Studies of Gamow-Teller transitions using Weak and Strong Interactions

High-resolution Spectroscopy & Tensor Interaction

@ Nakanoshima, OsakaNov. 16 – Nov. 19, 2015

Yoshitaka FUJITA RCNP, Osaka Univ.

Neptune driving Waves

Neptune = weak interaction β decay

Powerful Waves = strong interaction) Charge-Exchange Reaction

Neptune and the waves, or "steeds," he rides.

Walter Crane, 1892

Gamow-Teller transitions

Mediated by \mathfrak{OT} operator: both S &W int. has this *Op*. $\Delta S = -1, 0, +1 \text{ and } \Delta T = -1, 0, +1$ ($\Delta L = 0$, no change in radial w.f.) \rightarrow no change in spatial w.f. Accordingly, transitions among $j_>$ and $j_<$ configurations $j_> \rightarrow j_>, \quad j_< \rightarrow j_<, \quad j_> \leftarrow \rightarrow j_<$ example $f_{7/2} \rightarrow f_{7/2}, \quad f_{5/2} \rightarrow f_{5/2}, \quad f_{7/2} \leftarrow \rightarrow f_{5/2}$

Note that Spin and Isospin are unique quantum numbers in atomic nuclei !

➔ GT transitions are sensitive to Nuclear Structure !

→ GT transitions in each nucleus are UNIQUE !

**Basic common understanding of β-decay and Charge-Exchange reaction

β decays : Absolute B(GT) values, but usually the study is limited to low-lying states (p,n), (³He,t) reaction at 0°: Relative B(GT) values, but Highly Excited States

** Both are important for the study of GT transitions!

B-decay & Nuclear Reaction

= reaction mechanism

x operator

*At intermediate energies $(100 < E_{in} < 500 \text{ MeV})$ $\rightarrow d\sigma/d\omega(q=0)$: proportional to B(GT)

 $=(matrix element)^2$

***Isospin Symmetry

an important idea to see the connection of decays and excitations caused by Strong, EM and Weak interactions !

There are many cases that the "operators" are the same in transitions caused by "strong," "EM" and "weak" int.

T=1/2 Isospin Symmetry

Koelner Dom Koeln, Germany (157m high)

7=1/2 Mirror Nuclei : Structures & Transitions

Analogous relationship: A=9, 13 system $\frac{3/2^{-}}{14.66}$ T = 3/2

*Small isospin asymmetry can be seen for $T_z=+3/2 \rightarrow +1/2$ and $T_z=-1/2 \leftarrow -3/2$ GT transitions.

**GT transitions in each nucleus are UNIQUE !

- *pf*-shell nuclei -

GSI RISING set up

Active Beam Stopper Campaign July-August, 2007

SM Configurations of GT transitions

particle-hole configuration

- + IV-type int.
- = REPULSIVE

SM Configurations of GT transitions

SM Configurations of GT transitions

particle-particle int. (attractive) (IS p-n int. is attractive)

olsoscalar interaction can play important roles ! particle-hole int. (repulsive)

QRPA cal. including IS int.												
\frown			Bai, Sagawa	, Colo et al., PRC 90 (2014) 054335								
f	Bnp											
0	1.34											
	neutron	proton	(Xupvn+Yunvp) (Xupvn+Yunvp)* <p gt n></p gt n>									
	1f7/2	1f7/2	0.427	1.3689								
0.5	2.051											
	1f7/2	1f7/2	0.432	1.384								
	r	r										
1	4.75		Configurations									
	1f5/2	1f7/2	0, 053	are in phase! 0, 2158								
	1f7/2	1f5/2	0. 129	0.474								
	1f7/2	1f7/2	0.33	1 059								
	111/2	111/2	0.00	1.000								
Low-energy collective GT excitation !												
	(collectivity is from IS p-n int. !)											

42Ca→42Sc:

Shell Model Cal.: Transition Matrix Elements

TABLE VI. Results of the <u>*pf*-shell SM calculation</u> using the GXPF1J interaction. The matrix elements M(GT) of GT transitions exciting individual $J^{\pi} = 1^+$ GT states in ⁴²Sc from the g.s. of ⁴²Ca are shown for each configuration. The results are shown for all excited GT states predicted in the region up to 9.82 MeV. The notation $f7 \rightarrow f7$, for example, stands for the transition with the $vf_{7/2} \rightarrow \pi f_{7/2}$ type and $p3 \rightarrow p3$ the $vp_{3/2} \rightarrow \pi p_{3/2}$. The summed value of the matrix elements is denoted by $\Sigma M(GT)$ and its squared value is the B(GT), where the B(GT)values do not include the quenching factor of the SM calculation.

