

## High-Resolution Spectroscopy in chargeexchange reactions with rare-isotope beams Applications to weak-reaction rates for astrophysics

## Remco G.T. Zegers

For the NSCL Charge-Exchange group and Collaborators









# NSCL charge-exchange group program

Charge-exchange experiments with different probes for a variety of objectives:

#### Astrophysics – weak reaction rates

- (Neutrinoless) Double beta decay
- Shell evolution in light systems
- Giant resonances and the macroscopic properties of nuclear matter
- Novel probes for isolating particular multipole responses
- Studies of the charge-exchange reaction mechanism

#### Core-Collapse Supernovae: a multi-physics problem

Hydrodynamics – Convection, Turbulence



Müller, E. and Janka, H.-T. A&A 317, 140–163, (1997)



Fryer, C. L., & Warren, M. S. 2002, ApJ, 574, L65



Pugmire et al., ORNL

Multi-Dimensional Effects - Asymmetries

Neutrino physics (transport/ oscillations / interactions)

#### Magnetic fields

#### r-process



P. Cottle Nature 465, 430–431 (2010)

electron captures K. Langanke, Physics 4, 91 (2011)



"Despite experimental and theoretical progress, lack of knowledge of relevant or accurate weak-interaction data still constitutes a major obstacle in the simulation of some astrophysical scenarios today."

K. Langanke and G. Martinez-Pinedo, RMP 75, 819 (2003).

### electron captures



Daughter (Z,A)

Dominated by allowed (Gamow-Teller) weak transitions between states in the initial and final nucleus:

- No transfer of orbital angular momentum ( $\Delta L=0$ )
- Transfer of spin (△S=I)
- Transfer of isospin ( $\Delta T=I$ )

Due to finite temperature in stars, Gamow-Teller transitions from excited states in the mother nucleus can occur

Direct empirical information on strength of transitions [B(GT)] is limited to low-lying excited states e.g. from the inverse ( $\beta$ -decay) transitions, if at all

In astrophysical environments, typically EC on many nuclei play a role – we need accurate theories to estimate the relevant rates, benchmarked by experiments

Mother (Z+I,A)



# calibrating the proportionality



The unit cross section is conveniently calibrated using transitions for which the Gamow-Teller strength is known from  $\beta$ -decay.

The unit cross section depends on beam energy, charge exchange probe and target mass number: empirically, a simple mass-dependent relationship is found for given probe

Once calibrated, Gamow-Teller strengths can be extracted model-independently.





## Producing a triton beam for $(t, {}^{3}He)$ experiments



# Multipole decomposition



C. Guess et al., Phys. Rev. C 80, 024305 (2009)

#### (t,<sup>3</sup>He) at the S800 spectrometer

• dispersion matching: ~3 MeV  $\Delta E_{triton} \Rightarrow \sigma_E(t, {}^{3}He) \sim 250 \text{ keV}$ • raytracing with 5<sup>th</sup> order map ~1° angular resolution



High momentum

Non-dispersive defocusing of the beam to increase angular resolution Improves angular resolution to  $\sim 0.5^{\circ}$ .





# Theoretical weak reaction rates

weak rate library: Sullivan et al. arXiv: 1508.07348, Ap. J. to be published



# Theoretical weak reaction rates

weak rate library: Sullivan et al. arXiv: 1508.07348, Ap. J. to be published



# Excitation energy and resolution



At different astrophysical densities and temperatures, different ranges in excitation energy contribute to the weak reaction rates

Fermi energy:

$$U_F(T=0) = 0.511 \left[ \left( 1.018(\rho_6 Y_e)^{\frac{2}{3}} + 1 \right) - 1 \right]$$

Degeneracy:

 $U_F/k_BT$ 

Low density: e-captures on low-lying states High density: e-captures up to high  $E_x$ 

Low temperature: Fermi surface cut off sharply High temperature: Fermi surface smeared out

At low densities/temperature, accurate knowledge of low-lying states is critical, even if transitions are week

## Benchmarking the library & guiding the theory



# **Electron-capture rates**





# <sup>56</sup>Ni-understanding the model differences development of (p,n) in inverse kinematics



#### See talk by M. Sasano

S800 spectrometer Low-Energy Neutron Detector LH<sub>2</sub> target



# Searches for very weak transitions Development of (t,<sup>3</sup>He+ $\gamma$ ) reaction using S800+GRETINA



See talk by S. Noji





#### EC Sensitivity studies – core-collapse supernovae

C. Sullivan et al., arxiv: 1508.07348 – Ap. J.

- NSCL created weak rate library (as part of NuLIB) for astrophysical simulations Collaboration between NSCL charge-exchange group and E. O'Connor (NCSU)
- Library allows for electron-capture sensitivity studies: first applied for core-collapse supernovae using the GRID code further uses in simulations of thermonuclear supernovae and neutron-star crusts foreseen
- Work on  $\beta^{\text{-}}$  rates and  $\nu\text{-scattering}$  rates should be included



#### **GRID** simulations of core-collapse supernovae



GRID simulations and sensitivity studies: uncertainties in EC rates have 20% effects on key properties of corecollapse supernovae



# Theoretical weak reaction rates

weak rate library: Sullivan et al. arXiv:1508.07348, Ap. J. to be published

- Additional studies will be pursued
  - 2D simulations of CCSN using GRID output as input to FLASH
  - Thermonuclear supernovae
- Additional input to library sought also need constraints on  $\beta^{-}$  strengths





# (d,<sup>2</sup>He) in inverse kinematics? Use Active Target Time Projection Chamber at S800



From recent <sup>46</sup>Ar+p resonant scattering experiment AT-TPC was used reaccelerated beam of <sup>46</sup>Ar isotopes

# A High-Rigidity Spectrometer for FRIB



Magnetic bending power: up to 8 Tm

Large momentum (10% dp/p) and angular acceptances (80x80 mrad) Particle identification capabilities extending to heavy masses (~200) Momentum resolution 1 in 5000; intermediate image after sweeper Invariant mass spectroscopy:  $\pm 6^{\circ}$  opening in sweeper dipole for neutrons

# Facility for Rare Isotope Beams (FRIB)









October 2015

