Feasibility Study of the Polarized ⁶Li ion Source

31-OCT-2003

A. Tamii

Research Center for Nuclear Physics, Osaka Univ., Japan

1

Contents

- 1. Physics Motivation (Briefly)
- 2. Overview of the Polarized ⁶Li Ion Source
- 3. Simulation of the Depolarization of ⁶Li in the ECR Ionizer
- 4. Feasibility Test Plan

Physics Motivation

- Study of the nuclear structure by the (⁶Li, ⁶He) Reaction
 - Selective excitation of $\Delta T=1$, $\Delta S=1$
 - Tensor analyzing power at 0 °
 - Selectivity for the 0⁻,1⁻, and 2⁻ states
 - High resolution measurement by dispersion matching (*d*,2He), (*p*,*n*)
- Study of the reaction mechanism of composite particle
 - Elastic Scattering, inelastic scattering, (⁶Li, ⁶He) Reaction (diff. cross section and analyzing power)
- Study of the break up mechanism with a polarized beam
- Study of the spin structure of ⁶Li

Development of Polarized ⁶Li ion Sources at Other Laboratories.

- Max Plank Institute, Heidelberg
 Optical Pumping + Surface Ionizer (+ Charge Exchange+Tandem)
 ⁶Li¹⁺: 20-30*m*A
- Florida State University

Optical Pumping + Surface Ionizer (+ Charge Exchange+Tandem+LINAC)

• Saturne

Optical Pumping + Surface Ionizer (+ EBIS+Accum. Ring+Synchrotron) ⁶Li¹⁺: 20-35*m*A

⁶Li³⁺: 7 × 10⁸ particles/spill

 $P_{zz} = 70\%$ at 187.5 keV/A

Plan of the polarized ⁶Li ion source (I)

Plan of the polarized ⁶Li ion source (II)

Simulation of the Depolarization in the ECR Ionizer (extension of the simulation by Prof. M. Tanaka)

- Fractions and polarizations of escaped ions are calculated by assuming the initial conditions, transition rates, and magnetic-substate transition matrix.
- The rate equations are analytically solved.

 D_{i} ; Transition Matrix of Magnetic Substates from *i* to *j* (0 D_{ji} 1)

7

Assumption of the Plasma Condition

The following plasma condition is assumed according to the empirical analysis of the laser abraded Al ion intensities from a 14.5 GHz ECR ionizer (SHIVA).

Magnetic-Substate Transition Matrix (1/2)

(according to the calc. of 3He by M. Tanaka and Y. Plis)

• The wave functions $\Psi_i(t)$ of the electron-nucleus system in a magnetic field system are written as a linear combination of |IJ> states as

• The time revolution of the | +1> state is

$$\begin{split} \downarrow +1 \rangle_{t} &= \cos \boldsymbol{b}_{+} \Psi_{\mathrm{II}}(t) + \sin \boldsymbol{b}_{+} \Psi_{\mathrm{IV}}(t) \\ &= \cos \boldsymbol{b}_{+} \Psi_{\mathrm{II}}(0) \exp(-iE_{\mathrm{II}}t) + \sin \boldsymbol{b}_{+} \Psi_{\mathrm{IV}}(0) \exp(-iE_{\mathrm{IV}}t) \\ &= \cos \boldsymbol{b}_{+} \left(\sin \boldsymbol{b}_{+} |\uparrow 0 \right) + \cos \boldsymbol{b}_{+} |\downarrow +1 \rangle \right) \exp(-iE_{\mathrm{II}}t) \\ &+ \sin \boldsymbol{b}_{+} \left(-\cos \boldsymbol{b}_{+} |\uparrow 0 \right) + \sin \boldsymbol{b}_{+} |\downarrow +1 \rangle \exp(-iE_{\mathrm{IV}}t) \end{split}$$

• The probability to find | +1> and its time average (after sufficient time) is

$$P(t) = \left|\cos^{2} \boldsymbol{b}_{+} \exp(-iE_{\mathrm{II}}t) + \sin^{2} \boldsymbol{b}_{+} \exp(-iE_{\mathrm{IV}}t)\right|^{2}$$

= $\cos^{4} \boldsymbol{b}_{+} + \sin^{4} \boldsymbol{b}_{+} + 2\cos^{2} \boldsymbol{b}_{+} \sin^{2} \boldsymbol{b}_{+} \cos((E_{\mathrm{II}} - E_{\mathrm{IV}})t)$
 $\overline{P} = \cos^{4} \boldsymbol{b}_{+} + \sin^{4} \boldsymbol{b}_{+} = \frac{1}{2}(1 + \boldsymbol{d}_{+}^{2})$

Magnetic-Substate Transition Matrix (2/2)

