From LEPS to LEPS2
for the exotic hadron (baryon) study

- 計画研究B01
- What is exotic? (qqqq̅q or qqq+q̅q ……)
- LEPS results for Θ⁺ and Λ(1405)
- LEPS2 project

RCNP M. Yosoi
レーザー電子光ビームを用いたペンタクォークの研究

Photon beam (≒neutral vector meson)
merit: polarization observables
demerit: low interaction rate
$K^+ \pm, \pi^\pm$ beam (charged pseudoscalar meson)

high interaction rate, high resolution
What is ‘exotic’?

Baryon resonances in the mean field approach

(Diakonov arXiv:0812.3418 [hep-ph])

Dirac Hamiltonian for quarks in a baryon:

\[H = \gamma^0 (i \gamma^i \partial_i + \sigma(x)) + i \gamma^5 \pi(x) + \gamma^\mu V_\mu(x) + \gamma^\mu \gamma^5 A_\mu(x) + \cdots = H_s + H_{ud} \]

\[[H_s, J] = 0, \quad [H_{ud}, K (= T + J)] = 0 \]

FIG. 1: Filled quark levels for the ground-state baryon \(N(940, \frac{1}{2}^+) \). The two lightest baryon multiplets \((8, \frac{1}{2}^+) \) and \((10, \frac{3}{2}^+) \) are rotational excitations of the same filling scheme.

Simultaneous ordinary and isospin space rotation: \(N \rightarrow \Delta \)

\(SU(3) \) flavor rotation: \(\rightarrow \) octet, decuplet
What is ‘exotic’?

A particle-hole excitation for different single particle orbits.

A particle-hole excitation for different single particle orbits.

FIG. 2: $\Lambda(1405, \frac{1}{2}^-)$

FIG. 3: $N(1535, \frac{1}{2}^-)$

FIG. 4: $N(1440, \frac{1}{2}^+)$

FIG. 5: $\Theta^+(\frac{1}{2}^+)$

$m_{\Theta^+}\Sigma(1440)+\Sigma(1535)-\Sigma(1405) = 1570$ MeV
Nuclear Gamow-Teller transitions
\((\Delta L=0, \Delta S=\Delta T=1) \)

[e.g., \(^{90}\text{Zr}\) \((0^+) \rightarrow \;^{90}\text{Nb}\) \((1^+)\)]

Energy dependence of \(NN\) \(t\)-matrix
(\(\text{PRC24,1073}(1981)\))

Reaction: \((p,n), (3\text{He},t), \ldots\)
Energy: relatively large \(V_\sigma\)
Angle: very forward
Nuclear Gamow-Teller transitions

$^{90}\text{Zr(}^{3}\text{He,}t)^{90}\text{Nb}$

$E(^{3}\text{He}) = 450 \text{ MeV}$

$\theta = 0^\circ$

$\Delta E = 400 \text{ keV}$

$^{58}\text{Ni(p,n)}$

$E_p = 160 \text{ MeV}, 0\text{-deg.}, \text{IUCF}$

J. Rapaport et al.,

$\Delta E = 35 \text{ keV}$

$^{58}\text{Ni(}^{2}\text{He,}t)$

$E_{^{2}\text{He}} = 140 \text{ MeV/u}, 0\text{-deg}$

2001 RCNP
Quasi-bound $d+t$ cluster state

$^{(6}\text{Li}(p,2p)^{5}\text{He}^* \text{ coincidence with decay particles) }

Ground states of nucleon 5-body system are unbound.
LEPS results for Θ^+ and $\Lambda(1405)$
Super Photon ring – 8 GeV

- 8 GeV electron beam
- Diameter ≈ 457 m
- RF 508 MHz
- One-bunch is spread within $\sigma = 12$ psec.
- Beam Current $= 100$ mA
- Top-up injection

Osaka – SPring-8: about 120 km, One and half an hour highway drive.
Characteristics of BCS photons
(BCS: Backward Compton Scattering)

- rather flat energy distribution with small spreading
 (Unlike the Bremsstrahlung, where low energy photons are dominated, \(\sim 1/E_\gamma \))
- high linear- or circular-polarization
- photon energy can be tagged by recoil electron

\[E_e = 8 \text{ GeV} \]
\[\lambda = 351 \text{ nm} \]
With LEPS, what can be aimed at?

