Low-Energy Super GT state observed in the high resolution ¹⁸O(³He,t) measurement at 0-degree

Hirohiko Fujita (RCNP, Osaka)

2015/11/16-19, "High-resolution Spectroscopy and Tensor interactions", HST15

Experiment

¹⁸O(³He,t) measurement at 0-degree

Spectrometer angle : 0-degree

: 140 MeV/nucleon

Target

FP Detector

- : Gas target system[†], with Aramid foil
- : Two VDCs (X+U) and two plastics

Incident energy

Beam transport : Lateral and angular dispersion matching

Vertical scatt. angl. : Over-focus mode^{††}

[†] H. Matsubara et. al., NIM A678, 122 (12), ^{††}H. Fujita et, al., NIM A469, 55 (01)

Spectrum

Absolute B(GT) values from β -decay

	¹⁸ F β-decay (J coupling factor considered)	¹⁸ Ne β-decay
g.s., 1+	3.092(16)	3.11(3)
IAS, 0+		2.1(2)
1+, 1.701		0.130(5)

B(GT) distributions

B.D. Anderson et al., PRC 27, 1387 (83), I.J. van Heerden et al., PRC 59, 1488 (1999)

Shell-model calculation

Code : Nushell

Interaction : WBP (SPSDPF), USDA, USDB (SD)

Similar results were obtained in all calculations, in which strong concentration to the 1st 1+ state was found.

Shell-model calculation

RPA calculation

K. Yoshida, Niigata Univ., private communication

Low-Energy Super GT state in the ⁴²Ca(³He,t) data[†]

FIG. 1. (Color online) The 0°, 42 Ca(3 He, t) 42 Sc spectrum on two scales. The events within the range of scattering angles $\Theta \le 0.5^{\circ}$ are included. (a) The full count range spectrum. Two prominent peaks are observed in the low-energy region and less prominent ones up to 4 MeV. (b) The vertical scale is magnified by a factor of 24. A fine structure of many states is observed up to $E_x = 12.7$ MeV. Major states populated in $\Delta L = 0$ transitions ($\Delta L = 0$ states) below 7 MeV are indicated by their excitation energies in MeV. The $\Delta L = 0$ states in the region above 7 MeV are indicated in Fig. 5(a) in Sec. IV.

[†] Y. Fujita et al., PRC 91, 064316 (15)

Specific character of p-p type (closed core + two valences) structure?

Shell-model calculation suggests all possible configurations work constructively.

HIGH-RESOLUTION STUDY OF GAMOW-TELLER ...

PHYSICAL REVIEW C 91, 064316 (2015)

TABLE VI. Results of the *pf*-shell SM calculation using the GXPF1J interaction. The matrix elements M(GT) of GT transitions exciting individual $J^{\pi} = 1^+$ GT states in ⁴²Sc from the g.s. of ⁴²Ca are shown for each configuration. The results are shown for all excited GT states predicted in the region up to 9.82 MeV. The notation $f7 \rightarrow f7$, for example, stands for the transition with the $vf_{7/2} \rightarrow \pi f_{7/2}$ type and $p3 \rightarrow p3$ the $vp_{3/2} \rightarrow \pi p_{3/2}$. The summed value of the matrix elements is denoted by $\Sigma M(GT)$ and its squared value is the B(GT), where the B(GT)values do not include the quenching factor of the SM calculation.

States in ⁴² Sc		Configurations					Transition strengths		
$\overline{E_x}$ (MeV)	T	$\overline{f7 \rightarrow f7}$	$f7 \rightarrow f5$	$f5 \rightarrow f7$	$p3 \rightarrow p3$	$p3 \rightarrow p1$	$p1 \rightarrow p3$	$\Sigma M(GT)$	B(GT)
0.33	0	1.383	0.548	0.063	0.031	0.024	0.016	2.07	4.28
4.41	0	0.719	-0.742	-0.085	-0.079	-0.073	-0.048	-0.31	0.09
7.41	0	0.193	-0.788	-0.090	0.142	0.060	0.040	-0.44	0.19
8.62	0	-0.151	0.385	0.044	0.109	-0.071	-0.047	0.30	0.09
9.82	1	0.0	1.196	-0.137	0.0	-0.053	0.035	1.04	1.08

B(GT) values from the ¹⁷O(p,n) data[†]

Jp and Ex	B(GT)
5/2+, g.s.	1.062 (F subtracted)
3/2+, 5.00	0.57

FIG. 5. Double-differential cross sections as a function of excitation energy for the ¹⁷O(\vec{p},\vec{n}) reaction at $\theta = 0^{\circ}$ (top panel) and product of double-differential cross sections and D_{NN} coefficients binned in 0.5 MeV steps (bottom panel).