• By similar calculations we obtain

$$\begin{pmatrix} |\uparrow+1\rangle'\\ |\uparrow0\rangle'\\ |\uparrow-1\rangle'\\ |\downarrow-1\rangle'\\ |\downarrow0\rangle'\\ |\downarrow+1\rangle' \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2}(1+d_{+}^{2}) & \frac{1}{2}(1-d_{-}^{2}) \\ & \frac{1}{2}(1+d_{-}^{2}) & \frac{1}{2}(1-d_{-}^{2}) \\ & 1 & \frac{1}{2}(1-d_{-}^{2}) & \frac{1}{2}(1+d_{-}^{2}) \\ & \frac{1}{2}(1-d_{+}^{2}) & \frac{1}{2}(1+d_{-}^{2}) \\ & \frac{1}{2}(1-d_{+}^{2}) & \frac{1}{2}(1+d_{-}^{2}) \\ \end{pmatrix} \begin{pmatrix} |\uparrow+1\rangle\\ |\uparrow0\rangle\\ |\downarrow-1\rangle\\ |\downarrow0\rangle\\ |\downarrow+1\rangle \end{pmatrix}$$

• We are not interested in the electron spin.

In the case that the orientation of the electron spin is random at t=0, by taking the average for the initial state and sum for the final state concerning the electron spin, we obtain

$$\begin{pmatrix} |+1\rangle'\\ |0\rangle'\\ |-1\rangle' \end{pmatrix} = \begin{pmatrix} \frac{1}{4}(3+d_{+}^{2}) & \frac{1}{4}(1-d_{+}^{2}) & 0\\ \frac{1}{4}(1-d_{+}^{2}) & \frac{1}{4}(2+d_{+}^{2}+d_{-}^{2}) & \frac{1}{4}(1-d_{-}^{2})\\ 0 & \frac{1}{4}(1-d_{-}^{2}) & \frac{1}{4}(3+d_{-}^{2}) \end{pmatrix} \begin{pmatrix} |+1\rangle\\ |0\rangle\\ |-1\rangle \end{pmatrix}$$

• When x=5/3, the matrix is

$$D_{\rm dep} = \begin{pmatrix} 0.955 & 0.045 & 0\\ 0.045 & 0.871 & 0.083\\ 0 & 0.083 & 0.917 \end{pmatrix}$$

Critical Magnetic Field

Calc. by H. Okamura

atom	state	$\int_{\nu} ca$	lc. B_C	$\nu^{\rm ex}$	p. B_C	μ_I/μ_N
¹ H	1s	1422.586	508.204	1420.406	507.591	+2.7928
	2s	177.823	63.525	177.557	63.450	
² H	1s	327.564	117.019	327.384	116.842	+0.8574
	2s	40.945	14.627	40.924	14.605	
³ H	1s	1517.387	542.071	1516.702	542.059	+2.9790
	2s	189.673	67.759	189.594	X 67.759	
³ He ⁺	1s	8669.430	3097.062			-2.1275
	2s	1083.679	387.133			
⁶ Li ²⁺	1 <i>s</i>	8479.169	3029.093			+0.8220
	2s	1059.896	378.637			
		(MHz)	(Gauss)	(MHz)	(Gauss)	

11

Depolarization due to the electron spin resonance (ESR) effect

We take SHIVA as a model case.

If micro-wave with a power of 250W is applied in a (non-resonating) cylinder with a diameter of 72mm.

$$u = \frac{W}{\mathbf{p}r^2c} = 2.0 \times 10^{-10} \text{ J/cm3}$$
$$B_1 = \sqrt{\mathbf{m}_0 u} = 0.16 \text{ Gauss}$$

The thickness of the ESR region is

 $\Delta R = 4.0 \, \text{mm}$ at $R = 5.0 \, \text{cm}$ (in axial direction) $\Delta R = 0.9 \, \text{mm}$ at $R = 1.9 \, \text{cm}$ (in radial direction)

The effective thickness averaged for isotropic ion velocity distribution and averaged half-length between the ECR points are

$$L \cong \frac{4.0 + 0.9 \times 2}{3} \times \frac{1}{2} \left(1 + \ln \frac{2R}{\Delta R} \right) = 12 \text{ mm}$$

$$\overline{R} = \frac{1}{2} \frac{5.0 + 1.9 \times 2}{3} = 1.5 \text{ cm}$$

The spin rotation angle of the electron calculated with random-walk approximation is

$$\boldsymbol{w} = \Delta \boldsymbol{w} \times \sqrt{N} = \boldsymbol{g}_e B_1 \frac{L}{v} \times \sqrt{\frac{v}{R} \boldsymbol{t}_i} = 6.2 \times 10^{-2} \text{ rad} = 3.6^{\circ}$$

The nuclear depolarization is caused by the hyper-fine coupling between the electron and the nucleus. Hence depolarization is negligible. Note that the calculation depends on the assumed plasma parameters.