Key words:
1. Forward angle measurement including 0 deg.
2. Polarization observables
3. Strangeness

Threshold region of $\Phi(s\bar{s})$ meson and hyperon resonances

\[\Sigma(1660)\quad \Lambda(1600)\quad \Theta(1540)\quad \Lambda(1520)\quad \Lambda(1405)\quad \Sigma(1385)\quad \Lambda(1405)\quad \Sigma(1192)\quad \Lambda(1520)\quad \Lambda(1116)\]
LEPS forward spectrometer

Same acceptance for the positive and negative charged particles ($\phi \rightarrow K^+ K^-$)

- Target LH$_2$, LD$_2$, etc.
- AC index = 1.03 to reject e^+e^- pairs
- SSD 120μm pitch
- DCs $\sigma \sim 200$ μm
- Magnet 135 x 55 cm2, (35° x 15°) B = 0.7T
Particle identification

Reconstructed mass spectra

- TOF: RF signal - TOF wall, $\Delta t = 120$ ps
- Momentum: SSD, DCs, Tracking
 $\Delta p \sim 6$ MeV/c for 1 GeV/c K
Experimental setup with TPC

Two types of TPC’s are installed at 2004 and 2007 with a superconducting Solenoid magnet (2 T).

Measure both production and decay simultaneously!
LEPS experiments (2000 – 2009)

<table>
<thead>
<tr>
<th>year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>photon beam</td>
<td>BL construction & Comissioning</td>
<td>LH2 (short)</td>
<td>nuclear targets</td>
<td>LH2, LD2 (long)</td>
<td>nuclear targets</td>
</tr>
<tr>
<td>target</td>
<td>gamma detector</td>
<td>Forward LEPS spectrometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Target**
 - LH2, LD2 (long)
 - New target system for TPC (LH2, LD2, LHe)

- **Detector**
 - Forward LEPS spectrometer

- **Photon Beam**
 - LP $E_\gamma < 2.4$ GeV
 - LP $E_\gamma < 3$ GeV

Development of Polarized HD Target

<table>
<thead>
<tr>
<th>year</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>photon beam</td>
<td>LP $E_\gamma < 3$ GeV</td>
<td>LP $E_\gamma < 2.4$ GeV (8W Paladin x2)</td>
<td>LP $E_\gamma < 3$ GeV</td>
<td>LP $E_\gamma < 2.4$ GeV (test 16W Paladin)</td>
<td>LP $E_\gamma < 3$ GeV</td>
</tr>
<tr>
<td>target</td>
<td>LD2, LH2 (long)</td>
<td>new target system for TPC (LH2, LD2, LHe)</td>
<td>LH2 (long)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detector</td>
<td>Forward LEPS spectrometer</td>
<td>Fwd spectrometer + TPC–II</td>
<td>Fwd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Θ⁺ search

- Minimum quark content: 5 quarks \(uudd\bar{s}\)
- Quantum numbers of “Exotic” pentaquarks: not 3-quark

Theoretical Prediction of \(\Theta^+\)

- \(\Theta^+(1530)\)
- \(N(1710)\)
- \(\Sigma(1890)\)
- \(\Xi(2070)\)

\[M = [1890-180*Y] \text{ MeV} \]

(Chiral Soliton Model)

- Exotic: \(S = +1\)
- Low mass:
 1530 MeV
- Narrow width:
 \(~15\) MeV
- \(J^{\pi}=1/2^+\)
First observation of Θ^+ from LEPS

$$\gamma'n' \rightarrow \Theta^+ K^- \rightarrow K^+ K^- n$$

Target: neutron in Carbon nucleus

Background level is estimated by a fit in a mass region above 1.59 GeV.