[†] I.J. van Heerden et al., PRC 59, 1488 (1999)

B(GT) in A=18 and A=17

¹⁷ O(p,n) ¹⁷ F	¹⁸ O(³ He,t) ¹⁸ F (present data)			
5/2+, B(GT) = 1.062	1st 1+, B(GT) = 3.09			
3/2+, B(GT) = 0.57	2nd 1+, B(GT) = 0.17			
	3rd 1+, B(GT) = 0.17			
Total B(GT) = 1.63	1st + 2nd = 3.26			
promising?				

Sum of B(GT) values of the 1st and 2nd 1+ states in ${}^{18}O \rightarrow {}^{18}F$ is exactly twice of ${}^{17}O \rightarrow {}^{17}F$ 1st and 2nd B(GT).

By combining these two states in ¹⁷F, can the 1st and 2nd 1+ states in ¹⁸F be reconstructed? (Low-lying 1+ states in ¹⁸F <=> Low-lying states in ¹⁷F?)

A=18 and A=17 systems

A=18 and A=17 systems

Destructive partner state?

A=18

WBP	$d_{5/2} \rightarrow d_{5/2}$	$d_{3/2} \rightarrow d_{5/2}$	$d_{5/2} \rightarrow d_{3/2}$	$d_{3/2} \rightarrow d_{3/2}$	$2s_{1/2} \rightarrow 2s_{1/2}$	Sum	B(GT)
1+ ₁ , Strong	-0.7948	-0.2330	-0.6905	0.0001	-0.5318	-2.250	5.062
1+2	-1.082	0.0220	0.0652	-0.017	0.4818	-0.5309	0.2818
1+3	-0.2391	0.2417	0.7164	-0.0192	-0.6166	0.0831	0.0069

HIGH-RESOLUTION STUDY OF GAMOW-TELLER ...

PHYSICAL REVIEW C 91, 064316 (2015)

TABLE VI. Results of the *pf*-shell SM calculation using the GXPF1J interaction. The matrix elements M(GT) of GT transitions exciting A=42GT states in ⁴²Sc from the g.s. of ⁴²Ca are shown for each configuration. The results are shown for all excited GT states in up to 9.82 MeV. The notation $f7 \rightarrow f7$, for example, stands for the transition with the $vf_{7/2} \rightarrow \pi f_{7/2}$ type and $p3 \rightarrow p3$ values do not include the quenching factor of the SM calculation.

States in 4	in ⁴² Sc Configurations					Transition strengths			
E_x (MeV)	T	$\overline{f7 \rightarrow f7}$	$f7 \rightarrow f5$	$f5 \rightarrow f7$	$p3 \rightarrow p3$	$p3 \rightarrow p1$	$p1 \rightarrow p3$	$\Sigma M(GT)$	B(GT)
0.33	0	1.383	0.548	0.063	0.031	0.024	0.016	2.07	4.28
4.41	0	0.719	-0.742	-0.085	-0.079	-0.073	-0.048	-0.31	0.09
7.41	0	0.193	-0.788	-0.090	0.142	0.060	0.040	-0.44	0.19
8.62	0	-0.151	0.385	0.044	0.109	-0.071	-0.047	0.30	0.09
9.82	1	0.0	1.196	-0.137	0.0	-0.053	0.035	1.04	1.08

Further application : ¹⁶O + two holes

Abnormally weak GT transition, ${}^{14}C \rightarrow {}^{14}N$

 ^{14}C g.s. (0+) \rightarrow ^{14}N g.s. (1+), known as "abnormally weak" GT transition

 $(T_{1/2} \sim 5700(30) \text{ years, B(GT)} \sim 0)$

[†] B.D. Anderson et al., PRC 43, 1630 (1991)