Depolarization due to the inhomogeneous magnetic field

The T1 relaxation is calculated by the following formula by Schearer et al., Phys. Rev. 139 (1965) A1398.

$$\frac{1}{T1} = \frac{2}{3} \frac{v^2}{\boldsymbol{g}_I^2 \boldsymbol{t}_c \boldsymbol{H}_0^4} \left(\frac{\partial \boldsymbol{H}_y}{\partial y}\right)^2$$

For ions by putting the following numbers we obtain

$$g_{I} = 3.94 \times 10^{7} \text{ rad} / s / T$$

$$t_{c} = 1.2 \times 10^{-6} \text{ sec}$$

$$v = 1.3 \times 10^{6} \text{ sec}$$

$$H_{0} = 0.5T$$

$$\frac{\partial H_{y}}{\partial y} = 0.15T / \text{cm}$$

$$T1 = 4.5 \text{ msec for ions}$$

For neutral lithium atoms, by putting the numbers we obtain

$$g_{I} = 3.94 \times 10^{7} \text{ rad} / s / T$$

$$t_{c} = 3.7 \times 10^{-5} \text{ sec}$$

$$v = 9.7 \times 10^{4} \text{ sec}$$

$$H_{0} = 0.5T$$

$$\frac{\partial H_{y}}{\partial y} = 0.3T / \text{cm}$$

The *T1* relaxation time for ions has large depolarization effect when we consider the confinement time of ${}^{6}\text{Li}^{3+}$ (1 msec) and should be carefully taken care of.

Ionization Rate by Electron Impact

Voronov's empirical fit

G.S. Voronov, Atom. Data and Nucl. Data Tables 65 (1997)1.

$$\boldsymbol{c}_{i \to i+1} = \left\langle \boldsymbol{s}_{v_e} \right\rangle = A \frac{1 + P U^{1/2}}{X + U} U^K e^{-U} \quad [\text{cm}^3 \text{s}^{-1}]$$
$$U = \frac{I_i}{T_e}$$

I_i: Ionization Energy

- T_e : Electron Temperature
- A, P, X, K: Fitting Parameters

 ${}^{6}\text{Li}^{0+} \quad {}^{6}\text{Li}^{1+}\text{: } 4.52 \times 10^{-8} \text{ cm}^{3}\text{s}^{-1} \\ {}^{6}\text{Li}^{1+} \quad {}^{6}\text{Li}^{2+}\text{: } 3.26 \times 10^{-9} \text{ cm}^{3}\text{s}^{-1} \\ {}^{6}\text{Li}^{2+} \quad {}^{6}\text{Li}^{3+}\text{: } 7.53 \times 10^{-10} \text{ cm}^{3}\text{s}^{-1}$

$$l_{i \to i+1} = c_{i \to i+1} n_e$$

 $n_e: 2.23 \times 10^{11} \text{ cm}^{-3}$

Charge Exchange Reaction Rate with the Neutral Gas

Muller and Saltzborn Empirical Fit

A. Muller and E. Saltzborn, Phys. Lett. A62 (1977) 391.

$$\boldsymbol{s} = 1.43 \times 10^{-12} i^{1.17} I_{gas}^{-2.76} \quad [\text{cm}^2]$$
$$\boldsymbol{z}_{i \to i-1} = \langle \boldsymbol{s} \boldsymbol{v}_i \rangle = 3.15 \times 10^{-6} i^{1.17} I_{gas}^{-2.76} \sqrt{\frac{T_i}{A_i}} \quad [\text{cm}^3 \text{s}^{-1}]$$

 I_{gas} : Ionization Energy of the Neutral Gas (Oxygen: 13.6 eV)

$$T_i$$
: Ion Temperature (5 eV)

 A_i : Ion Mass in AMU

⁶Li¹⁺ ⁶Li⁰⁺:
$$2.14 \times 10^{-9} \text{ cm}^3 \text{s}^{-1}$$

⁶Li²⁺ ⁶Li¹⁺: $4.81 \times 10^{-9} \text{ cm}^3 \text{s}^{-1}$
⁶Li³⁺ ⁶Li²⁺: $7.72 \times 10^{-9} \text{ cm}^3 \text{s}^{-1}$

$$\boldsymbol{I}_{i \to i-1} = \boldsymbol{V}_{i \to i-1} \boldsymbol{n}_{gas}$$
$$\boldsymbol{n}_{gas}: 1.44 \times 10^{10} \,\mathrm{cm}^{-3}$$

Atomic Excitation Rate by Electron Impact (1/2)

