

Charge-exchange reactions GT-transitions, BB-decay and [cm-1 s-1 MeV-1)] for lines [cm-1 pp things beyond 13N 108 150 R 106 104 7Ber @ 1 AU |

 10^{2}

0.2 01

5 10

neutrino energy [MeV

Outline

Chargex-reactions (³He,t) & (d,²He)

- highlights & features of 2vββ nuclear matrix elements (NME)
 - ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹³⁶Xe

fragmentation - smallest/largest NME

- the 0vββ decay nuclear matrix elements 1st forbidden NME's and 2⁻ states
 - Solar V SNU rates and (³He,t) reaction ⁷¹Ga(³He,t), ⁸²Se(³He,t)
 - <u>the A=96 system</u>

the ⁹⁶Zr (β -) \rightarrow ⁹⁶Nb Q-value and a direct test of $0\nu\beta\beta$ NME

 $\beta^{-}\beta^{-}$ decay

recall: neutrino mass problem

$$\Gamma \propto \left| NME \right|^2 \cdot \left| \sum_{i=1}^3 U_{ei}^2 m_i \right|^2$$

 $U = V \cdot \operatorname{diag}(e^{-i\Phi_1}, e^{-i\Phi_2}, 1) \leftarrow 2 \operatorname{extra} \operatorname{Majorana-Phases}$

$$V_{\alpha i} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - c_{12}s_{13}s_{23}e^{-i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{-i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{13}c_{23}s_{13}e^{-i\delta} & -c_{12}s_{23} - c_{23}s_{12}s_{13}e^{-i\delta} & c_{13}c_{23} \end{pmatrix}$$

known quantities:

$$\Theta_{12} = 0.6 \pm 0.1 \quad \rightarrow \approx \pi/6$$

 $\Theta_{23} = 0.7 \pm 0.2 \quad \rightarrow \approx \pi/4$
 $\Theta_{13} = 0.11$

$$\Delta m_{atm}^2 = \left| m_3^2 - m_2^2 \right| \approx 2.6 \times 10^{-3} \,\text{eV}^2 \approx (0.05 \,\text{eV})^2$$
$$\Delta m_{sol}^2 = \left| m_2^2 - m_1^2 \right| \approx 7.9 \times 10^{-5} \,\text{eV}^2 \approx (0.009 \,\text{eV})^2$$

neutrino-mass-scenarios:

$$M_{\text{DGT}}^{(2\nu)} = \sum_{m} \frac{\left\langle \mathbf{0}_{g.s.}^{(f)} \left| \sum_{k} \sigma_{k} \tau_{k}^{-} \left| \mathbf{1}_{m}^{+} \right\rangle \left\langle \mathbf{1}_{m}^{+} \left| \sum_{k} \sigma_{k} \tau_{k}^{-} \right| \mathbf{0}_{g.s.}^{(i)} \right\rangle \right\rangle}{\frac{1}{2} \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{0}}$$
$$= \sum_{m} \frac{M_{m} \ GT^{+} \ M_{m} \ GT^{-}}{\mathbf{E}_{m}}$$

to remember:

- 2 sequential & "allowed" β⁻-decays of "Gamow-Teller" type
- 2. "1, 2, 3, ... forbidden" decays negligible
- 3. Fermi-transitions do no contribute (because of different isospin-multiplets)

Can be determined via chargeexchange reactions in the (n,p) and (p,n) direction (e.g. (d,²He) or (³He,t))

neutrino is a virtual particle q~0.5fm⁻¹ (~ 100 MeV/c) (due to Heisenberg Δq·Δx ~ 1) degree of forbiddeness is lifted

Charge-exchange reactions

Grand Raiden Magnetic Spectrometer

 $M(GT) = \langle 1^{+} || OT^{+} || O_{g.s.} \rangle$

 $B(GT) = \frac{1}{2J_{i+1}} | M(GT) |^2$

 \underline{Q} : what is the connection between "weak $\sigma\tau$ operator" and the hadronic reaction

<u>A</u>: dominance of the $V_{\sigma\tau}$ effective interaction at medium energies

hadronic probes: (n,p), (d,²He), (t,³He) or (p,n), (³He,t) $\left[\frac{d\sigma}{d\Omega}\right] = \left[\frac{\mu}{\pi\hbar}\right]^2 \frac{k_f}{k_i} \text{ Nd } |V_{\sigma\tau}|^2 | < f | \sigma\tau| i > |^2$ q = 0!!Iargest at 100 - 200 MeV/A

Resolution is the key !!!

almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

82**Se** N-Z=14

Resolution is the key !!!

possibly useful for solar neutrino detection

3 isolated GT transition below 2 MeVfragmentation recedes to GT resonance

Remember: $B(GT)_{tot} = 3(N-Z) \sim 50!$ B(F) = (N-Z)

useful as SN neutrino detector (sensitive to v temperature in SN)

question: why so stable !!!

A. Poves (simultaneous to our publication):

there is no $B(GT^+)$ strength, except for lowest 1^+ state

Shell model provides conclusive explanation for the deemed "pathologically" long half-life of ¹³⁶Xe. Expt'l test: ¹³⁶Ba(d,²He)¹³⁶Cs

<u>expmt:</u> <u>question:</u> $2\nu\beta\beta$ NME is exceptionally small how does the ME scale in the case of $0\nu\beta\beta$ decay?

Experiments towards the $0\nu\beta\beta$ NMEs $M_{2}^{0\nu}$ PVogel, JPh

Here: 2⁻ states and occupation vacancy numbers via chargex reactions

<u>Theory:</u> The 2⁻ strength makes up ~ 20-30% of the 0νββ ME!!

J. Suhonen, Phys. Lett B607, 87 (2005)

solar neutrino rates via (³He,t)

⁷¹Ga(v_{\odot} ,e⁻) SNUs from ⁷¹Ga(³He,t)⁷¹Ge charge-ex reaction

⁷¹Ga(v_o,e⁻) SNUs from (³He,*t*) charge-exchange reaction

solar neutrino rates via (³He,t)

⁸²Se(v_o,e⁻) SNUs from ⁸²Se(³He,t)⁸²Br charge-ex reaction

Advantages: low threshold enhanced sensitivity to pp-neutrinos short life-time against β -decay (35h) pp-v's in "real time" γ -emission, easy to detect

Future perspectives of chargex-reactions

> $\beta\beta$ -decay and nuclear matrix elements

- Resolution is key issue (RCNP gives the lead!)
- need 20 30 keV for <u>(³He,t) & (d,²He)</u>
- Need to explore proportionality between chargex x-section and ∆L ≠ 0 transitions (e.g. 2⁻ states) in weak interaction (resol'n is key)

v-physics and chargex-reactions

- Hadronic chargex and weak-interaction x-sections are fortuitously connected -- exploit this!!
- > solar neutrinos, SN-neutrinos, element synthesis

Need to address quenching issue <u>urgently!!</u>

- Chargex in inverse kinematics plays a pivotal role (BUT need resolution)
- > EOS and chargex-reaction
 - IAS and GT resonance data needed and useful BUT: theories need to converge on their relevance

⁷¹Ga(v_{\odot},e^{-}) $R = 122.4 \pm 3.4 \pm 1.1$ SNU 82 Se(v_{\odot},e^{-}) R = 258.4 SNU