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Momentum Distribution (1- and 2-body)

n(k) = h 0(r
0, ...)| exp[ik · (r0 � r)] | 0(r, ...)i

n(kr, P ) = h 0(r
0
1, r

0
2...)| exp[ikr · (r012 � r12)] exp[iP · (R0

12 �R12)] | 0(r1, r2, ...)i

1-body momentum distribution from 1-body off-diagonal density matrix

Not directly observable but influence many observables

2-body momentum distribution
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Most of these wave functions have been used as starting
trial functions for recent calculations of energies, elec-
tromagnetic moments and transitions, and spectroscopic
overlaps using the more accurate Green’s function Monte
Carlo (GFMC) method [11–14].
The probability of finding a nucleon with momentum

k and spin-isospin projection σ,τ in a given nuclear state
is proportional to the density

ρστ (k) =

∫

dr′1 dr1 dr2 · · · drA ψ
†
JMJ

(r′1, r2, . . . , rA)

× e−ik·(r1−r′
1
) Pστ (1)ψJMJ

(r1, r2, . . . , rA) .(2)

Pστ (i) is the spin-isospin projection operator for nucleon
i, and ψJMJ

is the nuclear wave function with total spin
J and spin projection MJ . The normalization is

Nστ =

∫

dk

(2π)3
ρστ (k) , (3)

where Nστ is the number of spin-up or spin-down protons
or neutrons.
The Fourier transform in Eq. (2) is computed by Monte

Carlo (MC) integration. A standard Metropolis walk,
guided by |ψJMJ

(r1, . . . , ri, . . . , rA)|2, is used to sam-
ple configurations [10]. We average over all particles i
in each configuration, and for each particle, a grid of
Gauss-Legendre points xi is used to compute the Fourier
transform. Instead of just moving the position r′i in the
left-hand wave function away from a fixed position ri in
the right-hand wave function, both positions are moved
symmetrically away from ri, so Eq. (2) becomes

ρστ (k) =
1

A

∑

i

∫

dr1 · · · dri · · · drA

∫

dΩx

∫ xmax

0
x2dx

ψ†
JMJ

(r1, . . . , ri + x/2, . . . , rA) e
−ik·x (4)

× Pστ (i)ψJMJ
(r1, . . . , ri − x/2, . . . , rA) .

Here the polar angle dΩx is also sampled by MC integra-
tion, with a randomly chosen direction for each particle
in each MC configuration. This procedure is similar to
that adopted in studies of the nucleon-pair momentum
distribution [2] and has the advantage of very substan-
tially reducing the statistical errors originating from the
rapidly oscillating nature of the integrand for large val-
ues of k. To reach momenta k ∼ 10 fm−1 in 4He with
good statistics requires integrating to xmax=20 fm using
200 Gauss-Legendre points.

II. SINGLE-NUCLEON AND
NUCLEON-CLUSTER RESULTS

The proton momentum distribution ρp(k) in the
deuteron is shown in Fig. 1. (For Tz=0, our wave func-
tions have ρn=ρp.) In this case ρp(k) has been eval-
uated by direct numerical solution of the Schrödinger
equation, although we have checked that our MC code
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FIG. 1: (Color online) The total proton momentum distri-
bution in the deuteron is shown by the red solid line; the
contribution from S-wave and D-wave components are shown
separately by blue and magenta dashed lines.

gives the same results within statistical errors. The sep-
arate contributions of the S- and D-wave components of
the deuteron wave function are also shown. The S-wave
momentum density has a prominent node at 2 fm−1, but
this is filled in by the D-wave momentum density, so the
total ρp(k) has a distinctive change of slope at 1.5 fm−1,
followed by a broad shoulder out to 7 fm−1 before the
first D-wave and second S-wave nodes occur. The D-
wave component is due to the pion-exchange tensor force
in AV18. The broad shoulder is the dominant feature in
all the single-nucleon momentum distributions of larger
nuclei shown below.
The polarized proton and neutron densities in 3He in

the MJ = + 1
2 state are shown in Fig. 2. The spin-up

proton and neutron densities are very similar. The spin-
down proton density is slightly larger, particularly in the
dip region around 2 fm−1. Although the spin-down neu-
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FIG. 2: (Color online) The spin-isospin densities for polarized
3He in the MJ = + 1

2
state are shown by solid red (blue) lines

for spin-up protons (neutrons) and by dashed magenta (cyan)
lines for spin-down protons (neutrons).

• n(k) near k=0 governed by  
       large size of deuteron

• D-wave contributes at k ≳ 2 fm-1

• Dominated by Pion  
      (tensor) correlations
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TABLE I: Total number of spin-up/down and proton/neutron
nucleons in J > 0 nuclei with MJ = J .

Nucleus N↑p N↓p N↑n N↓n

3He( 1
2

+
) 0.974 1.026 0.938 0.062

6Li(1+) 1.924 1.076 1.924 1.076
7Li( 3

2

−
) 1.934 1.066 1.981 2.019

8Li(2+) 1.914 1.086 2.855 2.145
9Li( 3

2

−
) 1.907 1.093 3.084 2.916

9Be( 3
2

−
) 1.994 2.006 2.880 2.120

10B(3+) 2.901 2.099 2.901 2.099

tron density is non-zero only by virtue of the tensor force,
it exceeds the spin-up neutron density in the dip region.
The total normalizations for 3He are given in Table I,
along with those of other nuclei in our study. The total
number of spin-down neutrons is 2/3 of the 3He D-state
percentage. These momentum distributions may be in-
structive when considering the use of polarized 3He as a
polarized neutron target.
The proton momentum density in 4He is shown in