Assumption:
- **Background** is from non-resonant $K^+ K^-$ production off the neutron/nucleus
- ... is nearly identical to non-resonant $K^+ K^-$ production off the proton

$M = 1.54 \pm 0.01$ GeV
$\Gamma < 25$ MeV
Gaussian significance 4.6σ

T. Nakano et al., PRL91, 012002
Both reactions are quasi-free processes.
Fermi-motion should be corrected.
Existence of a spectator nucleon characterize both reactions. \[p(N_S) < \sim 100 \text{ MeV/c} \]

Data were taken in 2002-2003 (published in PRC79,025210(2009)) and in 2006-2007 (high statistics, still under analysis)
4-momentum of γ, d, K^+, K^-
→ missing energy and momentum of the pn system
→ calculate the possible minimum momentum of N_S
Results of $\Lambda(1520)$ analysis

pK^- invariant mass with MMSA: Fermi motion effect corrected.

Structure with a width less than 30 MeV/c^2 requires a physics process or fluctuation.

The total cross section is $\sim 1 \mu$b, which is consistent with the LAMP2 measurements.

$\Delta(-2\ln L) = 55.1$ for $\Delta ndf=2 \rightarrow 7.1\sigma$

$\text{Prob}(7.1\sigma) = 1.2 \times 10^{-10}$
Results of Θ^+ analysis

nK^+ invariant mass with MMSA: Fermi motion effect corrected.

Peak position: $1.527 \pm 0.002 \text{ GeV/c}^2$
Signal yield: 116 ± 21 events
Differential cross-section: $12 \pm 2 \text{ nb/sr}$

"The narrow peak appears only after Fermi motion correction."

$\Delta(-2\ln L) = 31.1$ for $\Delta ndf=2 \quad \rightarrow \quad 5.2\sigma \quad \text{Prob}(5.2\sigma) = 2 \times 10^{-7}$
We observed a 5-σ peak in the Fermi-motion corrected nK^+ invariant mass at 1.527 GeV/c2

New data set with 3-times more statistics was taken. Blind analysis is under way to check the validity of the peak.

A new experiment with a TPC was carried out in 2008-2009: wider angle coverage and Θ^+ reconstruction in pK_s decay mode. (But PI and momentum resolutions are not good.)

→ LEPS2 and J-PARC (formation)
Study of $\Lambda(1405)$

- 3 quark or meson-baryon molecule or 4q-qbar pentaquark?
 qq LS force is too small to explain the mass of $\Lambda(1405)$. meson-baryon molecule has been suggested. 1-pole or 2-pole?
- Low energy K-bar N interaction
 Kaonic nucleus, Kaon condensation in the neutron star
- K-bar K N molecular state?
\(\Lambda(1405) \) photoproduction at LEPS

\[\gamma p \rightarrow K^+ X \]

Missing mass spectrum can not separate \(\Lambda(1405) \) and \(\Sigma(1385) \)

\rightarrow detect decay products and distinguish two resonances

\[\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^\pm \pi^\mp \rightarrow K^+ n(\pi^+ \pi^-) \]

\[\gamma p \rightarrow K^+ \Sigma(1385)^0 \rightarrow K^+ \Lambda \pi^0 \rightarrow K^+(p\pi^-)\pi^0 \]

- line-shape of \(\Lambda(1405) \) in \(p(\gamma, K^+ \pi^+) \), \(p(\gamma, K^+ \pi^-) \) reactions
 J.K.Ahn et al. NPA 721,715c(2003) (Fwd only)
 Interference of \(\Sigma \pi \) scattering amplitude

- **Differential cross section of \(\Lambda(1405) \) production**
 M.Niiyama et al. PRC78,035202(2008) (Fwd + TPC)
 Enhancement of cross section near threshold.
Lineshape of Λ(1405)

\[\sigma_{\Sigma^+\pi^-} = \frac{1}{2} |T^{(1)}|^2 + \frac{1}{3} |T^{(0)}|^2 + \frac{2}{\sqrt{6}} \text{Re}(T^{(0)}T^1) \]

\[\sigma_{\Sigma^-\pi^+} = \frac{1}{2} |T^{(1)}|^2 + \frac{1}{3} |T^{(0)}|^2 - \frac{2}{\sqrt{6}} \text{Re}(T^{(0)}T^1) \]

The interference term depends on π decay angle.

