^{103,104}**Rhのカイラル二重項候補の寿命測定**

T. Suzuki¹, T. Koike², G. Rainovski^{3,4}, T. Ahn⁴, M. Carpenter⁵, A. Costin⁴,
M. Danchev⁶, A. Dewald⁷, R.V. Janessens⁵, C.J. Lister⁵, O. Moler⁷,
N. Pietralla⁴, T. Shinozuka⁸, J. Timár⁹, C. Vamman¹⁰, R. Wadsworth¹¹, S. Zhu⁵

¹ Department of Physics, Osaka University, Japan
 ² Department of Physics, Tohoku University, Japan
 ³ St. Kliment Oridski University of Sofia, Bulgaria

 ⁴ SUNY at Stony Brook, NY, USA
 ⁵ Argonne National Laboratory, IL, USA
 ⁶ University of Tennessee, TN, USA
 ⁷ University of Cologne, Germany

 ⁸ Cyclotron and RI Center, Tohoku University, Japan

 ⁹ ATOMKI, Hungary
 ¹⁰ NSCL, MI, USA
 ¹¹ University of York, UK

September 24, 2007 北海道大学

カイラル二重項

- 3軸非対称変形の有力な証拠
- 3つの角運動量ベクトルが互いに直交したとき、 右手-左手系が現れる。

From S. Frauendorf and J. Meng Nucl. Phys. A 617 (1997) 131

- 質量数100領域(配位: $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}$)の場合
 - 3軸非対称変形における短軸
 j_n; 中性子(粒子)の角運動量ベクトル
 - 3軸非対称変形における長軸
 j_p; 陽子(ホール)の角運動量ベクトル
 - 3. 3軸非対称変形における中間軸
 R; 集団運動の角運動量ベクトル

From T. Koike *et. al.* Phys. Rev. Lett. 93 (2004) 172502 → 小池武志、原子核研究 Vol.52 p.8

[O, H] = 0 $O = TR(\pi)$ $H |IR\rangle = \epsilon_R |IR\rangle, \quad H |IL\rangle = \epsilon_L |IL\rangle$ $O |IR\rangle = |IL\rangle, \quad O |IL\rangle = |IR\rangle$ $\epsilon_R = \epsilon_L$ $\begin{cases} |IM+\rangle &= \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle) \\ |IM-\rangle &= \frac{i}{\sqrt{2}}(|L\rangle - |R\rangle) \end{cases}$

 $H | IM \pm \rangle = \epsilon | IM \pm \rangle$ $O | IM \pm \rangle = | IM \pm \rangle$

カイラル二重項を実験で示すための主要な条件

- 同じパリティをもつほぼ縮退した2つの $\Delta I = 1$ 回転バンドを観測すること
 - A ~130 領域の奇々核、奇核で観測されている
 配位: 陽子 h_{11/2} 粒子、中性子 h_{11/2} ホール
 * ^{124,126,128,130,132}Cs, ^{130,132,134}La, ^{132,134}Pr, ¹³⁶Pm, ^{138,140}Eu, ¹³⁵Nd, ¹³⁵Ce
 - $A \sim 100$ 領域の奇々核、奇核で観測されている 配位: 陽子 $g_{9/2}$ ホール、中性子 $h_{11/2}$ 粒子 * 107 Ag, 102,103,104,105,106 Rh, 100 Tc
- B(E2: I → I 2)_{in,out} および B(M1: I → I 1)_{in,out} の値がバンド間で等しいか似ていること(電磁気的性質の議論)
 - 寿命測定が必要
 - * 質量数130領域の 134 Pr, 132 La, and 128 Csでは測定された
 - * 質量数100領域ではまだ測られていない

From C.M. Petrache et. al. Phys. Rev. Lett. 96 (2006) 112502

^{103,104} Rhにおけるカイラル二重項候補の寿命測定

GAMMASPHER, Cologne plunger device

^{103,104}Rhのカイラル二重項候補

3

103 Rh 105 Rh

¹⁰⁵RhはTAC計算が報告されている J. Timar et. al. Phys. Lett. B 598 (2004) 178

4

5

Coincidence Recoil Distance Doppler Shift Method (RDDS)

From A. Dewald et. al. Z. Phys. A 334 (1989) 163;G. Böhm et. al. Nucl. Inst. Meth. Phys. Res. A 329 (1993) 248

GAMMASPHERE GSFMA169

質量数100領域におけるカイラル二重項候補の寿命 測定実験

- Recoil Distance Doppler Shift Method (RDDS)
 - GAMMASPHERE
 - ケルン大学のプランジャー
- 逆運動学(反跳粒子の速度が大きい)
 反応¹¹B(⁹⁶Zr,xn)^{104,103}Rh (x=3,4)
 ビーム E(⁹⁶Zr) = 330MeV (ANL ATLAS 加速器)
 トリガー γ-γ (ビーム電流が少ないため)

RDDS距離 7点 (8,15,23,35,50,75,100 µm)

	Front ring		Back r		
	angle	N_{det}	angle	N_{det}	
			121.72°	5	
	35.26°	8	129.93°	10	
	50.07°	10	145.45°	10	
	58.28°	5	162.73°	5	
34個の~	$\overline{\gamma} - \gamma \nabla \nabla \nabla$	ックス	をゲートし	ながらし	ピーク
最小自乗	道合				

103 Rhの実験結果と 105 Rhの計算値

Level			TAC for 105 Rh		Exp. for 103 Rh		ω	planar	aplanar	
	Energy	Spin	ω	B(E2)	B(M1)	B(E2)	B(M1)	0.55	-4.297	-4.297
	(keV)	(J^{π})		(e^2b^2)	$({\mu_N}^2)$	(e^2b^2)	$({\mu_N}^2)$	0.60	-5.971	-5.976
-	3631	$25/2^+$	0.25	0.09	2.28	0.077(14)	2.3(4)	0.65	-7.064	-7.102
	3940	$27/2^+$	0.30	0.09	2.16	0.14(3)	1.8(2)	0.70	-8.206	-8.295
	4322	$29/2^+$	0.35	0.09	2.03	0.11(4)	1.2(4)	0.75	-9.397	-9.552

¹⁰⁴Rhの実験結果

- *B*(*M*1)/*B*(*E*2)のスピン依存性は*B*(*E*2)のスピン依存性に起因
 - カイラル二重項ではB(M1)にスピン依存性が期待されている。
 - T. Koike et. al. Phys. rev. Lett. 93 (2004) 172502.
 - B(E2) がスピン依存性の原因は不明。

Summary

- カイラル二重項の候補である^{103,104}Rhにおけるバンドメンバの寿命測定を行った。
 RDDS、GAMMASPHERE
- ¹⁰³Rh について
 - カイラル二重項に関連する準位では3準位の寿命を得た。
 - TAC計算が報告されている 105 RhのTAC計算との比較を行った。
 - TAC計算は、 $\omega \ge 0.55$ の領域でカイラル二重項実現を示唆している。
 - 寿命を得た3準位 $(0.25 \ge \omega \ge 0.35)$ は¹⁰⁵RhのTAC計算とよく一致した。
- ¹⁰⁴Rh について
 - 4準位の寿命を得た。
 - 報告されていたB(M1)/B(E2)のスピン依存性はB(E2)に依存していた。
 - B(E2)がスピン依存性を持つ原因は不明である。