Fig. 3 out to 10 fm−1 on the same scale as the deuteron
ρp(k) in Fig. 1. The overall shape is rather similar to the
deuteron, with a change of slope near 2 fm−1 and a broad
shoulder out to a second dip near 8 fm−1. The ρp(k) is
shown for the standard AV18+UX Hamiltonian used in
this work, and for AV18 alone using three different ver-
sions of the VMC wave function of Eq.(1).
The full AV18+UX Hamiltonian gives a VMC energy

of −27.6 MeV (−28.3 MeV in GFMC) and a radius of
1.44 fm, which are close to the experimental energy of
−28.3 MeV and point proton radius of 1.46 fm. The
AV18 two-nucleon potential alone gives less binding with
a VMC energy of −23.7 MeV (−24.1 MeV in GFMC)
and a larger point proton radius rp of 1.52 fm. Because
AV18+UX produces energies and radii that are closer to
experiment for all A ≥ 3 nuclei, this is the primary model
we use for this paper. The main role of the three-nucleon
potential is to fix both the binding energy and size of the
nuclei, which for the ρp(k) translates into an overall shift
of the momentum density to larger k, with a reduced
value for k ≤ 1 fm−1. The 4He D-state increases from
13% with AV18 alone to 15%, and the ρp(k) beyond 2
fm−1 increases by 10-20%.
To study the source of the intermediate- and high-

momentum densities, we show two AV18 calculations
with simplified wave functions: 1) a pure central Jas-
trow wave function labeled AV18(J) in the figure, and 2)
a wave function including spin-isospin operator correla-
tions, but no tensor components, labeled AV18(4). The
AV18(J) calculation has just the |ΨJ⟩ in Eq.(1). The
AV18(4) adds to the central Jastrow term the Uij pair
correlation operator with spin, isospin, and spin-isospin
components. The full AV18 wave function also includes
tensor and tensor-isospin components in the Uij opera-
tor. (For AV18 alone, there is no ŨTNI

ijk correlation.)
The central Jastrow term dominates the momentum
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FIG. 3: (Color online) The proton momentum distribution
in 4He is shown for the AV18+UX Hamiltonian by the red
solid line, and for AV18 alone by the blue long-dash line; sim-
plified calculations for AV18 using 1) only a central Jastrow
correlation (J) is shown by the cyan short-dash line, and 2)
including spin-isospin (but no tensor) correlations (4) is indi-
cated by the magenta dash line.

density for k ≤ 1 fm−1, goes through a minimum at
k = 2 fm−1, and then gives about 30% of the total density
for k > 3 fm−1. The spin-isospin correlations in the
AV18(4) calculation shift the Jastrow result to slightly
higher momenta, and then begin to dominate at higher
momenta, providing an additional 40-60% of the density
beyond k = 4 fm−1. The tensor components in the full
AV18 wave function fill in the minimum in the region
1.5 ≤ k ≤ 3 fm−1, just as they do in the deuteron, but
are then only 10-20% of the total at higher momenta.
The proton momentum distribution for 4He is also

shown in closeup in Fig. 4 along with the nucleon-cluster
distributions for tp and dd overlaps. The definition for
these distributions is given in Ref. [1]; essentially, they
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FIG. 4: (Color online) The proton momentum distribution in
4He is shown by the red circles; the tp cluster distribution is
shown by the blue triangles and the dd cluster distribution is
shown by the magenta squares.

A=4,6 momentum distributions
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FIG. 5: (Color online) The proton (neutron) momentum dis-
tribution in 6He is shown by the red circles (blue squares);
the difference of neutron and proton densities is shown by the
magenta triangles with error bars.

are the Fourier transforms of spectroscopic overlaps as
discussed in Ref. [11]. The ρtp(k) at low momenta is al-
most on top of ρp(k), indicating that in this region, most
of the residual nucleus is in the triton ground state. The
total Ntp = 1.62, compared to Np = 2, in good agree-
ment with the spectroscopic factor determined in GFMC
calculations [11]. The ρdd(k) integrates to Ndd = 1.005,
with 0.98 coming from having the dd pair in a relative
S-wave, and 0.025 from a relativeD-wave. Because there
are two deuterons in a dd pair, this means there are two
deuterons among the six pairs in 4He from this config-
uration. (Approximately 0.4 more deuterons should be
present in 4He from d + pn configurations where the pn
pair is in a T=0 state orthogonal to the deuteron [1].)
The proton and neutron momentum distributions in

6He are shown in Fig. 5. The proton momentum distri-
bution is close to that in 4He. The two neutrons in the
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FIG. 6: (Color online) The nucleon momentum distribution
ρN=ρp+ρn in 6Li is shown by the red circles; the αd cluster
distribution for the ground state is shown by blue point-up
triangles and for the first excited state by magenta point-down
triangles.
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FIG. 7: (Color online) The proton (neutron) momentum dis-
tributions in 7Li are shown by the red circles (blue squares);
the αt cluster distribution for the ground (second excited)
state is shown by magenta point-down (cyan point-up) trian-
gles.

p-shell make the neutron momentum distribution peak
at finite k ∼ 0.25 fm−1. Also shown is the difference
ρn(k) − ρp(k), which should give a good approximation
to the distribution of the p-shell halo neutrons. The dif-
ference has a dip at zero momentum, appropriate for the
p-shell, and because the halo neutrons are primarily in a
relative 1S0 pair, there is a dip at the usual S-wave node
position.
Although there are twice as many neutrons as protons

in 6He, the high-momentum densities are almost equal;
for q ≥ 2 fm−1 the ratio ρn/ρp = 1.1. A similar situation
holds for 8He (not shown here, but illustrated and tab-
ulated online [4]) where there are three times as many
neutrons as protons, but above 2 fm−1 the ratio ρn/ρp =
1.2. This supports the recent suggestion of Sargsian [15]
that in neutron-rich systems, the fraction of protons at
high momenta is substantially larger than the fraction of
neutrons.
The 6Li Jπ =1+ ground state single-nucleon momen-

tum distribution and the αd cluster distributions in the
ground state and first 3+ excited state are shown in
Fig. 6. In this case we plot ρN=ρp+ρn=2ρp for compari-
son to the ground state αd distribution to illustrate that
at zero momentum the two are almost equal. The ραd(k)
cluster distribution in the 1+ ground state has a node at
k ∼ 0.7 fm−1 because the α and d are in a relative 1s
spatial state due to antisymmetry [16]. The integrated
Nαd = 0.86 is a sum of S- and D-wave parts of 0.846
and 0.017, respectively. The ραd(k) in the 3+ state has
the α and d in a relative 0d spatial state and a somewhat
greaterNαd = 0.94. However, ρN (k) for the excited state
would be indistinguishable from the ground state in this
figure, so it is not shown here, but it is tabulated online.
The ground state single-nucleon momentum distribu-

tions in 7Li are shown in Fig. 7. The proton momen-
tum distribution is similar to that in 6Li; the neutron
distribution is bigger at small finite momentum due to

