# Pionic and Tensor Correlations Studied by High Resolution and Polarization Transfer Measurements

Tomotsugu Wakasa for the RCNP WS-BL, NPOL3, E155, and E367 collaborations Department of Physics, Kyushu University

# Outline

### Spin-isospin responses and residual interactions

- Short-range correlations  $\rightarrow$  GTR
- Pionic correlations → Significantly attractive at large q ?
- Tensor correlations → Significant effects on QES and SDR ?

# *High-resolution Spectroscopy* for <sup>16</sup>O(p,p')

- Construction of WS beam line for dispersion matching
  - Pure pionic  $0^-$  state was separated with  $\Delta E=40$  keV resolution
- Precursor of pion condensation in pure pionic 0<sup>-</sup> state

### Tensor correlations in SDR for <sup>208</sup>Pb(p,n)

- Spin-parity decomposition ( $J^{\pi} = 0^{-}$ ,  $1^{-}$ ,  $2^{-}$ ) of SD strengths
  - Complete polarization transfer data were measured
- J<sup>π</sup>-dependent tensor force effects on SD strengths

# Summary

# Spin-isospin modes in nuclei

# Spin-isospin responses have been widely studied by

- GT/M1 at q  $\sim$  0 and small  $\omega$ 
  - (p,n), (<sup>3</sup>He,t), (p,p')
- SDR at small q and small  $\omega$ 
  - (p,n), (d,<sup>2</sup>He)
- QES at large q (1 $\sim$ 2 fm<sup>-1</sup>) and medium  $\omega$ 
  - (p,n)
- Spin-longitudinal at wide q and small  $\omega$ 
  - (p,n), (p,p') [dispersion matching]
- Pionic atoms at small q and large  $\omega$  (m $_{\pi}$ )
  - (d,<sup>3</sup>He), (p,<sup>2</sup>He)

# In progress

Spin-isospin responses in unstable nuclei



Goal: Understand spin-isospin responses in wide  $(q,\omega)$  in a unified way

- Pionic correlations at large q
- Tensor correlations in wide q

This talk (based on RCNP high-res./pol. data)

# **Pionic enhancement in QES**

T.N.Taddeucci et al., PRL 73, 3516 (1994)./T.W. et al., PRC 59, 3177 (1999)

# Effective interaction at large q

- Attractive spin-longitudinal V<sub>L</sub>
  - Especially for N $\Delta$  with small g'<sub>N $\Delta$ </sub>

### Quasi-elastic scattering at large q

- Spin-longitudinal (π) mode
  - **Enhancement** by attractive  $\pi$ -corr.
- Spin-transverse (ρ) mode
  - Quenching by repulsive ρ-corr.

# RCNP/LAMPF data at q=1.7fm<sup>-1</sup>

- Spin-longitudinal mode
  - Exp. = RPA > Free (w/o corr.)
  - Pionic enhancement in nuclei
- Spin-transverse mode
  - Exp. > Free > RPA
  - Attractive *ρ*-correlations?



# New experiment for pionic correlations

### Results of quasi-elastic scattering

- Enhancement of spin-longitudinal OK
- Quenching of spin-transverse
   NG
- Is enhancement really due to attractive pionic correlations ?
  - Spin-longitudinal/transverse modes were separated with D<sub>ij</sub>
  - Simple reaction mechanism was assumed → more systematic data desired

### New experiment at RCNP

- Measure  $\sigma$  of  ${}^{16}O(p,p'){}^{16}O(0^-,T=1)$ 
  - **Pure spin-longitudinal mode**  $\rightarrow$  Separation with D<sub>ij</sub> is not required
  - Require  $\Delta E \sim 40$  keV for separating 0<sup>-</sup> state from other states
    - Beam energy spread is typically  $\sim$ 100 keV
    - Dispersion matching is required to cancel the effect of beam energy spread

# WS beam line at RCNP (2000 $\sim$ )



# Pionic enhancement in <sup>16</sup>O(p,p')<sup>16</sup>O(0<sup>-</sup>,T=1)

### Isovector $J^{\pi}=0^{-}$ excitations

- Carry  $\pi$ -like quantum number
- Pure information on pionic mode

Experiment: <sup>16</sup>O(p,p')<sup>16</sup>O(0<sup>-</sup>,T=1)