•
$${}^{6}\text{Li}^{0+}$$
 ${}^{6}\text{Li}^{0+*} 2s$ 2p (including cascade)
D. Leep and A. Gallagher, Phys. Rev. A 10 (1974) 1082.
 $s \sim 3.5pa_{0}^{2} = 3.1 \times 10^{-16}$ [cm²] at $T_{e} \sim 600 \text{ eV}$
 $sv_{e} = 4.5 \times 10^{-7}$ [cm³s⁻¹] $I_{0\to0^{*}} = sv_{e}n_{e}$
a factor of ~10 larger than the ionization rate coefficient ${}^{6}\text{Li}^{i}$

• ${}^{6}\text{Li}^{1+}$ ${}^{6}\text{Li}^{1+*}$ 1s 2p

assume that a factor of ~ 5 larger than the ionization rate coefficient

$$sv_e = 1.6 \times 10^{-8} \ [cm^3 s^{-1}] \ l_{1 \to 1^*} = sv_e n_e$$

Atomic Excitation Rate by Electron Impact (2/2)

• ${}^{6}\text{Li}^{2+}$ ${}^{6}\text{Li}^{2+*}$ 1s 2p

Fisher *et al.*, Phys. Rev. A 55 (1997) 329. Empirical fit of 1s 2p excitation cross sections of hydrogen-like atoms

$$s \sim 1.0 p a_0^2 Z_i^{-4} = 1.1 \times 10^{-18}$$
 [cm²]at $T_e \sim 550 \text{ eV}$
 $s v_e = 1.6 \times 10^{-9}$ [cm³s⁻¹] $l_{2 \to 2^*} = s v_e n_e$

Summing up transitions 1s 2,...,6 and taking the Boltzmann distribution $\langle sv_e \rangle = 1.82 \times 10^{-9} \text{ [cm}^3 \text{s}^{-1}\text{]}$

a factor of ~ 2 larger than the ionization rate coefficient

17

Confinement Time of The Ions

• It is very difficult to estimate the confinement time of ions in an ECR plasma.

If we assume (M.Imanaka, PhD Thesis; Shirkov, CERN/PS 94-13)

$$\boldsymbol{t}_i \propto i \sqrt{A_i}$$

and scale the value of τ_{3+} =2.3msec, which was fitted to the Al data,

$$t_{1+} = 0.33 \text{[ms]}$$

 $t_{2+} = 0.66 \text{[ms]}$
 $t_{3+} = 0.99 \text{[ms]}$

$$\boldsymbol{l}_i = \boldsymbol{t}_i^{-1}$$

Other processes

Inelastic Ionization and Radiative Capture Processes

In the present calculation, these processes has no (or negligible) effect.

Summary of the Processes in the ECR Ionizer

Summary of the Processes in the ECR Ionizer

Results of the simulation

The result of the simulation is

 $P_{3+,escape} = \begin{pmatrix} 0.0165 & 0.0010 & 0.0000 \\ 0.0010 & 0.0148 & 0.0017 \\ 0.0000 & 0.0017 & 0.0157 \end{pmatrix} P_{1+,in}$

The polarization of escaped 3+ ions when we feed 1+ ions with pure magnetic substate population is summarized as follows

Initi	ial State (⁶ Li	(+)	Final Sate (⁶ Li ³⁺)		
state	vector pol.	tensor pol.	vector pol.	tensor pol.	efficiency
pure +1 >	1.00	1.00	0.94	0.84	0.017
pure 0 >	0.00	-2.00	-0.05	-1.54	0.017
pure $ -1>$	-1.00	1.00	-0.90	0.70	0.017

Table 2: Calculated depolarization and efficiency for the ${}^{6}\text{Li}^{1+} \rightarrow {}^{6}\text{Li}^{3+}$ ionization in the ECR ionizer.

Note that depolarization due to the inhomogeneous magnetic field is not included in the Present calculation.

Result of the simulation (parameter dependence)

Polarization of the extracted beam from the ECR ionizer is approximately expressed as (initial polarization) \times (vector/tensor polarization in the figure) \times (depolarization by inhomogeneity in the figure)

Ionization efficiency in the ECR ionizer is expressed as (efficiency of feeding ions/atoms into the plasma) \times (1+ 3+ efficiency in the figure) \times (extraction efficiency)

Feasibility Test Plan

- Study of confinement time and ionization efficiency of Li is planed by using the 18GHz superconducting ECR ion source at RIKEN and the laser abration method.
- Optimization of the plasma condition: Mirror ratio, neutral gas density, RF power

- Development of the Li-oven, surface ionizer for testing the beam current.
- Laser pumping system for testing the polarization of the ⁶Li³⁺ beam

• Further simulation with more realistic parameters is required.