

LEPS2: the second Laser-Electron Photon facility at SPring-8

RCNP M. Yosoi

- How to increase the LEP intensity
- Design of the main detector system
- Polarized HD target

Beam line map of Spring-8

engineering, Industrial use, etc.

Schematic view of the LEPS2 facility

Divergence of LEP beam

Better divergence → Better tagging resolution Smaller beam size at long distance

How to get the high Intensity Photon Beam

We are aiming to produce one-order higher intensity photon beam :

LEP intensity $\geq 10^7$ cps for E_{γ}<2.4 GeV beam (355 nm) $\geq 10^6$ cps for E_{γ}<2.9 GeV beam (266 nm)

- Simultaneous injection of 4-lasers
- Higher output power and lower power consumption CW lasers.
 355 nm (for 2.4 GeV) 8 W→16 W, 266 nm (for 2.9 GeV) 1 W→2 W
- Laser beam shaping with cylindrical expander

• Electron beam is horizontally wide.

⇒ BCS efficiency will be increased by elliptical laser beam.

Need large aperture of the laser injection line \rightarrow reconstruct some BL chambers

[x4]

[x2]

[x2]

Test of Laser Beam shaping with visible wavelength laser

Design concepts of Main Detector

- Momentum resolution at forward angle $\Delta p/p\sim1\%$.
 - \rightarrow Good reaction tag.
- Large and smooth acceptance azimuthally → Decay and polarization.
- Detection of decay product down to lower momentum 100 MeV/c
- Detection of neutral particle (Photon)

Main Detector Setup

Tracking system

• PID

sideway: TOF ($\Delta t = 50$ psec) forward: TOP (quarts Cerenkov) • Side way tracker (TPC) R = 500 mm (24-26 layer), $\sigma_{r\phi}$ =150um, σ_z =2mm,

•Forward MWDC chamber(450mm) ⁴He+Ethane (X/X₀ = 1.1x10⁻³) 6 plane (x,x', u(45) u'(-45), y y') σ_{xy} =**150um**,

Barrel tracker
 Cathode strip + Anode wire
 σ_{rφ} = 250um, σ_z = 2-3 mm

 SSD (Cylindrical+ Disk) Double side strip sensor σ=35um, ΔZ< 1 mm at θ>20⁰

Penta-quark Θ^+

Polarized HD Target

Ш

- We have developed the polarized HD target for these 6 years.
- •When we succeed the development and establish its technology, it will be a strong weapon at LEPS2.

Principle of polarized HD

H and D are polarized by the static method, i.e., using the thermal equilibrium under the ultra low temperature and high magnetic field.

Special advantage:

After a few months aging time, spin is frozen, even under high temperature and low magnetic field.

- Longstanding effort at Syracuse, LEGS/BNL, ORSAY
- 10-20 mK
- 15-17T
- >80% for H, >20% for D (vector)
- $20\% \rightarrow 70\%$ in D with DNP

NMR signals after 53-day aging

Process to use in the experiment

Dilution Refrigerator (DR)

17 T Magnet

Transfer Cryostat @RCNP (TC1)

Transfer Cryostat @SP8

(TC2)

Storage Cryostat (SC)

In-Beam Cryostat (IBC)

LEPS2 roadmap

We need to get more budget and widen the collaboration.

Backup

Super Photon ring – 8 GeV

- 8 GeV electron beam
- Diameter $\approx 457 \text{ m}$
- RF 508 MHz
- One-bunch is spread within $\sigma = 12$ psec.
- Beam Current = 100 mA
- Top-up injection

Osaka – SPring-8: about 120 km, One and half an hour highway drive.

LEPS new beam line (LEPS2)

• Beam upgrade:

Intensity --- High power laser, Multi laser(x4)

--- Laser elliptic focus

~ $10^6 \rightarrow \sim 10^7$ /sec for 1.5 GeV~2.4 GeV ~ $10^5 \rightarrow \sim 10^6$ /sec for 1.5 GeV~2.9 GeV

(Energy --- Laser with short λ ,

re-injected Soft X-ray+BCS (future possibility), \rightarrow up to ~7.5 GeV)

• Detector upgrade: (reaction process & decay process)

Scale & --- General-purpose large 4π detector \rightarrow large experimental hutch Flexibility Coincidence measurement of charged particles and neutral particles (photons) \leftarrow BNL/E949 detector

DAQ --- High speed for the minimum bias trigger

- Target upgrade: Polarized HD target
- Physics: Continuous study from LEPS (e.g. Θ⁺), new Physics Workshop on LEPS2 (2005/7, 2007/1)

LEPS experiments (2000 - 2010)

year	2005	2006	2007	2008	2	009 →2	- 2010
photon beam	LP Ε_γ < 3 GeV	LP E_γ < 2.4 GeV (8W Paladin x2)	LP Ε_γ	< 3 GeV LP Ε_γ < (test 16)	2.4 GeV V Paladin)	LP Ε_γ < 3 GeV	
						(1W Sony)	
target	_	LD2, LH2 (lo	ng)	new target system (LH2, LD2,	for TPC LHe)	LH2 (long)	
detector		Forward LEPS spec	ctrometer	Fwd spectrom + TPC-II	eter	Fwd	

development of polarized HD target

High Energy Backward Compton Photons

Backward Compton Scattering of X-ray for Ultra High Energy LEP

$\Delta P/P$ at forward region

2° <θ< 17 °
 Vertex + Fd MWDC
 No SW tracker

At 10 degree ∆P/P = 1.3% (He4 gas) 1.9% (Air)

```
 θ > 17°
 MS effect in SW tracker
 TPC ⇒ Ar/CH<sub>4</sub> or Ne/CH<sub>4</sub>
```


γp→K*Λ(1405)

Reaction mechanisms of ϕ meson photoproduction

Diffractive production within the vector-meson-dominance model through Pomeron exchange