- $\Delta E = 30 \text{ keV}$  by dispersion matching
  - Clearly resolve 0<sup>-</sup> state
- $q_{c.m.} = 0.9 2.1 \text{ fm}^{-1}$

# Comparison with theory

- Blue : without correlation (Free)
  - Significant enhancement
- Red : with RPA correlation

#### Data supports pionic enhancement

• Signature of *precursor for pion condensation* in pure pionic mode



# Possible origin for spin-transverse enhancement

Pionic enhancement has been confirmed in pure pionic <sup>16</sup>O(p,p')<sup>16</sup>O(0<sup>-</sup>,T=1)

- · Consistent with spin-longitudinal enhancement in quasi-elastic scattering
- Spin-longitudinal ( $\pi$ ) mode could be understood in a standard model ( $\pi$ + $\rho$ +g')

### Experimental spin-longitudinal/transverse separation is reasonable

• Spin-transverse (p) mode in quasi-elastic scattering is *enhanced (not quenched)* 

### **Possible origin/explanation**

- Attractive interaction
- Tensor correlations



# **Short-range tensor correlations**

C.J.Horowitz et al., PRC 50, 2540 (1994) / M.Ichimura et al., PPNP 56, 446 (2006).

20

40

Energy transfer  $\omega$  (MeV)

80

100

120



• Under-estimation at large  $\omega$  would be 2p2h effects

# Short-range tensor correlations in QES

# Short-range tensor h'

- Determined by (e,e') response
- Parameter-free calculations

# Spin-longitudinal (π) mode

- g' (central) values are adjusted within errors
  - $g'_{NN} = 0.6 \rightarrow 0.5$
  - $g'_{N\Delta} = 0.35 \rightarrow 0.2$
- π + g'(less repulsive) + h'(repulsive)
  - Net attractive effects for π-mode
  - Enhancement of π-mode
- Spin-transverse (p) mode
  - ρ + g'(less repulsive) + h'(attractive)
    - Repulsive effects by g' are *cancelled* by h'
    - Weak enhancement of p-mode

![](_page_9_Figure_15.jpeg)

Short-range tensor correlations can provide better descriptions for QES at large q • Discrepancy at large  $\omega \rightarrow$  Higher order effects not included by h'?

# Tensor correlation effects on SDR

# Spin-dipole resonance (SDR)

- Three different J<sup>π</sup>
  - 0<sup>-</sup> : Pure spin-longitudinal
  - 1<sup>-</sup>: Pure spin-transverse
  - 2<sup>-</sup> : mixed
- Typical q  $\sim$  0.4 fm<sup>-1</sup> (<sup>208</sup>Pb)
  - Tensor correlations might be important

### **Tensor correlations**

$$h'S_{12}(\hat{q}) = \frac{2h'(\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q})}{longitudinal(\pi)}$$

$$-h'(\sigma_1 imes \hat{q})(\sigma_2 imes \hat{q})$$

- Spin-longitudinal : repulsive
  - Hardening for 0<sup>-</sup>
- Spin-transverse : attractive
  - Softening for 1<sup>-</sup>

 $J^{\pi}$  dependent effects by tensor correlations are expected in SDR

![](_page_10_Figure_16.jpeg)

# Tensor force effects on SD strengths

#### $\alpha_T > 0$ **Tensor force/correlation** 40 T = U = 0h' treats tensor force for np (n-particle/p-hole) $\mathbf{0}^{-}$ w/o tensor 30 • How about tensor force effects for nn/pp? T = 50020 II = 0<u></u>Вт > HF+RPA prediction for <sup>208</sup>Pb T = 650U = 20010 Strength (fm<sup>2</sup>/MeV) RPA : Tensor effects depend on $J^{\pi}$ <sup>208</sup>Pb $V^T \propto \underline{\beta_T} + \underline{\alpha_T}$ 80 60 β<sub>T</sub> > 0 for *np* for *nn/pp* 40 20 h'60 SD 2 $a_T > 0$ $\beta_T > 0$ $\alpha_T < 0$ 40 hardening softening 0hardening 20 1softening insensitive insensitive 2-20 30 40 10 Energy transfer $\omega$ (MeV)

Separated SD strengths would constrain both  $\alpha_T$  and  $\beta_T$  (nn/pp and np)

