

High-resolution Study of Gamow-Teller Transitions in the ^{46,47,48}Ti(³He,t)^{46,47,48}V Reactions

- Ela Ganioğlu
- İstanbul University

Outline

- > The importance of Gamow-Teller (GT) transitions
- Main features of Gamow-Teller (GT) / Fermi (F) transitions
- Transition probabilities: B(GT), B(F)
- Measuring B(GT)s : beta-decay and charge exchange reactions
- High resolution (3He,t) experiments at RCNP : 46,47,48Ti(3He,t)^{46,47,48}V
- Results
- Conclusions

Why are GT transitions important?

Gamow-Teller (GT) transitions are the most common weak interaction processes.

Good Probe to Study some Key questions in Nuclear Structure.

-Because of their simple character

Astrophysical Interest

• At the core collapse stage of type II supernovae, Gamow-Teller (GT) transitions in pf-shell nuclei play an important role *

* K. Langanke et al, Rev. Mod. Phys. 75, 819 (2003).

The main features of GT transitions

GT transitions are governed by the $\sigma\tau$ operator.

The $\sigma\tau$ operator has no spatial component -> transitions between states with similar spatial shapes are favoured.

They are of isovector (IV) nature. Allowed GT transitions $\Delta T = 1$, $\Delta S = 1$ and $\Delta L = 0$, they also have $\Delta J = 1$ and no parity change.

Isospin quantum number T plays an important role: T=T₀ states are connected with T₀₋₁, T₀ and T₀₊₁ states

They can be studied either in β decay (weak interaction) or in Charge Exchange (strong interaction) reactions.

The main features of F transitions

Fermi transitions are due to the τ operator. Hence only a single state (Isobaric Analog State, IAS) is populated in the final nucleus.

They are of isoscalar (IS) nature with $\Delta T = 1$, $\Delta S = 0$ and $\Delta L = 0$, they also have $\Delta J = 0$ and no parity change.

They can be studied either in β decay (weak interaction) or in Charge Exchange (strong interaction) reactions.

Measuring B(GT)s-(I)

β-decay studies:

The most direct information on B(GT) A weak interaction process,

The accessible excitation energy is limited by the decay Q-value.

Measuring B(GT)s-(II)

Charge-exchange Reactions:

Strong interaction process GT strengths B(GT) can reliably be mapped up to higher excitations if a "standard B(GT) value" from decay is available.

An approximate proportionality between measured cross sections and B(GT) values has been established in (p,n) reactions.

at incident beam energies > 100 MeV/u at the scattering angle 0 $^\circ$

 $\frac{d\sigma(0^{\circ})_{GT}}{d\Omega} \approx \hat{\sigma}_{GT} \cdot B(GT)$ *T.N. Taddeucci et. al. NPA469 (1987) 125

(³He,t) type CE reactions

Sil

46 F e	47Fe	48 Fe	49Fe	50 Fe	51Fe	52 7 €	53Fe	54Fe
45Mn	46Mn	47Mn	48 Mn	49Mn	50 M h	51Mn	52Mn	53Mn
44Cr	45Cr	46Cr	47Cr	480	49Cr	50Cr	51Cr	52Cr
43V	44V	45V	46V	47V	48V	49V	50V	51V
42Ti	43Ti	44Ti	45Ti	46Ti	47Ti	48Ti	49Ti	50Ti
41Sc	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	495c
40Ca	41Ca	42Ca	43Ca	44Ca	45Ca	46Са	47Ca	48Ca
39K	40K	41K	42K	43K	44K	45K	46K	47K

⁴⁶Ti → 0.92 mg/cm² ⁴⁷Ti → 0.85 mg/cm² ⁴⁸Ti → 0.50 mg/cm²

@ 140 MeV/n

Research Center for Nuclear Physics (RCNP)

T. Wakasa et al., NIM A482 ('02) 79.

E. Ganioğlu et al., Phy. Rev. C 87, 014321 (2013)

Resolution

Deriving B(GT)s I:

Deriving B(GT)s II: Nuclear Mass Dependence of R2

B(GT) Distributions

E. Ganioglu, HST15, Osaka

Cumulative Sum of B(GT)

SM calculations by M. Honma, Aizu Un, Japan

B(M1) [γ-transitions in 47V] v.s. B(GT)

$$\begin{split} B(\text{GT}) &= \frac{1}{(2J_i+1)} \frac{1}{2} \frac{C_{\text{GT}}^2}{(2T_f+1)} [M_{\text{GT}}(\sigma\tau)]^2 & (^3\text{He, t}) \\ B(M1) &= \frac{1}{(2J_i+1)} \frac{3}{4\pi} \mu_N^2 \frac{C_{M1}^2}{(2T_f+1)} & (3He, t) \\ &\times \left[g_\ell^{\text{IV}} M_{M1}(\ell\tau) + g_s^{\text{IV}} \frac{1}{2} M_{M1}(\sigma\tau) \right]^2 \beta^+ \text{decay} & M1 \\ &\times \left[g_\ell^{\text{IV}} M_{M1}(\ell\tau) + g_s^{\text{IV}} \frac{1}{2} M_{M1}(\sigma\tau) \right]^2 \beta^+ \text{decay} & M1 \\ &\text{mixing ratios are small :} & 47 \\ B(M1) \propto \frac{1}{E_\gamma^3} I_\gamma & (\text{T}_{\text{Z}} = +3/2) & (\text{T}_{\text{Z}} = +1/2) \end{split}$$