Tensor interaction
(pion) very important around 2 fm-1

4He with different interactions

6He at large momenta
proton and neutron distributions

are similar (alpha core)
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FIG. 10: (Color online) The proton momentum distributions
in all T=0 nuclei from A=2–12.

potential, boosted by the two-pion-exchange part of the
3N potential. Above k = 4 fm−1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

III. NUCLEON-PAIR RESULTS

The probability of finding two nucleons in a nucleus
with relative momentum q = (k1 − k2)/2 and total
center-of-mass momentum Q = k1 + k2 in a given spin-
isospin state is given by:

ρST (q,Q) =

∫

dr′1dr1dr
′
2dr2dr3 · · · drA

ψ†
JMJ

(r′1, r
′
2, r3, . . . , rA) (5)

e−iq·(r12−r′
12

)e−iQ·(R12−R′

12
)

PST (12)ψJMJ
(r1, r2, r3, . . . , rA) ,

where r12 = r1 − r2, R12 = (r1 + r2)/2, and PST (12) is
a projector onto pair spin S = 0 or 1, and isospin T = 0
or 1. The total normalization is:

NST =

∫

dq

(2π)3
dQ

(2π)3
ρST (q,Q) , (6)

where NST is the total number of nucleon pairs with
given spin-isospin.. Alternate projectors can also be used,
e.g., for NN pairs pp, np, and nn with corresponding
normalizations.
The nucleon-pair momentum distributions can be ex-

amined in a number of different ways. One way is to
integrate over all values of Q and reduce the pair density
to a function ρ12(q) of the relative momentum q only.
In this case, Eq.(5) reduces to a form similar to Eq.(4),
with a sum over all configurations in the Monte Carlo
walk controlled by |ΨJMJ

|2, and a Gauss-Legendre inte-
gration over the relative separation x = r12−r′12. Again,
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FIG. 11: (Color online) The nucleon-pair momentum distri-
butions in 4He as a function of relative momentum q is shown
by the solid black line, while the projection into pairs of total
spin-isospin ST is given by the various symbols.

the polar angle Ωx is sampled by randomly choosing the
direction of x in space, and an average over all pairs in
every MC configuration is made.
Typical results are shown in Fig. 11 for 4He and in

Fig. 12 for 9Be, where both the total distribution and
the different ST components are plotted. The spatial
distribution of nucleon pairs in different ST combina-
tions, using correlated wave functions generated by real-
istic interactions, was first studied in Ref. [16] for A ≤ 7
nuclei. The corresponding momentum distributions have
been calculated here for a number of cases in addition
to those shown in the figures, including 3He, 6,7Li, 8Be,
10B, and are available online [4].
The number of NST pairs for these nuclei are given in

Table II. In the absence of spin-isospin correlations, the
total number of ST pairs in a given nucleus depends on
the total number of NN pairs PA = A(A−1)/2, the total
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FIG. 12: (Color online) The nucleon-pair momentum distri-
butions in 9Be as a function of relative momentum q is shown
by the solid black line, while the projection into pairs of total
spin-isospin ST is given by the various symbols.

Proton (1-body) momentum distributions from A=2..12, 16 …

kF ~ 1.35 fm-1 in large nuclei

excited to the continuum. The correlation ridge at E
!k2 /2m "see Eq. #28$% is clearly visible. Note that, in the
absence of interactions, the surface shown in Fig. 3 col-
lapses to a collection of !-function peaks distributed
along the line &E & =k2 /2m, with &k & "kF'250 MeV/c.

The proton spectral functions of nuclei with A#4
have been modeled using the local density approxima-
tion #LDA$ #Benhar et al., 1994$, in which the experi-
mental information obtained from nucleon knock-out
measurements is combined with theoretical calculations
of the nuclear matter S#k ,E$ at different densities.

The kinematic region corresponding to low missing
energy and momentum, where shell-model dynamics
dominates, has been studied extensively by coincidence
#e ,e!p$ experiments. The spectral function extracted
from the data is usually written in the factorized form
"compare to Eq. #27$%

SMF#k,E$ = (
n!)F*

Zn&$n#k$&2Fn#E − En$ , #30$

where the spectroscopic factor Zn"1 and the function
Fn#E−En$, describing the energy width of the nth state,
account for the effects of residual interactions not in-
cluded in the mean-field picture. In the Zn→1 and
Fn#E−En$→!#E−En$ limit, Eq. #30$ reduces to Eq. #27$.

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values #Benhar
et al., 1994$. Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr#k,E$ =+ d3r%A#r$Scorr
NM„k,E ;% = %A#r$… , #31$

where %A#r$ is the nuclear density distribution and
Scorr

NM#k ,E ;%$ is the correlation part of the spectral func-
tion of uniform nuclear matter at density %. The corre-
lation part of the nuclear matter spectral function can be
easily singled out at zeroth order of CBF, being associ-
ated with two-hole–one-particle intermediate states. At
higher orders, however, one-hole and two-hole–one-
particle states are coupled, and the identification of the
correlation contributions becomes more involved. A full
account of the calculation of Scorr

NM#k ,E$ can be found in
Benhar et al. #1994$.

The full LDA spectral function is written in the form

SLDA#k,E$ = SMF#k,E$ + Scorr#k,E$ , #32$

the spectroscopic factors Zn of Eq. #30$ being con-
strained by the normalization requirement

+ d3kdESLDA#k,E$ = 1. #33$

A somewhat different implementation of LDA has
also been proposed #Van Neck et al., 1995$. Within this
approach, the nuclear matter spectral function is only
used at k#kF#r$, kF#r$ being the local Fermi momen-
tum, whereas the correlation background at k"kF#r$ is

incorporated in the generalized mean-field contribution.
Comparison between the resulting oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short-
range nuclear dynamics are unaffected by surface and
shell effects. The validity of this assumption is supported
by the results of theoretical calculations of the nucleon
momentum distribution

n#k$ =+ dE"ZSp#k,E$ + #A − Z$Sn#k,E$% , #34$

showing that for A&4 the quantity n#k$ /A becomes
nearly independent of A at large &k& #'300 MeV/c$. This
feature, illustrated in Fig. 4, suggests that the correlation
part of the spectral function also scales with the target
mass number, so that Scorr

NM#k ,E$ can be used to approxi-
mate Scorr#k ,E$ at finite A.

