Hyperball-2による質量数80領域に おけるカイラルダブレットの探索

<u>鈴木智和</u>^{A,B}、小池武志^B、T. Ahn^G、遠藤卓哉^A、藤田正広^A、Y.Y. Fu^F、 福地知則^C、P. Joshi ^D、木下沙理^B、馬越^B、三浦勇介^B、宮下裕次^{A,B}、 大熊三晴^{A,B}、G. Rainovski ^G、佐藤望^{A,B}、篠塚勉^A、白鳥昂太郎^B、 田村裕和^B、立岡未来^{A,B}、J. Timar ^E、鵜養美冬^A、涌井崇志^A、山崎明義^A

東北大学サイクロトロンRIセンター A

東北大学大学院理学研究科 ^B

立教大学^C

University of York, U.K ^D

ATOMKI, Hungary ^E

CIAE, China ^F

SUNY at Stony Brook, U.S.A ^G

Physics Motivation

• 1997 – Frauendorf & Meng;

• YRIC TOHOKU TVFRSIT

- The doubling of band in ¹³⁴Pr is due to formation of handedness (chirality).[Nucl. Phys A617 131 (1997)]
 - Three perpendicular angular momentum can form two systems of handedness, the right-handed and the left-handed system.

Known regions with chiral candidates

A~130 Odd-Odd $(\pi h_{11/2} \nu h_{11/2}^{-1})$ ¹³²Cs,¹³⁰Cs,¹²⁸Cs,¹²⁶Cs,¹²⁴Cs ¹³⁴La,¹³²La,¹³⁰La ¹³⁴Pr,¹³²Pr ¹³⁶Pm ¹⁴⁰Eu,¹³⁸Eu Odd-A $(\pi (h_{11/2})^2 \nu h_{11/2}^{-1})$ ¹³⁵Nd,¹³⁵Ce

A~190 Odd-Odd (πh_{9/2}νi_{13/2}) ¹⁸⁸Ir

Even-Even $(\pi h_{11/2}(d_{5/2},g_{7/2})v(h_{11/2})^2)$ ¹³⁶Nd

A~80 (unexplored) Odd-Odd $(\pi g_{9/2} \nu g_{9/2}^{-1})$ ⁸⁰Br(?), Odd-A $(\pi (g_{9/2})^2 \nu g_{9/2}^{-1})$ ⁷⁹Kr(?)

A~105 Odd-Odd $(\pi g_{9/2}^{-1}vh_{11/2})$ ¹⁰⁶Ag, ¹⁰⁶Rh,¹⁰⁴Rh,¹⁰²Rh ¹⁰⁰Tc Odd-A $(\pi g_{9/2}^{-1}v(h_{11/2})^2)$ ¹⁰⁷Ag,¹⁰⁵Rh,¹⁰³Rh

Doublet bands in ¹⁰³₄₅Rh₅₈

J. Timar *et. al.* PRC 73 011301(2006)

Lifetime was measured at GAMMASPHERE in October 2005.

Hyperball-2

- Total of 20 detectors
 - Photo peak efficiency $\sim 5\%$ at 1MeV
 - Eurisys Coaxial Ge
 - r.e. 60% x 4
 - Ortec Coaxial Ge
 - r.e. 60% x10
 - Eurisys Clover type Ge x 6
 r.e 20%x4, 125% with add-back
 - Transistor-reset type pre-amplifier
- Target Chamber
- Collimators and Copper absorbers
- High speed data taking system with FERA-VME (double buffering)

In-beam experiments with Hyperball-2

- Advantages
 - Large total photo peak efficiency $(\gamma-\gamma-\gamma \text{ coincidence measurement})$
 - Possible to use high intensity (~10pnA) beam (high counting rate).
- Disadvantages
 - Few angles
 - Detectors placed mostly around 90deg.

(lower angular correlation sensitivity)

 Detectors in upper and lower ring point off center

Experiments

- Course 33 at CYRIC, Tohoku University
- Reaction: ${}^{70}Zn({}^{13}C,4n){}^{79}Kr$
 - Beam: ¹³C³⁺ @ 65MeV from 930 cyclotron
 - Target: 1mg/cm² 70%
 enriched ⁷⁰Zn (self-supporting and Pb backed)
- HPGe array: Hyperball-2 for γ ray detection

Choice of targets

In March experiment, $520+560\mu g/cm^2$ self-supporting target was used.

- Hyperball-2 was optimized for in-beam experiments and installed in CYRIC Tohoku University.
- ⁷⁹Kr was studied via ⁷⁰Zn(¹³C,4n)⁷⁹Kr for chiral doublet structures in the mass ~80 region.
- Preliminary analysis has identified three side band member candidates.
- Additional data from March experiment are being analyzed.