# This "experimental" work for <sup>208</sup>Pb(p,n)

# New data and analysis for <sup>208</sup>Pb(p,n)

- Cross sections and analyzing powers at  $\theta = 0.0^{\circ} \sim 10.0^{\circ}$  (11 angles)
- Complete sets of polarization transfers at  $\theta = 0.0^{\circ} \sim 7.0^{\circ}$  (5 angles)

# Goal

- Spin-parity J<sup>π</sup> separated SD strengths for <sup>208</sup>Pb
  - Distribution of separated SD strengths
    - Tensor correlation effects on SD strengths

# Tools

- Polarization transfer D<sub>i</sub>j
  - Sensitive to  $\Delta J^{\pi}$  (0<sup>-</sup>, 1<sup>-</sup>, 2<sup>-</sup>)  $\rightarrow$  advantage to high-resolution (<sup>3</sup>He,t)
- Multipole decomposition analysis (MDA) with polarization transfer D<sub>ij</sub>
  - Based on reliable DWIA+RPA calculations

# Experimental scheme and approach

Ring Cyclotron Facility @ RCNP, Osaka

![](_page_13_Picture_2.jpeg)

100m TOF tunnel NPOL3

![](_page_13_Picture_4.jpeg)

**Beam Swinger System** 

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

**Ring Cyclotron** 

![](_page_13_Picture_9.jpeg)

**AVF Cyclotron** 

# SOL1 & SOL2

# **300 MeV polarized protons**

Smallest distortion

# **Beam polarization**

- Controlled by two solenoids
- Measured by two BLPs (p+p)

#### **Beam swinger**

•  $\Theta = 0^\circ - 10^\circ$ 

### **Neutron measurement**

- NPOL3 with 70m TOF
- D<sub>ij</sub> measurement with NSR

Experimentally identify  $J^{\pi}$  from cross section  $\sigma(\theta)$  and spin transfer  $D_{ij}(\theta)$ 

# Separation of SDR into each $J^{\pi}$

# Separation of SDR (L=1) into 0<sup>-</sup>, 1<sup>-</sup>, 2<sup>-</sup> is important

- Tensor effects depends on  $J^{\pi}$ 

### Normal multipole decomposition

- Separate into each L component
  - Works very well to extract GT (L=0)
- Could NOT separate into  $J^{\pi}$  with same L
  - Angular distributions are governed by L

### Idea to separate SDR into each $J^{\pi}$

- Polarization observables are sensitive to  $J^{\pi}$
- Separate c.s. into longitudinal (π) transverse (ρ)
  - O<sup>-</sup>: Spin-longitudinal (π) only
  - 1<sup>-</sup>: Spin-transverse (ρ) only
  - 2<sup>-</sup>: Both

![](_page_14_Figure_14.jpeg)

![](_page_14_Figure_15.jpeg)

# Results of multipole (L and J<sup>π</sup>) decomposition for <sup>208</sup>Pb

![](_page_15_Figure_1.jpeg)

# **Tensor force effects on SDR**

![](_page_16_Figure_1.jpeg)

# **Conclusion and Outlook**

### Correlations in spin-isospin responses at large q

- Signature of pionic enhancement a precursor of pion condensation
  - Pure  $\pi$ -mode in <sup>16</sup>O is separated experimentally by dispersion matching technique
- Enhancement in spin-transverse mode is partly explained by short-range tensor h'
- SDR strength
  - First exp./theor. findings for tensor force effects in GR
  - Softening effect for 1-
    - Positive  $\beta_T \sim 200$  [MeV fm<sup>5</sup>] tensor force for np
  - Small effect for 0<sup>-</sup>
    - **Positive**  $a_T \sim 100$  [MeV fm<sup>5</sup>] tensor force for nn/pp
  - Similar to  $\beta_T$ =238 [MeV fm<sup>5</sup>] and  $\alpha_T$ =135 [MeV fm<sup>5</sup>] by low-q limit of G-matrix calc.
- Outlook
  - Systematic measurements of SDR (in neutron-proton asymmetric nuclei, isospin dep.)
  - Absolute values for SD strengths
    - Sum-rule will give information on neutron skin and/or quenching
    - Calibration of  $\,\hat{\sigma}_{
      m SD}\,$  with RI beams