A direct measurement of the correlation component
of the spectral function of 12C, from the #e ,e!p$ cross
section at missing momentum and energy up to
!800 MeV/c and !200 MeV, respectively, was carried
out by the JLab E97-006 Collaboration #Rohe, 2004$.
The data from the preliminary analysis appear to be
consistent with the theoretical predictions based on
LDA.

D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. #18$ and #19$ describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of had-
rons other than protons and neutrons, one has to replace
w1

N and w2
N given by Eqs. #23$ and #24$ with the inelastic

nucleon structure functions extracted from the analysis
of electron-proton and electron-deuteron scattering data
#Bodek and Ritchie, 1981$. The resulting IA cross sec-

FIG. 4. Calculated momentum distribution per nucleon in 2H,
4He, 16O, and uniform nuclear matter #Schiavilla et al., 1986;
Benhar et al., 1993$.
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008

Inclusive electron scattering,
measure electron kinematics only



Accelerator Neutrinos

SuperK
MicroBooNE

MINOS

MINERva
Advantages: Control over Energy, flux

neutrino ‘beams’ can be sent over long distances



Why are ‘local’ properties enough?
Simple view of Nuclei: inclusive scattering

Charge distributions of different Nuclei:

figure from faculty.virginia.edu/ncd
based on work of Hofstadter, et al.: Nobel Prize 1961

Inclusive scattering measures properties at
distances ~ π / q  ≲  1 fm

9

to |q| ⇠ 1 GeV.data at fixed kinematics, all A:
excellent scaling of 2d kind, occurs at all q

valid out to large |�0|FIG. 9 (color online) Illustration of scaling of second kind,
or superscaling. The scaling functions for nuclei with mass
number 12  A  197, obtained from the data of Day et al.

(1987) at beam energy Ee = 3.6 GeV and electron scattering
angle ✓e = 16 deg, corresponding to |q| ⇠ 1 GeV, are shown
as a function of the variable  0 = y/kF (Donnelly and Sick,
1999).

Besides allowing to identify the dominant reaction
mechanism, the occurrence of superscaling can be ex-
ploited to predict the nuclear cross section for kinemat-
ical regions and targets not covered by the available
data, although the contributions of mechanisms leading
to large scaling violations, such as final state interaction
and MEC, can only be described within a specific nuclear
model. The universal scaling function extracted from
electron scattering data has been extensively used to ob-
tain both charged- and neutral-current neutrino-nucleus
cross sections (Amaro et al., 2007; Mart́ınez et al., 2008).

D. Two-nucleon currents and 2p2h final states

In addition to NN correlations in the initial and fi-
nal states, interactions involving electromagnetic two-
nucleon currents, arising from processes in which the pho-
ton couples to a meson exchanged between two nucleons,
also lead to the excitation of 2p2h final states. As an
example, the simplest such processes contributing to the
electron scattering cross section are depicted in Fig. 10.

The two-body currents are linked to the potential de-
scribing NN interactions through the continuity equation
(3), establishing a relation between the nuclear hamilto-
nian H and the longitudinal component of the current
Jµ. As a consequence, the operator Jµ can be separated
into model-dependent and model-independent contribu-
tions, the latter being determined from the NN potential
(Riska, 1989).

As pointed out above, in the regime of low to mod-
erate momentum transfer the nuclear matrix element of

the two-nucleon current can be evaluated using realis-
tic nuclear wave functions, obtained within the frame-
work of NMBT, and a non relativistic reduction of the
current operator, based on the expansion in powers of
|q|/m (Carlson and Schiavilla, 1998). The model-de-
pendent component of the current, being transverse in
nature, is not determined by the NN potential. Exist-
ing calculations typically take into account the isoscalar
⇢⇡� and isovector !⇡� transition currents, as well as the
isovector current associated with excitation of intermedi-
ate �-isobar resonances. The two-body charge operators
include the ⇡-, ⇢-, and !-meson exchange charge oper-
ators, the (isoscalar) ⇢⇡� and (isovector) !⇡� couplings
and the single-nucleon Darwin-Foldy and spin-orbit rel-
ativistic corrections (Schiavilla et al., 1990).

(a) (b) (c)

FIG. 10 Diagrams depicting processes contributing to the
electromagnetic two-nucleon current. Oriented lines corre-
spond to nucleons, while the wavy and dashed lines are asso-
ciated with photons and exchanged mesons, respectively.

The role of the two nucleon current in electron scat-
tering is best illustrated by comparing the longitudinal
and transverse contributions to the scaling function F (y),
discussed in Section III.C.

It is important to recall that the occurrence of scal-
ing provides a strong handle on the identification of the
reaction mechanism, while the observation of scaling vi-
olations reveals the role played by processes beyond the
IA. In this context, valuable information is provided by
the scaling analysis of the longitudinal (L) and trans-
verse (T) contributions to the measured cross sections
(see Eq. (10)).

Figure 11 shows the y-dependence of the L and T scal-
ing functions obtained by Finn et al. (1984) using the
corresponding carbon responses, extracted from the cross
sections measured by Barreau et al. (1983). The onset of
scaling is manifest in the region of the quasi free peak,
corresponding to y ⇠ 0, where the data points at di↵er-
ent momentum transfer tend to sit on top of one another
as |q| increases. On the other hand, large scaling vio-
lations, mainly arising from non QE processes, such as
resonance production, are clearly visible in the transverse
channel at y > 0, corresponding to ! > !

QE

. In addi-
tion, the T scaling function turns out to be significantly
enhanced, with respect to the L one, while within the
IA picture—neglecting the small convection terms in the
nucleon current—the L and T responses are predicted to
be identical.

The results of highly accurate calculations carried out
for light nuclei in the non relativistic regime strongly sug-
gest that in the quasi elastic region single nucleon knock-

Scaling (2nd kind) different nuclei

Donnelly and Sick, 1999

➯
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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FIG. 11 (color online) y-dependence of the longitudinal (L)
and transverse (T) scaling functions of Carbon at |q| = 400,
500, and 600 MeV (Finn et al., 1984), obtained from the anal-
ysis of the data of Barreau et al. (1983). Note that y is given
in units of the nucleon mass, m, and that the scaling function
is multiplied by m, to obtain a dimensionless quantity.

out processes are dominant in the longitudinal channel,
while one- and two-nucleon mechanisms provide compa-
rable contributions in the transverse channel.