\[\chi^2 / \text{ndf} = 16.5 / 12 \]

add Σ^+π^- and Σ^-π^+
Spectrum of $\Lambda(1405)$ in 2 E_γ bins [CH$_2$-C]

- data
- $\Sigma(1385)$ ($\Lambda \pi^0$ mode)
- $\Sigma \pi$ phase space
- $K^*(892)\Sigma^+$
- theoretical model

$\Lambda^*/\Sigma^* = 0.54 \pm 0.17\, (1.5 < E_\gamma < 2.0)$
$0.074 \pm 0.076\, (2 < E_\gamma < 2.4)$

$1.5 < E_\gamma < 2.0$ GeV
$\chi^2 / \text{ndf} = 43 / 24$
182 ± 26 events

$2.0 < E_\gamma < 2.4$ GeV
$\chi^2 / \text{ndf} = 42 / 24$
43 ± 32 events
Absolute value of the differential cross section

Using the ratio of $\Lambda(1405)/\Sigma(1385)$, the absolute value is obtained from LH2 data.

<table>
<thead>
<tr>
<th>$0.8 < \cos \theta_{kCM} < 1$</th>
</tr>
</thead>
</table>

| $1.5 < E_\gamma < 2.0$ GeV | $2.0 < E_\gamma < 2.4$ GeV |
|-----------------------------|

<table>
<thead>
<tr>
<th>$d\sigma/d(\cos \theta)$ [μb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda^*(1405)$</td>
</tr>
<tr>
<td>$0.43 \pm 0.088^{+0.034}_{-0.14}$</td>
</tr>
<tr>
<td>$\Sigma^*^0(1385)$</td>
</tr>
<tr>
<td>$0.80 \pm 0.092^{+0.062}_{-0.27}$</td>
</tr>
</tbody>
</table>

- Strong enhancement of $\Lambda(1405)$ production near threshold. Exotic mechanism may contribute $\Lambda(1405)$ production.
- On going analysis for LH2 data in 2007-2008
 - Obtain more precise differential cross section
 - Photon beam asymmetry
 - $p(\gamma,K^{*+})\Lambda(1405)$
Bump structures around 2 GeV in other reactions

\[\gamma p \rightarrow \phi p \]

\[\gamma p \rightarrow K^+ \Lambda(1520) \]

T. Mibe et al. PRL95,182001 (2005)
LEPS2 project
LEPS new beam line (LEPS2)

Beam upgrade:
- **Intensity** --- High power laser, Multi laser(x4)
 --- Laser elliptic focus
 \[2 \times 10^6 \rightarrow 10^7/\text{sec} \text{ for } 2.4 \text{ GeV}\]
 \[2 \times 10^5 \rightarrow 10^6/\text{sec} \text{ for } 3 \text{ GeV}\]
- **Energy** --- Laser with short \(\lambda\),
 \(\text{re-injected Soft X-ray+BCS (2}\text{nd stage)}\), \(\rightarrow\) up to \(~7.5 \text{ GeV}\)

Detector upgrade: (reaction process & decay process)
- **Scale &** --- General-purpose large 4\(\pi\) detector \(\rightarrow\) outside of the building
- **Flexibility** Coincidence measurement of charged particles and neutral particles (photons) \(\leftarrow\) BNL/E949 detector
- **DAQ** --- High speed for the minimum bias trigger

Physics: Multi-quark (>3)

Workshop on LEPS2 (2005/7, 2007/1)

statistics, acceptance, momentum and PI resolution, neutral particle detection (especially at large angle)
Schematic view of the LEPS2 facility

逆コンプトン散乱

8 GeV 電子ビーム 反跳電子 (タギング)

レーザー or 反射X線

実験ホール内

レーザー室

(深)紫外線 レーザー

最良エミッタンス（平行ビーム） ⇒ レーザー電子光が広がらない

実験ホール外

10倍強度のビーム LEPSで開発されたパラレル・レーザー入射システム X線入射による高エネルギー化（将来）

・米国BNL(E949)の400トン スペクトロメーター有効利用
・阪大ブランドの高速データ 収集回路の開発
・LEPSでの膨大なノウハウの蓄積

全方向をカバーする検出器
4πガンマ線検出器（東北大） 崩壊解析用スペクトロメータ 反応同定用スペクトロメータ 高速データ収集システム

実験棟
Divergence of LEP beam

BL31ID $<\sigma_{x'}> = 14 \, \mu\text{rad.}$

BL33B2 $<\sigma_{x'}> = 58 \, \mu\text{rad.}$

Better divergence \rightarrow Better tagging resolution
Smaller beam size at the target
SONY MS
new deep UV laser
LEPS2 Experimental building