Comparison of analogous B(M1) and B(GT)

States in ⁴⁷ V		g transitio	ons in ⁴⁷ V	GT transitions to ⁴⁷ V		
Ex (MeV)	Jπ	Eg (MeV)	B(MI) ratio	B(GT) ratio		
0.0	3/2-	4.150	I.00(2)	1.00(1)		
0.0088	5/2 ⁻	4.063	0.79(3)	0.81(13)		
0.146	7/2-	4.004	0.29(2)	0.22(6)		

!Strongest M1 and GT strengths to the g.s of 47V are normalized to unity!

*T.W. Burrows, Nuclear Data Sheets, 108, 923 (2007)

E. Ganioglu, HST15, Osaka

p- p character atractive $47Ti \rightarrow 47V$

p- h character repulsive

Tz=+2 to Tz=+1 GT transitions

Mirror Beta-decay

Conclusion

•In this work the studies of the (³He,t) reaction on Tz=1/2 and 1, have been extended to the Tz = +3/2 and Tz=+2 nuclei and excitation energies of previously known states were reproduced to 5 keV up to 12 MeV.

•Relative intensities of the analogous M1 and GT transitions in the A=47 system are in good agreement.

•Shell model calculations were performed using the GXPF1 interaction. The experimental B(GT) distribution was well reproduced up to 5 MeV.

•A comparison was made of the $T_z = 3/2 \rightarrow 1/2$ GT transitions for ⁴¹K and ⁴⁷Ti nuclei and $T_z = 2 \rightarrow 1$ GT transitions for ⁴⁴Ca and ⁴⁸Ti nuclei. In the ⁴¹K, ⁴⁴Ca (³He,t)⁴¹Ca,⁴⁴Sc spectrum, the GT strengths are concentrated in the region between 4-6 MeV, while in the ⁴⁷Ti(³He,t)⁴⁷V spectrum, they are spread out in energy.

•A comparison was made of the $Tz = 2 \rightarrow 1$ GT transitions for ⁴⁴Ca and ⁴⁸Ti nuclei. In the ⁴⁴Ca(³He,t)⁴⁴Sc spectrum, the GT strengths are concentrated in the region between 2-6 MeV, while in the ⁴⁸Ti(³He,t)⁴⁸V spectrum, they are spread out in energy.

•(³He,t) type reactions with the other stable Ti targets (^{49,50}Ti) are being analysed.

46 Fe	47Fe	48 Fe	49Fe	50 Fe	51Fe	52 7 €	53Fe	54 Fe
45Mn	46Mn	47Mn	48Mn	49Mn	50 M h	51 M n	52Mn	53Mn
44Cr	45Cr	46Cr	47Cr	480	49Cr	50Cr	51Cr	52Cr
43V	4•.V	4 iV		41V	48V	49V	50V	51V
42Ti	43Ti	44Ti	45Ti	46Ti	47Ti	48Ti	49Ti	50Ti
41Sc	42Sc	43Sc	44 Se	45Sc	46Sc	47 Se	48Sc	498c
40Ca	41Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca
39K	40K	41K	42K	43K	44K	45K	46K	47K

AND

E. Ganioglu, HST15, Osaka

Collaborators

<u>H. Fujita², Y. Fujita²</u>, T. Adachi³, A. Algora⁴, M. Csatlos⁵, J. Deaven⁶,
M. Doğan¹, E. Estevez⁴, C. Guess⁶, J. Gulyas⁵, K. Hatanaka³, K. Hirota³,
D. Ishikawa³, A. Krasznahorkay⁵, H. Matsubara³, R. Meharchand⁶,
F. Molina⁴, H. Okamura³, H.J. Ong³, G. Perdikakis⁶, B. Rubio⁴, C.
Scholl⁷, G. Susoy¹, T. Suzuki³, A. Tamii³, J. Thies⁸, R.G.T. Zegers⁶,
J. Zenihiro³

1 Department of Physics, Istanbul University, Istanbul 34134, Turkey 2 Department of Physics, Osaka University, Toyonaka, Osaka 560–0043, Japan 3 Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567–0047, Japan

4*Instituto de Física Corpuscular, CSIC–Universidad de Valencia, E–46071 Valencia, Spain*

5Institute of Nuclear Research of the Hungarian Academy of Sciences P.O.Box 51, H-4001 Debrecen, Hungary

6NSCL, Michigan State University, East Lansing, Michigan 48824–1321, USA 7Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany 8Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany

