RCNPにおける不安定核ビームによる 核融合反応を用いた高スピン状態の研究

大阪大学大学院理学研究科

鈴木智和、壽賀正城、高島杏奈、風戸正行、倉健一朗、 田尻邦彦、増江俊行、堀稔一、小田原厚子、下田正

東京大学 CNS

若林泰生、井手口栄治

理研

鄉農靖之

March 23, 2007 近畿大学

1

原子核における自発的対称性の破れ

● 回転バンド

⇒ 回転対称性の破れ (4重極変形)

 $(^{132}$ Ce の回転スペクトル、Liverpool 大学 Web サイトより)

● パリティニ重項

→ パリティ対称性の破れ(8重極変形)

カイラル二重項

→ カイラル対称性の破れ?(3軸非対称変形)

高スピン状態の生成

- 一般的には重イオン核融合反応が用いられる
 - 角運動量を持ち込みやすい
- 安定核ビームを使った高スピン状態の生成
 - 安定線より陽子過剰側の原子核し か生成できない。
 - 陽子過剰な安定核ビームとターゲ ットを用いて陽子過剰な不安定領 域を生成できる。
 - 陽子過剰側では反跳核を分析する
 ことで ~ µbオーダーの断面積で
 も観測が可能。
 - 安定線より中性子過剰な核は生成 が不可能

