Momentum Distributions and Related Observables in Light Nuclei
 J. Carlson - LANL

- Introduction
- Momentum Distribution
- Back-to-Back Nucleons
- Inclusive lepton scattering
- Low-momentum processes
(weak decays, ...)
- Conclusion
S. Gandolfi (LANL)
S. Pastori (LANL)
R. Schiavilla (JLAB/ODU)
R. B.Wiringa (ANL)
S. C. Pieper (ANL)
A. Lovato (ANL)

Momentum Distribution (I- and 2-body)

Not directly observable but influence many observables
I-body momentum distribution from I-body off-diagonal density matrix

$$
n(k)=\left\langle\Psi_{0}\left(r^{\prime}, \ldots\right)\right| \exp \left[i \mathbf{k} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}\right)\right]\left|\Psi_{0}(r, \ldots)\right\rangle
$$

2-body momentum distribution

$$
n\left(k_{r}, P\right)=\left\langle\Psi_{0}\left(r_{1}^{\prime}, r_{2}^{\prime} \ldots\right)\right| \exp \left[i \mathbf{k}_{\mathbf{r}} \cdot\left(\mathbf{r}_{\mathbf{1 2}}^{\prime}-\mathbf{r}_{\mathbf{1 2}}\right)\right] \exp \left[i \mathbf{P} \cdot\left(\mathbf{R}_{\mathbf{1 2}}^{\prime}-\mathbf{R}_{\mathbf{1 2}}\right)\right]\left|\Psi_{0}\left(r_{1}, r_{2}, \ldots\right)\right\rangle
$$

- $n(k)$ near $k=0$ governed by large size of deuteron
- D-wave contributes at $k \geqslant 2 \mathrm{fm}^{-1}$
- Dominated by Pion (tensor) correlations

$A=4,6$ momentum distributions

${ }^{4} \mathrm{He}$ with different interactions
Tensor interaction
(pion) very important around $2 \mathrm{fm}^{-1}$
${ }^{6} \mathrm{He}$ at large momenta proton and neutron distributions are similar (alpha core)

Proton (I-body) momentum distributions from $A=2 . .12,16 \ldots$

Schiavilla, et al I986, Benhar, et al 1993
$\mathrm{kF} \sim 1.35 \mathrm{fm}^{-1}$ in large nuclei

Single Nucleon $\mathrm{n}(\mathrm{k})$ is a property of the 'average' nuclear medium

Inclusive Electron Scattering

$$
\begin{aligned}
(E, 0,0, p), & \left(E^{\prime}, p^{\prime} \sin \theta, 0, p^{\prime} \cos \theta\right) \\
\omega & \equiv E-E^{\prime} \\
\vec{q} & =\vec{p}-\vec{p}^{\prime}
\end{aligned}
$$

Thus q and ω are precisely known without any reference to the nuclear final state
from Benhar, Day, Sick, RMP 2008
in PWIA width governed by momentum distribution

Inclusive electron scattering,

 measure electron kinematics only

Accelerator Neutrinos

Superk

MINOS

MINERva

MicroBooNE

Advantages: Control over Energy, flux neutrino 'beams' can be sent over long distances

Why are 'local' properties enough?

Simple view of Nuclei: inclusive scattering

Charge distributions of different Nuclei:

figure from faculty.virginia.edu/ncd
based on work of Hofstadter, et al.: Nobel Prize 1961

Scaling (2nd kind) different nuclei

Donnelly and Sick, 1999

Inclusive scattering measures properties at distances $\sim \pi / q \leqslant 1 \mathrm{fm}$

$$
R(q, \omega)=\sum_{i}\langle 0| \rho_{i}^{\dagger}\left(q ; r^{\prime}\right) \rho_{i}(q ; r)|0\rangle \delta\left(E_{F}-E_{I}-\omega\right)
$$

Requires one-body momentum distribution

$$
E_{F}=(q+k)^{2} /(2 m)+\Delta \quad \text { can include a mean-field shift }
$$

Spectral function:

includes energy of A-I particles not interacting with the probe

$$
\begin{gathered}
R(q, \omega)=\sum_{i} \sum_{f}\langle 0| a_{i}^{\dagger}\left(q ; r^{\prime}\right)\left|f_{A-1}\right\rangle\left\langle f_{A-1}\right| a_{i}(q ; r)|0\rangle \delta\left(E_{F}-E_{I}-\omega\right) \\
E_{F}=(\mathrm{q}+\mathrm{k})^{2} /(2 \mathrm{~m})+\Delta+\mathrm{E}_{f, \mathrm{~A}-\mathrm{I}}
\end{gathered}
$$