The role of the two-body currents in determining the
sum rules of the L and T responses, defined as

S
L

(|q|) =
1

Z

Z
1

!th

d!R
L

(|q|,!) , (34)

and

S
T

(|q|) =
2

Zµ
p

+ Nµ
n

m2

|q|2
Z

1

!th

d!R
T

(|q|,!), (35)

has been thoroughly analysed by Carlson et al. (2002)
using the Green’s Function Monte Carlo (GFMC) ap-
proach. In the above equations, R

L

and R
T

are the
response functions defined in Eq.(10), µ

p

and µ
n

are
the proton and neutron magnetic moments, respectively,
and the lower integration limit, !

th

, corresponds to the
threshold of inelastic scattering.

The numerical results of the study of Carlson et al.

(2002), including the L and T sum rules of 3He, 4He
and 6Li at momentum transfer 300  |q|  700 MeV,
indicate that two-nucleon currents are responsible for a
⇠ 20 � 40% enhancement of of the T sum rule, while the
typical contribution to S

L

is a ⇠ 5% decrease.
As pointed out above, owing to the presence of NN cor-

relations 2p2h final states can be excited in processes in-
volving both one- and the two-body currents. Within the
IA scheme, the contribution of the one-body current can
be taken into account using spectral functions derived
from realistic nuclear models, in which the ground state
has non vanishing overlaps with the two hole-one particle
states of the residual system (Benhar et al., 1989). On
the other hand, the discussion of Section III.B implies

FIG. 12 (color online) Sum rule of the electromagnetic
response of carbon in the transverse channel, defined by
Eq. (35). The dashed line shows the results obtained including
the one-nucleon current only, while the solid line corresponds
to the full calculation. The dot-dash line represents the sum
rule computed neglecting interference terms, the contribution
of which is displayed by the dotted line. The results are nor-
malised so that the dashed line approaches unity as |q| ! 1
(Benhar et al., 2013).

that all models based on the mean field approximation
fail to meet this requirement.

A consistent treatment of the one- and two-nucleon
contributions to the nuclear cross section in the 2p2h sec-
tor requires that interference between the corresponding
amplitudes—including the one associated with the exci-
tation of 2p2h final states in the aftermath of a rescatter-
ing of the knocked out particle, to be discussed below—be
carefully taken into account.

The role of interference terms in determining the trans-
verse electromagnetic response of 12C has been recently
analysed within the GFMC approach. The results of this
study, displayed in Fig. 12, clearly show that interference
is the source of a sizeable fraction of the sum rule. At mo-
mentum transfer |q| >

⇠

300 MeV, its contribution turns
out to be comparable to—in fact even larger than—the
one arising from the squared matrix element of the two-
nucleon current (Benhar et al., 2013).

A fully consistent description of one- and two-body
current contributions to the nuclear cross sections in the
region in which the non relativistic approximation is ex-
pected to break down involves non trivial problem. Ex-
isting calculations have been carried out using diagram-
matic approaches, based on simplified descriptions of the
the nuclear initial and final states, obtained from either
the RFGM or more advanced implementations of the
mean field approximation (De Pace et al., 2003; Meucci
et al., 2002).

A novel approach, recently proposed by Benhar and
Rocco (2013) is based on a generalisation of the factori-
sation ansatz described in Section III.A. The 2p2h final
state is written in the form (compare to Eq. (13))

|Xi = |pp0i ⌦ |n
A�2

,p
n

i , (36)

Single nucleon FF divided out;
T/L > 1 implies more than 1-body physics

PWIA or spectral fn not sufficient
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FIG. 16: (Color online) The proton-proton momentum distri-
butions in 4He averaged over the directions of q and Q as a
function of q for several fixed values of Q from 0 to 1.25 fm−1.

and pn pairs decreases as Q increases, simply because
there are fewer pairs with high total momenta. The nu-
merical values for these curves may be found online along
with similar results for 3He [4]. Additional calculations
for various fixed angles between Q and q are in progress.

IV. CONCLUSIONS

We have calculated a large number of nucleon, nucleon-
cluster, and nucleon-pair momentum distributions for
A ≤ 12 nuclei using VMC wave functions generated from
a realistic Hamiltonian containing the AV18 NN and UX
3N potentials. The single-nucleon ρ(k) have a common
characteristic shape, with a peak at zero (for s-shell nu-
clei) or small (for p-shell nuclei) momentum, a rapid drop
of more than two orders of magnitude followed by a dis-
tinct change of slope around q=1.5–2 fm−1, and then an
extended high-momentum tail that carries well beyond
5 fm−1. The dominant source of this tail in the 1.5–
3 fm−1 range is the NN tensor force, which comes from
the pion-exchange potential, and is boosted ∼15% by the
3N force with its two-pion-exchange terms. Spin-isospin
correlations appear to dominate at higher momenta, and
presumably are dependent on the short-range structure
of the Hamiltonian. Our calculations include a break-
down between spin-up and spin-down nucleons in J > 0
nuclei and between protons and neutrons in T > 0 nuclei.
Nucleon-cluster distributions, with d, t, and α clusters,
have been calculated in A ≤ 8 nuclei, including a number
of excited states. They do not exhibit high-momentum
tails but have specific nodal structures that reflect the
requirements of antisymmetry for the given spin J of the
nuclear state.
The nucleon-pair momentum distributions ρ12(q) as a

function of relative pair momentum q have a very similar
structure to ρ(k). We provide the breakdown into pair
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FIG. 17: (Color online) The proton-neutron momentum dis-
tributions in 4He averaged over the directions of q and Q as
a function of q for several fixed values of Q from 0 to 1.25
fm−1.

spin-isospin ST channels in a number of cases, and alter-
natively into NN channels in other cases. These different
components have different behaviors as a function of q
which can again be traced back primarily to the pion-
exchange tensor force, with the high-momentum tails
largely dominated by the ST = (10) or np pairs. The dis-
tributions ρ12(Q) as a function of total pair momentumQ
also have a similar shape, but are noticeably flatter and
seem to have less interesting structure. The ρ12(q,Q)
are more complicated, particularly with the evolution of
nodal structures as illustrated in Fig.16.

