態へのγ崩壊は、基底状態からのクーロン励起の逆過程にあたる。

基底状態からのクーロン励起断面積から

B(E1)↑ \rightarrow Γを励起エネルギーの関数として求められる (微細平衡) \rightarrow B(E1) $\rightarrow \Gamma_{\gamma_0}$ 2000 が決まる。 1500 nts/ch 崩壞同時測定 励起 $b_{\gamma_0} = \frac{\Gamma_{\gamma_0}}{\Gamma}$ Ino → 分岐比 500 脱励起 が決まる。 \rightarrow Γ が決まる 10 18 8 12 14 16 g.s. excitation energy (MeV) どうなる?

90 Zr(*p*,*p*') at 0 deg

RCNP-E498 semi-online analysis 2018/07/27 Run #1100-1199

g.s.γ崩壊比はGDR領域でほぼフラット

open questions…

S. Nakamura, master thesis 46

Isospin Upper IVGDR の影響

Preliminary

Nuclear Level Densities

extracted by fluctuation analysis using auto-correlation function

Pygmy Dipole Resonance

Universal Existence of PDR in Nuclei with $A > \sim 90$?

Pygmy Dipole Resonance (PDR)

How is the relation to the IS-E1 mode?

How is the relation to the E1 toroidal mode?

(e,e') transverse excitation?

What is the signature of PDR?

PDRの実験的証拠は何か?

(p,pγ) in CAGRA+GR Campaign

Structure of the PDR *1

Quasi-free Scattering at 0-deg

Quasi-free scattering c.s. at 0-deg

description of d-like correlation in nuclei would be important for describing quasi-free scattering c.s. at 0-deg?

spin-flip-probability taken from Kawabata et al.,

Summary

RCNP Grand Raidenでの陽子散乱を使ったこれまでの実験から、 理解したいことをピックアップしてお話しました。

- d-like 相関の定量的記述
- ・ 軽核の光核反応の記述: 光吸収+崩壊計算
- quasi-deuteron excitationの理解
- (IS/IV spin-M1)クエンチング機構の理解
- ・ 基底状態のnp-spin相関の理解
- 核物質のスピン磁化率の理解
- 巨大共鳴の崩壊の記述
- GDRの微細構造の起源と理解
- ・ 準位密度の定量的・現象論的でない記述
- PDR機構の実験的証拠は何か?
- ・ 0度準弾性散乱の定量的記述

Thank you for your attention!