LEPS2 Main Spectrometer (E949 solenoid magnet)
Forward Spectrometer
Forward TOF
Beam Dump

H₂, D₂ Buffer
Electronics
Electric Power Equipments
Cooling System

18 m
12 m
27 m
35 m
12 m
10 m
1.4 m
1.5 m
5 m

crane (>10 t)
solenoid (400 t)
LEPS2実験棟
予定地

（参考：BL33XU実験棟）
Detector Setup

Target cell
CFRP
SSD

SSD

Target cell
CFRP

Range and TOF
Barrel γ
Barrel Tracker

γ
TPC or CDC
MWDC

Target and Vertex detector

3 m
Tracking system

- Side way tracker (TPC)
 \[R = 500 \text{ mm (24-26 layer)}, \]
 \[\sigma_{r\phi} = 150 \text{um}, \quad \sigma_z = 2 \text{mm}, \]

- Forward MWDC chamber (450mm)
 \[^4\text{He} + \text{Ethane} \left(X/X_0 = 1.1 \times 10^{-3} \right) \]
 6 plane (x,x', u(45) u'(-45), y y')
 \[\sigma_{xy} = 150 \text{um}, \]

- Barrel tracker
 Cathode strip + Anode wire
 \[\sigma_{r\phi} = 250 \text{um}, \quad \sigma_z = 2 - 3 \text{ mm} \]

- SSD (Cylindrical+ Disk)
 Double side strip sensor
 \[\sigma = 35 \text{um}, \]
 \[\Delta Z < 1 \text{ mm at } \theta > 20^0 \]
$\Delta P/P$ at forward region

- $2^\circ < \theta < 17^\circ$
 - Vertex + Fd MWDC
 - No SW tracker
 - At 10 degree
 - $\Delta P/P = 1.3\%$ (He4 gas)
 - 1.9\% (Air)

- $\theta > 17^\circ$
 - MS effect in SW tracker
 - TPC \Rightarrow Ar/CH$_4$ or Ne/CH$_4$
Momentum dep. of $\Delta P/P$
PID
TOF counter
$\Delta t \, 50 \text{ ps}$

TOP or Aerogel Cerenkov

TOF & Cerenkov (TOP, AC, RICH)
Penta-quark Θ^+

Strangeness tagging

$\gamma + n \rightarrow K^- + \Theta^+$

$\rightarrow p \ K^0$

$\rightarrow \pi^+ \ \pi^-$

Invariant Mass measurement

$\Delta M(K^0)=2.4 \text{ MeV}/c^2$

CDC and TPC
MC effect on LH2 target

$\Delta M(\Theta^+)=3.5 \text{ MeV}/c^2$
\[\gamma p \rightarrow K^* \Lambda(1405) \]

\[\gamma + p \rightarrow K^{*+} + \Lambda(1405) \rightarrow \Sigma^+ \pi^- \rightarrow n \pi^+ \]

Missing mass resolution for \(\Lambda(1405) \) 8 MeV/c^2

![Graph showing missing mass resolution and acceptance for different channels](image)
予算 (全体 ~1000 Myen)

