⁷⁹Kr, ⁸⁰Brのカイラルペアバンドの探索

鈴木智和^{A,B}、小池武志^B、T. Ahn^G、遠藤卓哉^A、藤田正広^A、Y.Y. Fu^F、 福地知則^C、堀稔一^C、細見健二^B、P. Joshi ^D、木下沙理^B、馬越^B、増江俊行^C、 三浦勇介^B、三森雅弘^B、宮下裕次^{A,B}、長野哲也^{A,B}、大熊三晴^{A,B}、 G. Rainovski ^{G,H}、佐藤望^{A,B}、篠塚勉^A、白鳥昂太郎^B、田村裕和^B、 立岡未来^{A,B}、J. Timar ^E、鵜養美冬^A、涌井崇志^A、山下航^{A,B}、山崎明義^A 東北大学サイクロトロンRIセンター A 東北大学大学院理学研究科 ^B 大阪大学大学院理学研究科 ^C Department of Physics, University of York, U.K^D Institute of Nuclear Research (ATOMKI), Hungary E China Institute Atomic Energy, China F Department of Physics and Astronomy, SUNY at Stony Brook, U.S.A G St. Kliment Ohridski Univeristy of Sofia, Sofia, Bulgaria^H

日本物理学会(奈良女子大学)

September 21, 2006

Nuclear Chirality

- For Mass 80 region $(\pi g_{9/2} \otimes \nu g_{9/2}^{-1})$
 - (1) 1-axis : longest axis of the triaxial shape
 - j_n; neutron-hole in a high-j_n shell
 - (2) 2-axis : shortest axis
 - j_p; proton-particle in a high-j_p shell
 - (3) 3-axis : intermediate axis of the triaxial shape
 - R; core rotation
- Three perpendicular angular momentum can be formed into two systems of handedness, the right-handed or the lefthanded system

$$E = \begin{cases} |I+\rangle = \frac{1}{\sqrt{2}} (|IR\rangle + |IL\rangle) \\ |I-\rangle = \frac{i}{\sqrt{2}} (|IR\rangle - |IL\rangle) \end{cases}$$

Criteria for Nuclear Chirality

- Nearly degenerate $\Delta I = 1$ twin bands with the same parity
 - observed in some odd-odd and odd-A nuclei in A~130 region
 - proton $h_{11/2}$ particle and neutron $h_{11/2}$ hole configuration - 124,126,128,130,132 Cs, 130,132,134 La, 132,134 Pr, 136 Pm, 138,140 Eu, 135 Nd, 135 Ce
 - observed in some odd-odd and odd-A nuclei in A~105 region
 - proton $g_{9/2}$ hole and neutron $h_{11/2}$ particle configuration - 106,107 Ag, 102,103,104,105,106 Rh, 100 Tc
- $B(E2; I \rightarrow I 2)_{in,out}$ and $B(M1; I \rightarrow I 2)_{in,out}$ values are the same between both bands.
 - lifetime measurements are required.
 - measured in 134 Pr, 132 La, and 128 Cs
 - GS plus plunger experiment done for ^{103,104}Rh (RDDS; Recoil Distance Doppler shit Method)

In-beam experiments with Hyperball-2

- Total of 20 detectors
 - Photo peak efficiency ~4% at 1MeV
 - Eurisys Coaxial Ge + BGO
 - r.e. 60% x 4
 - Ortec Coaxial Ge +BGO
 - r.e. 60% x10
 - Eurisys Clover type Ge (+BGO) x 6
 - r.e 20%x4, 125% with add-back
 - Transistor-reset type pre-amplifier
- Advantages
 - Large total photo peak efficiency (γ-γ-γ coincidence measurement)
 - Possible to use with high intensity (~10pnA) beam (high counting rate).
- Disadvantages
 - Few angles
 - Detectors placed mostly around 90deg. (lower angular correlation sensitivity)
 - Detectors in upper and lower ring point off center

September 21, 2006

Experiments

- Course 33 at CYRIC, Tohoku University
- Reaction and target
 - 70Zn(13C,4n)⁷⁹Kr
 - Beam: ¹³C³⁺ @ 65MeV from 930 cyclotron
 - Target: 500µg/cm² 70% enriched ⁷⁰Zn (self-supporting, stacked)
 - ${^{70}}Zn({^{13}}C,p2n){^{80}}Br$
 - Beam: ¹³C³⁺ @ 53MeV from 930 cyclotron
 - Target: 1 mg/cm² 70% enriched ⁷⁰Zn (Pb backing, 10mg/cm²)
- HPGe array: Hyperball-2 for γ ray detection
- trigger: γ-γ-γ (triple coincidence)
 日本物理学会(奈良女子大学)

OHOKU

-y-y spectra

1026

13/2+

9/2+ ⁸²⁷

908

747 ¶

CHINCI

987

 $11/2^{+}$

5/2+

2000

日本物理学会(奈良女子大学)

(29/2+)

Relative Spin-Parity assignment

- Linear polarization can be extracted with clover detectors to infer relative spin and parity.
 - Sign of P can be known without knowing sensitivity Q(E).

Discussion of results: ⁷⁹Kr

Ι	27/2	29/2	31/2	33/2
$E(I)_P$ - $E(I)_Y$ in keV	811	1247	1079	1532

➢ If two bands are chiral partners...

- Nearly degenerate between two bands.
- single particle states should be the same.
- S(I) = [E(I)-E(I-2)]/2I should be smoothly varying.
- Further experiment on ⁷⁹Kr is proposed to GAMMASPHERE
 - \succ γ−γ−γ−γ → building to higher spin states.
 - ➤ DCO measurement → determination of multipolarity
 - ➢ Doppler Shift Attenuation Method (DSAM) → life time measurement

Complete spectroscopy of ⁷⁹Kr

September 21, 2006

- ⁷⁹Kr and ⁸⁰Br were studied via the ⁷⁰Zn(¹³C,4n)⁷⁹Kr and ⁷⁰Zn(¹³C,p2n)⁸⁰Br reaction, respectively, in search for chiral doublet structures in the mass ~80 region.
- Preliminary analysis has identified new band structure in ⁷⁹Kr.
- Tentative spin and parity assigned based on linear polarization measurement.
- Experiments for ⁸⁰Br will be improved with excitation function measurement, addition of charged particle detector of BGO multiplicity filters *etc*..

Linear Polarization

BGO suppression

Choice of targets

In March experiments, $520+560\mu g/cm^2$ self-supporting target is used.

日本物理学会(奈良女子大学)

September 21, 2006