In and Ex	Proliminary R(CT)				
		.In and	Fx	B(GT)	
1/2 0.6	0.26 from ¹⁵ O B decay			В(СТ)	
1/2-, y.s.		1+ 0.9	2	~0	
2/2 6 176	$1.00 (D^2 - 5.46 accurace)$	1 [,] 1 [,] 9.	5.	0	
3/2-, 0.170	1.09 (R = 5.40 assumed)	1+ 30	18	28	
Tatal	1.25	1 ⁻ ₂ , 3.9			
i otai	1.35				

Summary

High resolution ¹⁸O(³He,t) measurement at 0-degree

- Gas target system was used
- Resolution of 31 keV was realized

Strong concentration of GT strength to the g.s. was found

Low-Energy Super Gamow-Teller (LESGT) state

 \triangleright Quite similar to the A=42 (⁴⁰Ca + 2n) case

Strong T=0 pairing interaction?

Reconstruction of the LESGT state

- LESGT state has a "destructive partner" state?
- ▷ Similar application to the A=14 system (and A=38, 42, ...)?

$\Delta L>0$ resonance? (Optional)

B(GT) reconstruction (Optional)

 $B(\mathrm{GT})_1 = |\langle \phi_1 | \sigma \tau | i \rangle|^2 \qquad B(\mathrm{GT})_2 = |\langle \phi_2 | \sigma \tau | i \rangle|^2$

 $B(\mathrm{GT})_a + B(\mathrm{GT})_b = \left| \langle \phi_a | \sigma \tau | i' \rangle \right|^2 + \left| \langle \phi_b | \sigma \tau | i' \rangle \right|^2$ $= \left|2\alpha \left\langle \phi_{1}^{\prime} | \sigma \tau | i^{\prime} \right\rangle + 2\beta \left\langle \phi_{2}^{\prime} | \sigma \tau | i^{\prime} \right\rangle\right|^{2} + \left|2\beta \left\langle \phi_{1}^{\prime} | \sigma \tau | i^{\prime} \right\rangle - 2\alpha \left\langle \phi_{2}^{\prime} | \sigma \tau | i^{\prime} \right\rangle\right|^{2}$ $= (4\alpha^{2} + 4\beta^{2}) |\langle \phi_{1}' | \sigma \tau | i' \rangle|^{2} + (4\alpha^{2} + 4\beta^{2}) |\langle \phi_{2}' | \sigma \tau | i' \rangle|^{2}$ $= 2 |\langle \phi_1' | \sigma \tau | i' \rangle|^2 + 2 |\langle \phi_2' | \sigma \tau | i' \rangle|^2 \qquad (2\alpha^2 + 2\beta^2 = 1)$ if $|\langle \phi_1' | \sigma \tau | i' \rangle|^2 = |\langle \phi_1 | \sigma \tau | i \rangle|^2$ and $|\langle \phi_2' | \sigma \tau | i' \rangle|^2 = |\langle \phi_2 | \sigma \tau | i \rangle|^2$, $= 2 (B(GT)_1 + B(GT)_2)$

T=1 states? (Optional)

T=1 states? (Optional)

Present data		(p,n) a	at 135 MeV (p,n) a		at 118 MeV	
Ex	B(GT)	Ex	B(GT)	Ex	B(GT)	
9.65	0.053(4)					
9.91	0.077(5)	9.9	0.059	9.9	0.15(2)	
10.88	0.25(2)	10.9	0.088	11.1	0.19(3)	
11.94	0.17(1)	11.9	0.064	12.0	0.12(2)	

Scattering angle calibration (Optional)

Left : Theta at the target - Y in the focal plane

Right : Theta at the target - Phi at the target

Focal plane correction (Optional)

Left : X - Theta 2-D plot before correction

Right : After correction

BG subtraction (Optional)

2014/12/25 18.00

BG subtraction (Optional)

2014/12/25 18.01

BG subtraction (Optional)

2014/12/25 17.59

Gamow-Teller transition from ¹⁸O

Simple structure : ¹⁶O + 2n,
Gamow-Teller transition :
$$d_{5/2} \rightarrow d_{5/2}$$
 and $d_{5/2} \rightarrow d_{3/2}$