- H22年度施設整備費補助金 (RCNP) □ Myen
 「LEPS2ビームライン及び測定装置」
- 科研費新学術領域「新ハドロン」
 計画研究B01（代表者 野海） ~240 Myen/5年
 (レーザー、検出器)
- 実験棟建設費（理研？） □ Myen
 （18m × 35m (630mm²) → 12m × 27m(324mm²) 1/2縮小案）
- E949検出器&磁石 移設費 □ Myen
 (RCNPサブアトミック科学推進事業 or 阪大学内措置)
- H23年度以降概算要求（サブアトミック科学推進事業）
 (□ Myen × ?年)
<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009FY</td>
<td>Submit LEPS2 proposal</td>
</tr>
<tr>
<td></td>
<td>E949 detector (BNL): Decompose & partially transfer</td>
</tr>
<tr>
<td></td>
<td>R&D for high intensity beam</td>
</tr>
<tr>
<td></td>
<td>R&D of LEP2 Detector</td>
</tr>
<tr>
<td></td>
<td>Start construction</td>
</tr>
<tr>
<td></td>
<td>Modify SR chamber</td>
</tr>
<tr>
<td></td>
<td>BL construction</td>
</tr>
<tr>
<td></td>
<td>Laser system</td>
</tr>
<tr>
<td></td>
<td>Design & build Exp. hutch</td>
</tr>
<tr>
<td></td>
<td>Infra.</td>
</tr>
<tr>
<td></td>
<td>Rad. shield</td>
</tr>
<tr>
<td></td>
<td>Beam commissioning</td>
</tr>
<tr>
<td></td>
<td>Partially start experiment with 4π photon & fwd detector</td>
</tr>
<tr>
<td></td>
<td>4π photon detector (Tohoku LNS)</td>
</tr>
<tr>
<td></td>
<td>Polarized HD target: R&D and experiment at LEPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010FY</td>
<td>Construction of the decay spectrometer and forward spectrometer</td>
</tr>
<tr>
<td></td>
<td>Spectrometer commissioning</td>
</tr>
<tr>
<td></td>
<td>Start experiment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011FY</td>
<td>R&D of X-ray re-injection system</td>
</tr>
<tr>
<td></td>
<td>LEPS2</td>
</tr>
<tr>
<td></td>
<td>LEPS2</td>
</tr>
<tr>
<td></td>
<td>LEPS2</td>
</tr>
</tbody>
</table>
Backup
Status of the LEPS2 project

- 2005.6: Discussion for the LEPS2 beamline was started.
- 2005.7: First workshop was held at RCNP → Both physics and technical issues.
- 2005.12: Basic agreement for the movement of the E949 detector was made with BNL and associated laboratories.
 - Numerical consideration for getting the high energy γ beam by re-injection of X-ray has been performed. → Need R&D for the mirror.
- Test of the LRNB method for the high intensity LEP → The same intensity as the normal Gauss beam
- 2006.4: Test of the two laser injection → succeed!
- Disassembling work for E949 detector
- Discuss detector design, modification of beamline etc.
- 2007.1: Second workshop @RCNP
- 2008.1: Change the plan of the laser injection place.
- 2008.11: Loan agreement for the E949 detector
- LOI to Spring-8: 2006.12 Hearing → Approved. BL31 was assigned.
- Budget request: 2008,2009 from RCNP → X
- Kakenhi “Exotic Hadron” approved (2009-), Budget request 2010 O?
BEAM LINE MAP OF SPRING-8

LEPS2 LOI was approved: BL31 was assigned for LEPS2.
$\gamma p \to p \pi \pi$

$\gamma p \to p \pi \pi \pi$

$\gamma p \to p \pi \pi \pi \pi$

$\gamma p \to p \pi^0/\eta/\eta'/\omega$

$\gamma p \to p \eta$
Analysis for 2008A(3 GeV) run

forward K+ event

\[\text{dE/dx} = \text{Average of peak PAD} \]

by Nakatsugawa
$\gamma\ d \to \Lambda(1520)\Theta^+$

$\gamma d \to \Lambda(1520)\Theta^+$

- $K^- p$

$\Delta M(\Theta^+) = 17\ MeV/c^2$

$\Delta M(\Theta^+) = 10\ MeV/c^2$

$\Delta M(\Theta^+) = 3\ MeV/c^2$

$\gamma d \to \Lambda(1520)\Theta^+$

- $K^- p \to K^+ n$

$\gamma d \to \Lambda(1520)\Theta^+$

- $K^- p \to K_s p$

Missing Mass

+ Kinematical fit

Invariant Mass
K/π/p separation by TOF counter

Cerenkov counter is necessary