While we have illustrated many of the above cases in
the figures of this paper, the main results are to be found
in our online figures and tabulations [4]. These include
single-nucleon momentum distributions for 16 different
nuclear ground states plus some excited states. The
corresponding configuration-space densities are also pro-
vided. Nucleon-cluster distributions are given for 12 dif-
ferent cases. Nucleon-pair momentum distributions in-
clude eight ρST (q), seven ρNN (q), six ρNN(Q), and six
ρNN(q,Q = 0) nuclear ground states, plus two dozen
ρNN(q,Q > 0) cases in 3,4He. It is our intention to
add additional calculations as they are developed and
requests for specific cases will be entertained.

In the future it may be possible to evaluate the mo-
mentum distributions using the more accurate GFMC
wave functions [11]. In that case, Eq.(2) will have to be
evaluated moving only r′i, which is an inherently noisier
procedure. The most likely result from a GFMC eval-
uation is a further shift to higher momenta. First, the
GFMC wave functions produce more binding which will
decrease somewhat the population of nucleons at low mo-
menta. Second, GFMC wave functions generally have
spin-isospin and tensor correlations that are enhanced
relative to the VMC wave functions, which will raise the
broad shoulder in the 2 to 7 fm−1 region; these correla-
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and pn pairs decreases as Q increases, simply because
there are fewer pairs with high total momenta. The nu-
merical values for these curves may be found online along
with similar results for 3He [4]. Additional calculations
for various fixed angles between Q and q are in progress.

IV. CONCLUSIONS

We have calculated a large number of nucleon, nucleon-
cluster, and nucleon-pair momentum distributions for
A ≤ 12 nuclei using VMC wave functions generated from
a realistic Hamiltonian containing the AV18 NN and UX
3N potentials. The single-nucleon ρ(k) have a common
characteristic shape, with a peak at zero (for s-shell nu-
clei) or small (for p-shell nuclei) momentum, a rapid drop
of more than two orders of magnitude followed by a dis-
tinct change of slope around q=1.5–2 fm−1, and then an
extended high-momentum tail that carries well beyond
5 fm−1. The dominant source of this tail in the 1.5–
3 fm−1 range is the NN tensor force, which comes from
the pion-exchange potential, and is boosted ∼15% by the
3N force with its two-pion-exchange terms. Spin-isospin
correlations appear to dominate at higher momenta, and
presumably are dependent on the short-range structure
of the Hamiltonian. Our calculations include a break-
down between spin-up and spin-down nucleons in J > 0
nuclei and between protons and neutrons in T > 0 nuclei.
Nucleon-cluster distributions, with d, t, and α clusters,
have been calculated in A ≤ 8 nuclei, including a number
of excited states. They do not exhibit high-momentum
tails but have specific nodal structures that reflect the
requirements of antisymmetry for the given spin J of the
nuclear state.
The nucleon-pair momentum distributions ρ12(q) as a

function of relative pair momentum q have a very similar
structure to ρ(k). We provide the breakdown into pair
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FIG. 17: (Color online) The proton-neutron momentum dis-
tributions in 4He averaged over the directions of q and Q as
a function of q for several fixed values of Q from 0 to 1.25
fm−1.

spin-isospin ST channels in a number of cases, and alter-
natively into NN channels in other cases. These different
components have different behaviors as a function of q
which can again be traced back primarily to the pion-
exchange tensor force, with the high-momentum tails
largely dominated by the ST = (10) or np pairs. The dis-
tributions ρ12(Q) as a function of total pair momentumQ
also have a similar shape, but are noticeably flatter and
seem to have less interesting structure. The ρ12(q,Q)
are more complicated, particularly with the evolution of
nodal structures as illustrated in Fig.16.

While we have illustrated many of the above cases in
the figures of this paper, the main results are to be found
in our online figures and tabulations [4]. These include
single-nucleon momentum distributions for 16 different
nuclear ground states plus some excited states. The
corresponding configuration-space densities are also pro-
vided. Nucleon-cluster distributions are given for 12 dif-
ferent cases. Nucleon-pair momentum distributions in-
clude eight ρST (q), seven ρNN (q), six ρNN(Q), and six
ρNN(q,Q = 0) nuclear ground states, plus two dozen
ρNN(q,Q > 0) cases in 3,4He. It is our intention to
add additional calculations as they are developed and
requests for specific cases will be entertained.

In the future it may be possible to evaluate the mo-
mentum distributions using the more accurate GFMC
wave functions [11]. In that case, Eq.(2) will have to be
evaluated moving only r′i, which is an inherently noisier
procedure. The most likely result from a GFMC eval-
uation is a further shift to higher momenta. First, the
GFMC wave functions produce more binding which will
decrease somewhat the population of nucleons at low mo-
menta. Second, GFMC wave functions generally have
spin-isospin and tensor correlations that are enhanced
relative to the VMC wave functions, which will raise the
broad shoulder in the 2 to 7 fm−1 region; these correla-

pp versus np 2-body momentum distributions in 4He

CM momentum near 0 emphasizes back-to-back (nearby) pairs
np dominates near q ~ 2 fm-1

Two-nucleon momentum distributions
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

2-body momentum distributions in light nuclei

Some enhancement due to counting, but
np momentum distribution >> nn or pp at q > kF
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Neutrino Scattering Involves 5 response functions

Neutral weak current two-body contributions in inclusive scattering from

12
C
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An ab initio calculation of the sum rules of the neutral weak response functions in 12C is reported,
based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic cur-
rents, consisting of one- and two-body terms. We find that the sum rules of the response functions
associated with the longitudinal and transverse components of the (space-like) neutral current are
largest and that a significant portion (' 30%) of the calculated strength is due to two-body terms.
This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data
on nuclei.

PACS numbers: 21.60.De, 25.30.Pt

In recent years, there has been a surge of interest in
inclusive neutrino scattering o↵ nuclear targets, mostly
driven by the anomaly observed in the MiniBooNE quasi-
elastic charge-changing scattering data on 12C [1], i.e.,
the excess, at relatively low energy, of measured cross sec-
tion relative to theoretical calculations. Analyses based
on these calculations have led to speculations that our
present understanding of the nuclear response to charge-
changing weak probes may be incomplete [2], and, in
particular, that the momentum-transfer dependence of
the axial form factor of the nucleon may be rather dif-
ferent from that obtained from analyses of pion electro-
production data [3] and measurements of neutrino and
anti-neutrino reactions on protons and deuterons [4–7].

The accurate calculation of the weak inclusive response
of a nucleus like 12C is a challenging quantum many-body
problem. Its di�culty is compounded by the fact that the
energy of the incoming neutrinos is not known (in con-
trast, for example, to inclusive (e, e0) scattering where the
initial and final electron energies are precisely known).
The observed cross section for a given energy and angle of
the final lepton results from a folding with the energy dis-
tribution of the incoming neutrino flux and, consequently,
may include contributions from energy- and momentum-
transfer regions of the nuclear response where di↵erent
mechanisms are at play: the threshold region, where the
structure of the low-lying energy spectrum and collective
e↵ects are important; the quasi-elastic region, which is
(naively, see below) expected to be dominated by scatter-
ing o↵ individual nucleons; and the � resonance region,
where one or more pions are produced in the final state.

In recent years, a number of studies have attempted
to provide a description of the nuclear weak response
in this wide range of energy and momentum transfers.
They typically rely on a relativistic Fermi gas [8, 9] or
relativistic mean field [10, 11] picture of the nucleus.
Some, notably those of Ref. [12, 13], include correlation
e↵ects in the random-phase approximation induced by

e↵ective particle-hole interactions in the N -N , �-N , N -
� and �-� sectors, use various inputs from pion-nucleus
phenomenology, and lead to predictions for electromag-
netic and strong spin-isospin response functions of nuclei,
as measured, respectively, in inclusive (e, e0) scattering
and in pion and charge-exchange reactions, in reasonable
agreement with data.
In the present manuscript, we report on a study of

the neutral weak response of 12C, based on a dynami-
cal framework in which nucleons interact among them-
selves with two- and three-body forces and with exter-
nal electroweak probes via one- and two-body currents—
elsewhere [14], we have referred to this framework as the
standard nuclear physics approach (SNPA). While SNPA
allows for an ab initio treatment of the nuclear response
in the threshold and quasi-elastic regions and, as such,
constitutes a significant improvement over the far more
phenomenological approaches mentioned above, it has
nevertheless severe limitations: it cannot describe—at
least, in its present formulation—the �-excitation peak
region, since no mechanisms for (real) single- and multi-
pion production are included in it. However, the above
proviso notwithstanding, the sum rules of weak neutral
response functions, which we consider here, should pro-
vide useful insights into the nature of the strength seen
in the quasi-elastic region and, in particular, into the role
of two-body terms in the electroweak current.
The di↵erential cross section for neutrino (⌫) and an-

tineutrino (⌫) inclusive scattering o↵ a nucleus—the pro-
cesses A(⌫

l

, ⌫

0
l

) and A(⌫
l

, ⌫

0
l

) induced by the neutral weak
current (NC)—can be expressed in terms of five response
functions as follows [15]
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where G

F

= 1.1803 ⇥ 10�5 GeV�2 is the Fermi con-
stant [16] and the � (+) sign in the last term applies to
the ⌫ (⌫) reaction. The neutrino initial and final four-
momenta are k

µ = (✏,k) and k

µ 0 = (✏0,k0), and its en-
ergy and momentum transfers are defined as ! = ✏ � ✏

0

and q = k�k0. The scattering angle and four-momentum
transfer are denoted by ✓ and Q

2, respectively, with
Q

2 = q

2 � !

2
> 0. The nuclear response functions are

schematically given by (explicit expressions are listed in
Eqs. (2.5)–(2.9) of Ref. [15])

R

↵�

(q,!) ⇠
X

i

X

f

�(!+m

A

�E

f

)hf | j↵(q,!) | ii

⇥hf | j�(q,!) | ii⇤ ,

where | ii and | fi represent the initial ground state
and final scattering state of the nucleus of energies m

A

and E

f

=
q
q

2 +m

2
f

; here, m
A

and m

f

denote, respec-

tively, the rest mass and internal excitation energy (in-
cluding the masses of the constituent nucleons). The
three-momentum transfer q is taken along the z-axis (i.e.,
the spin-quantization axis), and j

µ(q,!) is the NC time
component for µ = 0 or space component for µ = x, y, z.
Lastly, an average over the initial nuclear spin projections
is implied.

The NC is given by

j

µ = �2 sin2✓
W

j

µ

�,S

+ (1� 2 sin2✓
W

) jµ
�,V

+ j

µ5
V

,

where ✓

W

is the Weinberg angle (sin2✓
W

= 0.2312 [17]),
j

µ

�,S

and j

µ

�,V

denote, respectively, the isoscalar and
isovector components of the electromagnetic current, and
j

µ5
V

denotes the isovector component of the axial current.
Isoscalar contributions to j

µ associated with strange
quarks are ignored, since experiments at Bates [18–20]
and JLab [21–23] have found them to be very small.

Explicit expressions for the nuclear electromagnetic
current j

µ

�

are reported in Ref. [15] and were used in
our recent study of the charge form factor and longitudi-
nal and transverse sum rules of electromagnetic response
functions in 12C [14]. In the SNPA they lead to a sat-
isfactory description of a variety of electro- and photo-
nuclear observables in systems with A  12, ranging from
static properties (charge radii, quadrupole moments, and
M1 transition widths) to charge and magnetic form fac-
tors to low-energy radiative capture cross sections and to
inclusive (e, e0) scattering in quasielastic kinematics at
intermediate energies [14, 24–28].

A realistic model for the axial weak current j

µ5
V

in-
cludes one- and two-body terms (see Ref. [15] for a recent
overview). The former follow from a non-relativistic ex-
pansion of the single-nucleon four-current, in which cor-
rections proportional to 1/m2 (m is the nucleon mass)
are retained. The time component of the two-body axial
current includes the pion-exchange term whose structure
and strength are determined by soft-pion theorem and

current algebra arguments [29]. Its space components
consist of contributions associated with ⇡- and ⇢-meson
exchanges, the axial ⇢⇡ transition mechanism, and a �
excitation term (treated in the static limit). The values
for the ⇡- and ⇢-meson coupling constants are taken from
the CD-Bonn one-boson-exchange potential [30]. Two
di↵erent sets of cuto↵ masses ⇤

⇡

and ⇤
⇢

are used to reg-
ularize the r-space representation of these operators [15]:
in the first set (Set I) the ⇤

⇡

and ⇤
⇢

values (⇤
⇡

=⇤
⇢

=1.2
GeV) are in line with those extracted from the e↵ective
⇡-like and ⇢-like exchanges implicit in the Argonne v18

(AV18) two-nucleon potential [31], while in the second
set (Set II) they are taken from the CD-Bonn potential
(⇤

⇡

=1.72 GeV and ⇤
⇢

=1.31 GeV). In the N to � cur-
rent, the value for the transition axial coupling constant
(g⇤

A

) is determined by fitting the Gamow-Teller matrix
element of tritium �-decay in a calculation [32, 33] based
on 3H/3He wave functions corresponding to the AV18
and Urbana IX (UIX) three-nucleon [34] potentials and
on the present model for the axial current (g⇤

A

=0.614 g

A

with Set I and g

⇤
A

=0.371 g

A

with Set II).
The !-dependence in the current jµ enters through the

dependence on Q

2 of the electroweak form factors of the
nucleon andN -to-� transition. We fix ! at the quasielas-
tic peak energy, !qe =

p
q

2 +m

2�m, and evaluate these
form factors at Q2

qe = q

2�!

2
qe. Sum rules of NC response

functions, defined as
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can then be expressed as ground-state expectation values
of the type
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A

is the energy transfer cor-
responding to elastic scattering, the C

↵�

’s are conve-
nient normalization factors (see below), ↵� = 00, zz,
0z, and xx, and for ↵� = xx the expectation value of
j

x†
j

x + j

y†
j

y is computed. Note that the sum rules as
defined above include the elastic and inelastic contribu-
tions; the former are proportional to the square of elec-
troweak form factors of the nucleus. In the large q limit,
these nuclear form factors decrease rapidly with q, and
the sum rules reduce to the incoherent sum of single-
nucleon contributions. The normalization factors C

↵�

are chosen such that S
↵�

(q ! 1) ' 1, for example
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where Z (N) is the proton (neutron) number, G

A

is the weak axial form factor of the nucleon nor-
malized as G

A

(0) = g

A

(g
A

=1.2694 [17]), and

Vector - Axial Vector Interference determines the
difference between neutrino and antineutrino scattering
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to collective excitations of electric-dipole type in the nu-
cleus. In the large q limit, the one-body sum rules di↵er
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution �⌘/(1 + ⌘) to S1b

L (q), where ⌘ ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength
is in the quasi-elastic region. Overall, the calculated
SL(q) and ST (q) are in reasonable agreement with data.
However, a direct calculation of the response functions
is clearly needed for a more meaningful comparison be-
tween theory and experiment. Such calculations will be
forthcoming in the near future.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 24: results S1b (S2b) cor-
responding to one-body (one- and two-body) terms in
the NC are indicated by the dashed (solid) lines. Note
that both S1b

↵� and S2b
↵� are normalized by the same fac-

tor C↵� , which makes S1b
↵�(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S1b

0z (q) are much larger
than S1b

↵� for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S1b
↵�(

12C)/C↵�(12C) '
3S1b

↵�(
4He)/C↵�(4He), as is indeed verified in the ac-

tual numerical calculations to within a few %, except for
S1b
00 /C00 and S1b

0z /C0z at low q . 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A2.

Except for S2b
00 (q), the S2b

↵�(q) sum rules are consid-

erably larger than the S1b
↵�(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012); the deuteron
R↵�(q,!) response functions at q = 300 MeV/c are dis-
played in Fig. 25 (note that R00 is multiplied by a factor
of 5). Two-body current contributions in the deuteron
amount to only a few percent at the top of the quasielas-
tic peak of the largest in magnitude Rxx and Rxy, but
become increasingly more important in the tail of these
response functions, consistent with the notion that this
region is dominated by NN physics (Lovato et al., 2013).
The very weak binding of the deuteron dramatically
reduces the impact of NN currents, which are impor-
tant only when two nucleons are within 1–2 inverse pion
masses.

Correlations in np pairs in nuclei with mass number
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FIG. 24 (Color online) The sum rules S
↵�

in 12C, correspond-
ing to the AV18/IL7 Hamiltonian and obtained with one-body
only (dashed lines) and one- and two-body (solid lines) terms
in the NC.
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FIG. 25 (Color online) The response functions R
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in the
deuteron at q = 300 MeV/c computed using AV18 and ob-
tained with one-body only (dashed lines) and one- and two-
body (solid lines) terms in the NC. The inset shows the tails
of R

↵�

in the !-region well beyond the quasi-elastic peak.

A�3 are stronger than in the deuteron. The NN density
distributions in deuteron-like (T=0 and S=1) pairs are
proportional to those in the deuteron for separations up
to ' 2 fm, and this proportionality constant, denoted as
RAd (Forest et al., 1996), is larger than A/2; in 4He and
16O the calculated values of RAd are 4.7 and 18.8, respec-
tively. Similarly, experiments at BNL (Piasetzky et al.,
2006) and JLab (Subedi et al., 2008) find that exclusive
measurements of back-to-back pairs in 12C at relative mo-
menta around 2 fm�1 are strongly dominated by np (ver-
sus nn or pp) pairs. In this range and in the back-to-back

Sum rules in 12C
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EM

Single Nucleon currents (open symbols) versus
Full currents (filled symbols)



Low Momentum Observables:  Beta Decay
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FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.
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FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iϵ

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iϵ log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

Martinez-Pinedo and Poves, PRC 1996

gA “quenched” by factor of ~ 0.75 in all heavy nuclei
small quenching in tritium, about 0.9 in A=6,7
role of pion-range correlations and currents 
Similar questions arise in double beta decay, 

even more important as rate ∝ gA4



Conclusions

Measured large enhancement in back-to-back np vs. pp pairs  
                  due to tensor (pion) correlations
In general need treatment of both correlations and currents
Very important in understanding quasi-elastic scattering  
                 (neutrino and electron) scattering from nuclei

Outlook

More data needed for many observables and many
     ranges of momentum transfer, including:

Lower energy (astrophysical) neutrinos
Strength distributions of isovector response
Beta decay and low-energy weak transitions
Neutrinoless double-beta decay


