Lifetime Measurement in 103,104Rh with RDDS Method in Inverse Kinematics: A Test for Nuclear Chirality

Suzuki Tomokazu
Research Center for Nuclear Physics, Osaka University

1 Department of Physics, Tohoku University, Japan
2 St. Kliment Oridiski University of Sofia, Bulgaria
3 SUNY at Stony Brook, NY, USA
4 Argonne National Laboratory, IL, USA
5 University of Tennessee, TN, USA
6 University of Cologne, Germany
7 Cyclotron and RI Center, Tohoku University, Japan
8 ATOMKI, Hungary
9 NSCL, MI, USA
10 University of York, UK

April 3, 2008 RIKEN
Introduction

- **Criteria for Nuclear Chirality**
 - Nearly degenerate $\Delta I = 1$ twin bands with the same parity
 - $B(E2 : I \rightarrow I - 2)_{\text{in,out}}$ and $B(M1 : I \rightarrow I - 1)_{\text{in,out}}$
 values are the same or similar between both bands.

- The Best Configuration for mass 100 region
 - \(\pi g_{9/2}^{\frac{-1}{2}} \otimes \nu h_{11/2} \)
 1. **shortest axis** of the triaxial shape \(j_n \); neutron-particle in a high-\(j_n \) shell
 2. **longest axis** of the triaxial shape \(j_p \); proton-holll in a high-\(j_n \) shell
 3. **intermidiate axis** of the triaxial shape \(R \); core rotation

Figure from T. Koike et. al. Phys. Rev. Lett. 93 172502 (2004)
Chiral candidates in the mass 100 region

The doublet bands are built on
- $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}$ configuration for odd-odd nuclei
- $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}^2$ configuration for odd-A nuclei (broken pair of neutron)

The energy degeneracy gets better from ^{102}Rh to ^{104}Rh and then gets less to ^{106}Rh.
- The degeneracy is only 2-keV at the best in ^{104}Rh.

From:
- C. Vamman et. al. Private Communication
Chiral candidates in 103,104Rh

103Rh and 105Rh

103Rh

105Rh

The 105Rh was reported TAC calculation

Coincidence Recoil Distance Doppler Shift Method (RDDS)

\[
\frac{dn_i}{dt} = -\lambda_i n_i(t) + \sum_h \lambda_h n_h(t) b_{hi}
\]

\[
\tau_i = \frac{-N_{ij}(t) + b_{ij} \sum_h N_{hi}(t)}{\frac{dN_{ij}(t)}{dt}}
\]

\[
\tau_i = \frac{I_{s,u}^{BA}(x)}{I_{s,s}^{BA}(x + \Delta x) - I_{s,s}^{BA}(x - \Delta x)} \frac{2\Delta x}{v}
\]

\[
\tau_i = \frac{I_{s,u}^{CA}(x) - \alpha I_{s,u}^{CB}(x)}{I_{s,s}^{CA}(x + \Delta x) - I_{s,s}^{CA}(x - \Delta x)} \frac{2\Delta x}{v}, \quad \alpha = \frac{I_{s}^{CA}}{I_{s}^{CB}}
\]

Gamma08 (RIKEN) April 3, 2008

GAMMASPHERE GSFMA169

Lifetime measurement of candidate chiral members in the $A \sim 100$ region

- Recoil Distance Doppler Shift Method (RDDS)
 - GAMMASPHERE Ge detectors array
 - Cologne university plunger device
- Inverse Kinematics Reaction (Large recoil velocity $\beta \sim 0.05$)
 - Reaction $^{11}\text{B}(^{96}\text{Zr},x\text{n})^{104,103}\text{Rh}$ ($x=3,4$)
 - Beam $E(^{96}\text{Zr}) = 330\text{MeV}$ (from ATLAS accelerator at ANL)

Trigger $\gamma-\gamma$
7 distances (8,15,23,35,50,75,100 μm)

<table>
<thead>
<tr>
<th>Front ring angle</th>
<th>N_{det}</th>
<th>Back ring angle</th>
<th>N_{det}</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.72°</td>
<td>5</td>
<td>129.93°</td>
<td>10</td>
</tr>
<tr>
<td>35.26°</td>
<td>8</td>
<td>145.45°</td>
<td>10</td>
</tr>
<tr>
<td>50.07°</td>
<td>10</td>
<td>162.73°</td>
<td>5</td>
</tr>
<tr>
<td>58.28°</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

84 $\gamma-\gamma$ matrices are created ring by ring for each distances.
Experiment result of 103Rh and calculated values of 105Rh

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Spin</th>
<th>ω</th>
<th>TAC for 105Rh</th>
<th>Exp. for 103Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>3631</td>
<td>$25/2^+$</td>
<td>0.25</td>
<td>0.09 $B(E2)$ 2.28 $B(M1)$ 0.077(14) 2.3(4)</td>
<td></td>
</tr>
<tr>
<td>3940</td>
<td>$27/2^+$</td>
<td>0.30</td>
<td>0.09 $B(E2)$ 2.16 $B(M1)$ 0.14(3) 1.8(2)</td>
<td></td>
</tr>
<tr>
<td>4322</td>
<td>$29/2^+$</td>
<td>0.35</td>
<td>0.09 $B(E2)$ 2.03 $B(M1)$ 0.11(4) 1.2(4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ω</th>
<th>planar</th>
<th>aplanar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>-4.297</td>
<td>-4.297</td>
</tr>
<tr>
<td>0.60</td>
<td>-5.971</td>
<td>-5.976</td>
</tr>
<tr>
<td>0.65</td>
<td>-7.064</td>
<td>-7.102</td>
</tr>
<tr>
<td>0.70</td>
<td>-8.206</td>
<td>-8.295</td>
</tr>
<tr>
<td>0.75</td>
<td>-9.397</td>
<td>-9.552</td>
</tr>
</tbody>
</table>
The $B(M1)/B(E2)$ staggering has been observed in the previous experiment.
- This is suspected for chiral selection rule if the staggering is caused by $B(M1)$ values. C. Vamman et. al. Phys. Rev. Lett. 92 (2004) 032501.
- However, the staggering is caused by $B(E2)$ staggering.
- The behavior of $B(E2)$ staggering is cannot be understood and needs theoretical interpretations.
Summary

- The lifetime of chiral candidates member in the 103,104Rh isotopes are measured.
 - RDDS, GAMMASPHERE

- 103Rh
 - Three lifetimes related to chiral doublets are extracted.
 - The experimental results are compared to TAC calculations for 105Rh.
 - TAC calculation indicates chiral doublet in the $\omega \geq 0.55$ region
 - Three levels ($0.25 \geq \omega \geq 0.35$) were consisted with TAC calculations for 105Rh.

- 104Rh
 - Four lifetimes are extracted.
 - The reported $B(M1)/B(E2)$ seems staggering from $B(E2)$.
 - In $B(E2)$ needs theoretical explanation.