Longitudinal/Transverse separation in electron scattering: ${ }^{12} \mathrm{C}$

from Benhar, Day, Sick, RMP 2008
Benhar, arXiv: I 501.06448
data Finn, et al 1984

Single nucleon FF divided out;
T/L > I implies more than I-body physics
PWIA or spectral fn not sufficient

Two-nucleon momentum distributions

pp versus np 2-body momentum distributions in 4 He

CM momentum near 0 emphasizes back-to-back (nearby) pairs np dominates near $q \sim 2 \mathrm{fm}^{-1}$

2-body momentum distributions in light nuclei

Some enhancement due to counting, but np momentum distribution $\gg \mathrm{nn}$ or pp at $\mathrm{q}>\mathrm{kF}_{\mathrm{F}}$

JLAB, BNL back-to-back pairs in ${ }^{12} \mathrm{C}$ np pairs dominate over nn and pp

‘Complete’ Electron, Neutrino Scattering

$$
\left.R_{L, T}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}+E_{f}\right)\left|\langle f| \mathcal{O}_{\mathcal{L}, \mathcal{T}}\right| 0\right\rangle\left.\right|^{2}
$$

Easy to calculate Sum Rules: ground-state observable

$$
S(q)=\int d \omega R(q, \omega)=\langle 0| O^{\dagger}(q) O(q)|0\rangle
$$

Imaginary Time (Euclidean Response) statistical mechanics inversion with Maximum Entropy

$$
\begin{array}{l|l|l}
\tilde{R}(q, \tau)=\langle 0| \mathbf{j}^{\dagger} \exp \left[-\left(\mathbf{H}-\mathbf{E}_{\mathbf{0}}-\mathbf{q}^{\mathbf{2}} /(\mathbf{2} \mathbf{m})\right) \tau\right] \mathbf{j}|\mathbf{0}\rangle> \\
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} V_{i j}+\sum_{i<j<k} V_{i j k} & \ldots \\
\mathbf{j}=\sum_{i} \mathbf{j}_{i}+\sum_{i<j} \mathbf{j}_{i j}+\ldots & \ldots \\
\mathbf{N}
\end{array}
$$

${ }^{12} \mathrm{C}$ electron scattering inverting Euclidean Response

- Lovato

Longitudinal

Transverse

Longitudinal

$$
500
$$

Large Transverse Enhancement in Electron Scattering

Single-
Nucleon
Currents
$1+2$
Nucleon
Currents

Lovato, et al: arXiv:1501.01981

Neutrino Scattering Involves 5 response functions

$$
\begin{aligned}
&\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \epsilon^{\prime} \mathrm{d} \Omega}\right)_{\nu / \bar{\nu}}=\frac{G_{F}^{2}}{2 \pi^{2}} k^{\prime} \epsilon^{\prime} \cos ^{2} \frac{\theta}{2}\left[R_{00}+\frac{\omega^{2}}{q^{2}} R_{z z}-\frac{\omega}{q} R_{0 z}\right. \\
&\left.+\left(\tan ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 q^{2}}\right) R_{x x} \mp \tan \frac{\theta}{2} \sqrt{\tan ^{2} \frac{\theta}{2}+\frac{Q^{2}}{q^{2}}} R_{x y}\right] \\
& R_{\alpha \beta}(q, \omega) \sim \sum_{i} \sum_{f} \delta\left(\omega+m_{A}-E_{f}\right)\langle f| j^{\alpha}(\mathbf{q}, \omega)|i\rangle \\
& \times\langle f| j^{\beta}(\mathbf{q}, \omega)|i\rangle^{*}
\end{aligned}
$$

Vector - Axial Vector Interference determines the difference between neutrino and antineutrino scattering

Sum rules in $12 C$

Single Nucleon currents (open symbols) versus Full currents (filled symbols)

Low Momentum Observables: Beta Decay

g_{A} "quenched" by factor of ~ 0.75 in all heavy nuclei small quenching in tritium, about 0.9 in $A=6,7$ role of pion-range correlations and currents Similar questions arise in double beta decay, even more important as rate $\propto g_{A}{ }^{4}$

Conclusions

Measured large enhancement in back-to-back np vs. pp pairs due to tensor (pion) correlations
In general need treatment of both correlations and currents Very important in understanding quasi-elastic scattering (neutrino and electron) scattering from nuclei

Outlook

More data needed for many observables and many ranges of momentum transfer, including:

Lower energy (astrophysical) neutrinos
Strength distributions of isovector response
Beta decay and low-energy weak transitions
Neutrinoless double-beta decay