States in ⁴² Sc		Configurations							Transition strengths	
E_x (Me	eV) T	$f7 \rightarrow f7$	$f7 \rightarrow f5$	$f5 \rightarrow f7$	$p3 \rightarrow p3$	$p3 \rightarrow p1$	$p1 \rightarrow p3$	$\Sigma M(GT)$	B(GT)	
0.33	1 + ₁ 0	1.383	0.548	0.063	0.031	0.024	0.016	2.07	4.28	
4.41	0	0.719	-0.742	-0.085	-0.079	-0.073	-0.048	-0.31	0.09	
7.41	0	0.193	-0.788	-0.090	0.142	0.060	0.040	-0.44	0.19	
8.62	0	-0.151	0.385	0.044	0.109	-0.071	-0.047	0.30	0.09	
9.82	1	0.0	1.196	-0.137	0.0	-0.053	0.035	1.04	1.08	
		=	Matrix	Eleme	ents ar	e in-p	hase !			

Super-Multiplet State

*proposed by Wigner (1937)

In the limit of null *L* ·S force, SU(4) symmetry exists. We expect:

- a) GT excitation strength is concentrated in a low-energy GT state.
- b) excitation energies of both the IAS and the GT state are identical.

→ Super-Multiplet State

 In ⁵⁴Co, we see a broken SU(4) symmetry.
 In ⁴²Sc, we see a good SU(4) symmetry.
 → attractive IS residual int. restores the symmetry !
 → 0.611 MeV state in ⁴²Sc has a character close to Super-Multiplet State !
 We call this state the Low-energy Super GT state !

***from p-p to p-h configuration

LESGT stae → GTR structure in A= 42 to 48 Ca isotopes

particle-particle int. (attractive) — particle-hole int. (repulsive)

⁴²Ca(³He,t)⁴²Sc

⁴⁴Ca(³He,t)⁴⁴Sc

⁴⁸Ca(³He,t)⁴⁸Sc

Summary

 $GT(\sigma\tau)$ operator : a simple operator ! * GT transitions: sensitive to the structure of |i> and |f> High resolution of the (³He,t) reaction * Fine structures of GT transitions Mirror β decays and Isospin Symmetry * Giving the Absolute GT strength → GT transitions in each nucleus are UNIQUE ! Low-energy Super GT state (LESGT state) \rightarrow Assuming T-symmetry \rightarrow GT in unstable nuclei !

We can learn a lot by the comparison of analogous GT transitions !

GT-study Collaborations

Bordeaux (France) : β decay GANIL (France) : β decay Gent (Belgium) : (³He, t), (d, ²He), (γ , γ '), theory GSI, Darmstadt (Germany) : β decay, theory **ISOLDE, CERN** (Switzerland) : β decay iThemba LABS. (South Africa) : (p, p'), (³He, t) Istanbul (Turkey): (³He, t), β decay Jyvaskyla (Finland) : β decay Koeln (Germany) : γ decay, (³He, t), theory KVI, Groningen (The Netherlands) : (d, ²He) Leuven (Belgium) : β decay LTH, Lund (Sweden) : theory Milano : theory Osaka University (Japan) : (p, p'), (³He, t), theory RIKEN : β decay, theory Surrey (GB) : β decay TU Darmstadt (Germany) : (e, e'), (³He, t) Valencia (Spain) : β decay Michigan State University (USA) : theory, (t, ³He) Muenster (Germany) : $(d, {}^{2}He), ({}^{3}He,t)$ Univ. Tokyo and CNS (Japan) : theory, β decay

Advertisement

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Spin-isospin excitations probed by strong, weak and electro-magnetic interactions

Y. Fujita ^{a,*}, B. Rubio ^b, W. Gelletly ^c

^a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ^b IFIC, CSIC-University of Valencia, E-46071 Valencia, Spain
 ^c Department of Physics, University of Surrey, Guildford GU27XH, Surrey, UK

PPNP 66 (2011) 549