Nd137	Nd138	Nd139	Nd140	Nd141	Nd142	Nd143	Nd144	Nd145	Nd146	Nd147	Nd148	Nd149	Nd150	Nd151
1/2+	0+	3/2+	0+	3/2+	0+	7/2-	0+	7/2-	0+	5/2-	0+	5/2-	0+	3/2+
EC	EC	EC	EC	EC	27.13	12.18	α 23.80	8.30	17.10	β·	5.76	B.	β [.] 5.64	β·
Pr136	Pr137	Pr138	Pr139	Pr140	Pr141	Pr142	Pr143	Pr144	Pr145	Pr146	Print	Pr148	Pr149	Pr150
13.1 m 2+	1.28 h 5/2+	1.45 m 1+	4.41 h 5/2+	3.39 m 1+	5/2+	19.12 h 2-	13.57 d 7/2+	17.28 m 0-	5.984 h 7/2+	24.15 m (2)-	(3/2+)	2.27 m 1-	2.26 m (5/2+)	6.19 s (1)-
EC	EC	EC *	EC	EC	100	* ΕC.β·	ß-	в.	<u>в</u> .	B.	5	* В [.]	B-	ß
Ce135	Ce136	Ce137	Ce138	Ce139	Ce140	Ce141	Ce142	Cel45	Cel44	Cel45	Ce146	Ce147	Ce148	Ce149
17.7 h	0+	9.0 h 3/2+	0+	137.640 d	0+	32.501 d	5E+16 y	33.039 h	284.893 d	3.01 m (3/2).	13.52 m	56.4 s	56 s	5.3 s
FC *	0.10	*	0.25	FC *	00 40	81 /	11.00		R	(3/2)-	R.	(3/2-) R.	в.	(3/2-) R.
L a134	0.19 L a135	La136	0.25 La137	L a138	88.48 Ta130		11.08	р [.] Та142	P I 2143	P I a144	P I a145	P ⁻ I a146	р [.] Та147	J a148
6.45 m	19.5 h	9.87 m	6E4 y	1.05E+11 y	La155	1.6781 d	3.92 h	91.1 m	14.2 m	40.8 s	24.8 s	6.27 s	4.015 s	1.05 s
1+	5/2+	1+	1/2+	5+ EC.β	7/2+	3-	(1/2+)	2	(//2)+3	(3-)	(5/2+)	Z- *	(5/2+)	(2-)
EC	EC	EC	EC	0.0902	99.9098	β·	β.	β.		β. 1	β.	β.	βn D 110	βn
Ba133 10.51 v	Ba134	Ba135	Ba136	Ba137	Ba138	Bar 39 85.06 m	Ba140 12.752 d	Bal41 18.27 m	Ba142	Ba143 14.33 s	Bal44	Ba145 4.31 s	Ba146 2.22 s	Ba147 0.893 s
1/2+ *	0+ *	3/2+ *	0+ *	3/2+ *	0+	7/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+	(3/2+)
EC	2.417	6.592	7.854	11.23	71.70	β-	β.	β-	β·	β·	β·n	β·	β·	βn
Cs132	Cs133	Cs134	Cs135	Cs136	C \$137	Cs138	Cs139	Cs140	Cs141	Cs142	Cs143	Cs144	Cs145	Cs146
6.479 d 2+	7/2+	2.0648 y 4+	2.3E+6 y 7/2+	13.16 d 5+	30.07 y 7/2+	33.41 m	9.27 m 7/2+	63.7 s 1-	24.94 s 7/2+	1.70 s 0-	1.78 s 3/2+	1.01 s 1	0.594 s 3/2+	0.321 s 1-
EC,β·	100	* ΕC,β·	* β∙	β· *	ß	*	ß	ß	βn	βn	βn	βn *	βn	βn
Xe131	Xe132	Xe133	Xe134	Xe135	Xe136	Xe137	Xe138	Xe139	Xe140	Xe141	Xe142	Xe143	Xe144	Xe145
3/2+	0+	5.243 d	0+	9.14 h 3/2+	2.36E21 y	3.818 m	14.08 m	39.68 s	13.60 s	1.73 s 5/2(-)	1.22 s	0.30 s	1.15 s	0.9 s
*	*	в. *	*	R. 3		R	в.	B.	в.	Ban	ßen	в.	в.	ßen
I130	26.9	P 1132	10.4 1133	P 1134	8.9	P 1136	р I137	F 1138	T139	I140	I141	P I142	P 1143	I144
12.36 h	8.02070 d	2.295 h	20.8 h	52.5 m	6.57 h	83.4 s	24.5 s	6.49 s	2.29 s	0.86 s	0.43 s	1176	1145	1111
5+ *	7/2+	*	7/2+ *	(4)+ *	7/2+	(1-) *	(7/2+)	(2-)	(7/2+)	(4)				
β-	B	<i>8</i> .	β.	β.	β. 	β·	βn	βn	βn	βn	βn			
Te129	Te130	Te131 25.0 m	Te132	12.5 m	1e134 41.8 m	19.0 s	17.5 s	1e137	1.4 s	Te139	Te140	Te141	Te142	
3/2+	0+	3/2+	0+	(3/2+)	0+	(7/2-)	0+	(7/2-)	0+		0+		0+	
	β	a *	0	a *	0	0	8	8.0	8 -					

中性子過剰核の高スピン状態へのアプローチ

- 中性子過剰になると殻構造が変化する?
 - cf. 低スピン領域でも "Island of Inversion" ⇒ ^{28,29}Mgの殻構造の研究

24aZF1 K. Kura, 24aZF2 K. Tajiri

- *A* ∼ 140 領域で知られている高スピン状態
- Ζ ¹⁴⁰Sm 141 Sm ¹⁴³Sm 146 Sm 142 Sm ^{145}Sm ^{147}Sm 144 Sm 62 (57/2+)(20-) (52/2)(18+)(27/2)(21-)(63/2)(15)144Pm 1¹⁴⁰Pm' ¹⁴⁵Pm¹ ¹⁴¹Pm ¹⁴³Pm 142 Pm 139 Pm 61 (21/2)(59/2-)(20)(20+)(45/2+)(20)(33/2)¹⁴⁰Nd ¹³⁸Nd 139 Nd 141 Nd 60 (24-) (33) (27/2-) (48-) (25/2)(24+)(53/2+)(35/2) (22+) 142 Pr 138 Pr ^{139}Pr 140 Pr 137 Pr 141 **Pr** 59 (43/2-) (22+)(31/2-) (17)(23/2+)(9+)¹³⁹Cel ¹³⁷Ce ¹⁴⁰Ce ¹³⁸Ce 136 Ce 58 (27/2-) (43/2-) (22+) (12+)(24+)137La ¹³⁶La ¹³⁵La 57 (43/2-)(16+)(39/2-) 78 79 82 80 81 83 84 85 $86 \rightarrow N$

