⁷⁶Seの高スピン状態

鈴木 智和^A、小池武志^B、福地知則^C、小田原厚子^D 篠塚勉^E、白鳥昂太郎^B、田村裕和^B、鵜養美冬^F

> ^A大阪大学核物理研究センター ^B東北大学大学院理学研究科 ^C理化学研究所 ^D大阪大学大学院理学研究科 ^E東北大学サイクロトロン・RIセンター 「岐阜大学教育学部

> > September 22, 2008 山形大学

日本物理学会 2008年 秋季大会

日本物理学会 2008 年秋季大会 (山形大学) 平成 20 年 9 月 22 日

1

Two experiments for $A \sim 80$ **nuclei with Hyperball2**

γ - γ - γ spectrum

 $\mathcal{2}$

Deduced Level Scheme

4

Detectors geometry of Hyperball-2

46, 90, 134 deg

- Azimuthal angles Ring 1, 3: 0, 60, 120, 180, 240, 300 deg Ring 2: 22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5 deg

Linear Polarization

E2 (known) E2/M1 (known) Electric (PQ > 0) Magnetic (PQ < 0) $PQ \sim 0$ 5

DCO ratios with Hyperball-2

$$R_{
m DCO} = rac{I_{\gamma} \ ({
m at \ Ring \ 2: \ 90^{\circ}}) \ {
m gated \ by \ } \gamma_{
m G} \ ({
m at \ Ring \ 1: \ 134^{\circ}})}{I_{\gamma} \ ({
m at \ Ring \ 1: \ 134^{\circ}}) \ {
m gated \ by \ } \gamma_{
m G} \ ({
m at \ Ring \ 2: \ 90^{\circ}})}$$

A. Krämer-Flecken et. al.

Nucl. Instr. and Methods in Phys. Res. A 275 (1989) 333.

- Q transitions \cdots dominant \sim 0°
- D transitions \cdots dominant \sim 90°
- \implies If the gate is set on E2 transition,
- $R_{\rm DCO} = 1$: observed $\gamma \ \cdots \ Q$ transitions
- $R_{\text{DCO}} \neq 1$: observed $\gamma \cdots D$ transitions (with mixing)

when detectors are placed at $\phi = 0^{\circ}$. (ϕ : azimuthal angle)

- Issues using DCO method for Hyperball-2
 - Large opening angles
 - * Low angular sensitivity for DCO method
 - * Large peak width due to Doppler-broadning

Results of DCO analysis

 $\tilde{\gamma}$

Preliminary Results

backup Slides

Level scheme of ⁷⁴Se

Level scheme of ⁷⁸Se

From R. Schwengner et. al. Z. Phys. A 326 (1987) 287.

Results of DCO analysis

558	771	E	$4^+ \rightarrow 2^+ \rightarrow 0^+$	1.1(1)	1
558	931	E	$6^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	0.95(5)	1
558	1007	E	$8^+ \rightarrow 6^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	0.90(4)	1
931	1029	E	$10^+ \rightarrow \cdots \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	0.89(6)	1
558	1321	E	$14^+ \rightarrow \cdots \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	0.94(11)	1
771	1519	E	$16^+ \rightarrow \cdots \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	1.1(2)	1
771	798	E	$5^- ightarrow 4^+ ightarrow 4^+ ightarrow 2^+$	1.4(2)	1.6
			$6^+ \rightarrow 4^+ \rightarrow 4^+ \rightarrow 2^+$		0.93
771	1494	E	$5^- ightarrow 4^+ ightarrow 2^+$	1.4(2)	1.7
			$6^+ \rightarrow 4^+ \rightarrow 2^+$		1
558	395	E	$5^- \rightarrow 3^- \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	0.59(15)	0.75
			$5^- ightarrow 4^- ightarrow 4^+ ightarrow 2^+$		1.3
558	437	Μ	$6^+ \rightarrow 5^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$	2.2(5)	1.6
			$6^+ \rightarrow 5^+ \rightarrow 4^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$		1.5
	616	E	$7^+ ightarrow 5^+ ightarrow 4^+ ightarrow 2^+ ightarrow 0^+$	0.98(7)	1
			$7^+ \rightarrow 5^+ \rightarrow 4^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$		0.93