Hadron Physics Experiments with Laser Compton Backscattering Photon Beams at LEPS and LEPS2

Masaru Yosoi (RCNP, Osaka University) for the LEPS&LEPS2 Collabo

> SPring-8 8GeV, 100 mA ~60 beam lines

June 10th, 2021 @ NP2020

Outline

Introduction (hadron physics with GeV photon beams)

Upgrade of laser-electron photon beam

- Synchronizing the timing of pulse laser with electron beam bunches
- New results of LEPS2/BGOegg experiments
- η' mesons in nuclei

Experiments with the LEPS2 Solenoid Spectrometer

Study of exotic hadrons and the present status

Summary

What are hadrons?

- Hadrons are subject to the strong interaction and consist of quarks with color charges (RGB). (Anti-quarks have anti-colors)
- Quarks have flavors (*u*, *d*, *s*, *c*, *b*, *t*).
- Each hadron should be color singlet (i.e., quarks are confined!)

 QCD (Quantum Chromo-Dynamics) is the basic equation of strong interaction, but it can not be directory solved at low energy due to its non-perturbative behavior.

Problems in hadron physics

 Quark model has explained existing mesons and baryons well, but many predicted nucleon resonances are still missing.

"missing resonances"

 QCD does not prohibit a hadron consisting of more than 3 quarks.

"Does exotic hadrons ($qq\overline{qq}$, $qqqq\overline{q}$,) exist?" New forms of hadrons may give a breakthrough of understanding "confinement"

 Bare quark masses are very light, but hadron masses are heavy.

 $(m_u, m_d < 5 \text{ MeV} \rightarrow m_{\text{proton}}(uud)=938 \text{ MeV})$ "what is the origin of hadron mass ?" Nambu suggested it is due to the spontaneous chiral symmetry breaking. (quark condensate $\langle 0|\overline{q}q|0 \rangle \neq 0$) But experimentally it has not been confirmed.

⁽from PDG)

Why using GeV photons

- Typical hadron size: ~1 fm $\rightarrow E_{\gamma} \gtrsim 1 \text{ GeV}$
- Photon can act as a virtual $q\overline{q}$ probe in high energy

 Photon has spin 1. Spin observables can help to understand the reaction mechanism. (Parity filter, etc.)

Comlementary to charged hadron beams like π^{\pm} , K^{\pm}

Photon beam by Laser Compton Scattering at SPring-8 (Laser-Electron Photon)

• small amount of low E_{γ} photons

($\propto 1/E_{\gamma}$ for Bremsstrahlung photons)

- high linear (circular) polarization in a wide energy region
- each photon energy (>1.3 GeV) is tagged by detecting the recoil electron

6

Recoil electrons

Two large acceptance detectors at LEPS2

2γ invariant mass spectrum

☆ LEP beam by Synchronizing the timing of pulse laser with electron beam bunches

Various several bunch modes in the SPring-8 operation

Compton scattering with a conventional CW laser

Compton scattering with a synchronized pulse laser

Pulse Laser

- Product: LDH-V1611-PoD(Spectronix Inc.)
- Wavelength: 355 nm
- Pulse width: <15 ps
- Power: >20W (depends on the repetition frequency)

An external synchronization unit controls laser irradiation

- Obtain 2~4 times higher LEP beam intensity compared with the asynchronous operation, by optimizing the power, frequency, and irradiation pattern for each filling mode.
- A 258 nm deep-UV pulse laser will be tested in this year.

$rightarrow \eta'$ mesons in nuclei

- Change of hadron properties in the finite density
 - → hint of the origin of mass, because the chiral symmetry breaking is partially restored

A large mass reduction of η' (958) in nuclei was predicted by theoretical models.

(reduce the $U_A(1)$ quantum anormaly effect)

Results

14

Comparison with DWIA calculation

15

☆Study of exotic hadrons

17 (with Fermi motion) 'n K

Θ^+ search at LEPS

Θ^+ search at LEPS2

LEPS2 solenoid spectrometer

Multi-purpose large acceptance detector for fixed target exp.

· No ϕ and non-resonant K⁺K⁻ background

(~11 MeV at LEPS)

Mass resolution of Θ^+ : ~6 MeV

Commissioning of Solenoid Spectrometer

Physics run will start from this autumn.

19

Parity filter with linearly polarized photon $\varepsilon_{\gamma} \perp K\pi \rightarrow$ unnatural parity exchange (K) $\varepsilon_{\gamma} \parallel K\pi \rightarrow$ natural parity exchange (K^{*}, κ)

Measure difference of line shape \rightarrow determine both pole positions.

☆Summary

- LCS photon beams with a few GeV energies have been used for the study of hadron physics in two beamline (LEPS and LEPS2) at SPring-8. (LEPS closed once due to contract expiration in 2020.)
- LEPS2/BGOegg experiment
 - η' bound nuclei were searched in the ¹²C(γ, p) reaction with simultaneous detection of decay products
 - → Large attractive potential ($|V_0| \ge 100$ MeV) is not favored
- LEPS2/Solenoid spectrometer
 - Commissioning run is on going.
 - Physics data taking for Θ^+ , $\Lambda(1405)$, etc. will start soon.

Thank you very much !

BACKUP

Features of LEPS and LEPS2

	LEPS (2000~2020)	LEPS2 (2013~)
Tagged photon energy	1.5 GeV< E _γ <2.4 GeV (UV laser) <2.9 GeV (DUV laser)	1.3 GeV< E _γ <2.4 GeV (UV laser) <2.9 GeV (DUV laser)
Photon beam intensity	2-Laser Injection ~2×10 ⁶ cps (UV laser) (~2×10 ⁵ cps (DUV laser))	Max. 4-Laser Injection <10 ⁷ cps (UV laser) (<10 ⁶ cps (DUV laser))
Equipment	LEPS Forward Spectrometer	BGOegg EMSolenoidCalorimeterSpectrometer
Drift Cha Dipole Magnet Cherenkov SSD Photon Beam Hg/LDg Target	<section-header></section-header>	Some results of 1 st Physics run has been opened.
LEPS s	pectrometer BGOegg ca	alorimeter Solenoid spectrometer

<u>Alternative analysis on η' mass</u>

- Direct measurement of η' mass spectrum with $M(\gamma\gamma)$ distribution
- → Contribution of decays inside a nucleus may appear in the lower tail

Y. Matsumura, phD thesis (2021)

Some enhancements over the MC-based signal+BG function is seen in the line-shape analysis for low momentum η' To make it more clear, larger size of nuclei are suitable \rightarrow We are planning to take data with copper target in the next BGOegg exp.