高速ターゲット移動装置によるA≧62領域の 超許容フェルミ遷移核の半減期測定

東北大学サイクロトロン・RIセンター 鈴木智和、三宅徹、藤田正広、遠藤卓哉、 山崎明義、園田哲、後藤敦志、宮下裕次、 佐藤望、田中英二、篠塚勉

日本物理学会 2003年秋季大会 宮崎ワールドコンベンションセンター・サミット Sep. 9, 2003

A≧62領域の超許容フェルミ遷移核

- ${}^{62}\text{Ga} (\text{T}_{1/2} = 116\text{ms})$
 - ${}^{64}Zn(p,3n)$
 - 45MeV (~6mb)
- ${}^{66}\text{As} (\text{T}_{1/2} = 91\text{ms})$
 - 54Fe(14 N,2n)
 - 44MeV(~7mb)
- ${}^{70}\text{Br}(\text{T}_{1/2}=79\text{ms})$
 - ⁵⁸Ni(¹⁴N,2n)
 - 44MeV(~6mb)
- 74 Rb (T_{1/2}= 67ms)

超許容フェルミ遷移核のFt値の測定

- ・ CKM行列のV_{ud}を決定
- A ≥ 62領域では半減期、反応断面積が特に小さくなり測定が困難

I.S. Towner and J.C. Hardy Phys. Rev. C66 (2002) 035501

$$\mathcal{F}t = ft(1+\delta_R)(1-\delta_C) = \frac{\pi}{2G_F^2 |V_{ud}|^2 (1+\Delta_R)}$$

 δ_R, Δ_R : Outer, Inner radiative correction δ_C : Isospin Impurity correction It must be checked by Experiments !

励起状態の0⁺からのγ線の探索

- アイソスピン不純度を示す

TOHOKU

- A≧62領域の超許容フェルミ遷移核のFt値の研究
 -⁷⁰Brの半減期測定
- ・ A \geq 62領域の超許容フェルミ遷移核のアイソスピン不純度の研究 - $\beta - \gamma$ コインシデンスによる⁷⁰Brからのガンマ線の探索

ISOLでは統計が不十分 →高速ターゲット移動装置を使った実験

高速ターゲット移動装置

 $\chi^2 = 1.02$

200

Discriminated beta energy at about 4.7MeV

β 線同時計数 γ 線スペクトル

- 高速ターゲット移動装置を利用して⁷⁰Brのβ-γス
 ペクトロスコピーを行った
- 半減期は79.36±3.78msecを得た。
- ビーム量3倍、検出効率4倍、実験時間5倍の改善により統計誤差1%以下での測定が期待できる。
- 同時計数 γ 線の測定により娘核である⁷⁰Seの励起 状態が見つかったが⁷⁰Brの基底状態からの遷移と は断定しにくい。

• H. Sagawa et. al. Phys. Rev C53 (1996) 2163

⁶⁶ Ge	(¹⁴ N,αpn)	3.1mb	Q _{EC} =2100	2.26h
⁶⁷ Ge	(¹⁴ N,αp)	42mb	Q _{EC} =4223	18.9m
⁶⁹ Ge	(¹⁴ N,3p)	18mb	Q _{EC} =2227	39.05h
⁶⁷ As	(¹⁴ N,αn)	11mb	Q _{EC} =6010	42.5s
⁶⁹ As	(¹⁴ N,2pn)	158mb	Q _{EC} =4010	15.2m
⁷⁰ As	(¹⁴ N,2p)	8.5mb	Q _{EC} =6220	52.6m
⁶⁹ Se	(¹⁴ N,p2n)	2.6mb	Q _{EC} =6780	27.4s
⁷⁰ Se	(¹⁴ N,pn)	107mb	Q _{EC} =2400	41.1m