- 中性子過剰な不安定核ビームを用いる
 - ビーム量が少ない (安定核:~ 10⁹ 個、安定 核:~ 10⁴ 個)
 - 粒子識別(装置、方法)
 - ビームの広がり (エネルギー幅、光学)

RCNP E287

N=83同調体に見られる高スピンアイソマー ^(67/2,71/2) 10.286-

10.286+x 420ns 4

E287実験へのビーム開発

- 核物理センターの重イオン用 ECR イ オン源とENコースを用いることで重 イオン不安定核ビームの生成が可能
- ¹⁴²Prを目標に不安定核ビームの開発 を行う
 - 一次反応 ${}^{9}\text{Be}({}^{18}\text{O}, {}^{17}\text{N}){}^{10}\text{B}$ $\implies {}^{17}\text{N}$ 不安定核ビームを直接反 応で生成 ($E_{180} = 9.0 \text{ MeV/u}$)
 - 二次反応¹³⁰Te(¹⁷N, 5n)¹⁴²Pr ⇒
 核融合反応で¹⁴²Prの高スピン状態を生成
- 粒子識別 (質量分析) に核物理セン
 ターENコースを用いる
 - 高エネルギーの重イオンの二次粒
 子分析から低エネルギーの二次粒
 子分析。
 - AVF サイクロトロンからの低エ
 ネルギービームを直接反応に用いる。

⇐⇒ 生成核が低エネルギーなの で減速の必要がない。

- F0、F1、F2が分離されているためバックグラウンドが
 小さい
- F1、F2に $E \Delta E$ SSD検出器を導入 ⇒ $E - \Delta E$ による粒子識別
- F2の2枚のPPACを用いたトラッキング
- 二次ターゲット位置にPSDの導入 (ビームスポットの確認)

¹⁷Nビーム

• F2 SSD $E - \Delta E$

Ge検出器アレイ

- 14台のGe検出器
 - 前方散乱を抑えられる BGO-ACS 6台
 - クロストークを防ぐためにGe検出器を鉛シー
 ルドで囲んだ

共同研究 大阪大理・RCNP・東北大理 SUNY at Stonybrook

- ターゲット位置にキャッチャーを置き、¹⁷Nのβ 崩壊に伴うγ線を測定し、不安定核ビーム量を 導出
 ⇒ 4 × 10⁴ 個/sec
 - (ビームを抑えているので $\sim 10^5$ 個/sec も可能)
- ターゲットとして^{nat}Teを置き、テスト測定を行った。
 ★ バックグラウンド(β崩壊など)が多い

ビームまたは反跳粒子と同期した γ 線測定が必要

- 今後の改善策
 - PPACの信号と同期する(高速化が必要、現在のPPACは10⁴個/secが限界)
 - バッキングに SSD を用いて生成核と同期する。(ストリップ Si を用いてセグメントあたりの計数率を下げる)

まとめ

- *γ*線測定による高スピンの研究
 - 自発的対称性の破れ
 - 安定核による高スピン状態生成の限界
 - 不安定核ビームを用いた中性子過剰核の高スピン状態への挑戦
- 大阪大学核物理研究センターEN コース
 - AVFサイクロトロンからのビームをそのまま利用
 - 低エネルギーのビームを輸送
 - SSD検出器 $(E \Delta E)$ による粒子識別
 - Ge検出器アレイ
 - 4×10⁴個/secの¹⁷N不安定核ビームの生成に成功
- 今後の開発
 - PPACの高速化
 - ストリップSi検出器の導入