## **Monopole Transitions in Light Unstable Nuclei**

# Makoto Ito<sup>1,2</sup>

<sup>1</sup>Department of Pure and Applied Physics, Kansai University <sup>2</sup>Rsearch Center of Nuclear Physics (RCNP), Osaka University

Contents

- I. Introduction
- II. Previous analysis on <sup>10</sup>Be
- III. Importance of Isoscalar monopole transition
- IV. Results of  $^{\rm 10}{\rm Be}$
- V. Thomas-Ehrman shift in mirror systems: <sup>10</sup>Be and <sup>10</sup>C
- VI. Summary and future studies

#### **Cluster structures in 4N nuclei**

**IKEDA** Diagram

S



The MO model gives one of standard picture in the low-lying structure

### Extension of the MO model

Research subject: Structure changes beyond MO in the highly excited states

Extension of the MO model is important on the wide structure changes

#### Generalized Two-center Cluster Model (Example of <sup>10</sup>Be)



We have performed the unified studies of the chemical-bonding structure and reaction mechanism in even Be isotopes (A=10,12,14,16)



## Monopole excitation and cluster structures

Enhancement of the monopole transition is a sign of the development of the cluster structure in final states

$$M(E0, IS) = \left\langle 0_1^+ \left| \sum_{i=1}^A r_i^2 \right| 0_{ex}^+ \right\rangle \longleftarrow \text{Cluster structure}$$



### Isoscalar Monopole Transition in <sup>10</sup>Be

$$M(IS) = \left< 0_1^+ \left| \sum_{i=1}^A r_i^2 \right| 0_{ex}^+ \right>$$



#### He-He Relative wave functions (Reduced width)



Radial excitation of the relative wave function occurs in  $0_1^+ \Rightarrow 0_3^+$ 

 $0_1^+ \Rightarrow 0_3^+$  are connected by the monopole (2hw ex.) operator

#### Variety of Nuclear Chemical Clusters



 $^{10}C = \alpha + \alpha + 2P$ 

 $^{18}O = \alpha + ^{12}C + 2N$ 



## <sup>10</sup>Be = $\alpha$ + <sup>6</sup>He and <sup>10</sup>C = $\alpha$ + <sup>6</sup>Be wave function



W.F. of  $0_2^+$  is more extended than W.F. of  $0_1^+$ 

 $\Rightarrow$  Coulomb repulsion is suppressed for the  $0_2^+$  state

Monopole transition in <sup>10</sup>C and <sup>10</sup>Be



## Theoretical Prediction of M(IS)

|                  | r.m.s. ( fm ) | E(0 <sub>2</sub> +) ( MeV )<br>Theory | $M(IS) (fm2)$ $0_{1}^{+} \Rightarrow 0_{2}^{+}$ | $M(IS) (fm2)$ $0_1^+ \Rightarrow 0_3^+$ | $M(IS) (fm2) 01+ \Rightarrow 04+$ |
|------------------|---------------|---------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------|
| <sup>10</sup> Be | 2.66          | 4.90                                  | 2.78                                            | 8.26                                    | 4.00                              |
| <sup>10</sup> C  | 2.73          | 4.00                                  | 5.27                                            | 7.55                                    | 2.90                              |

MO EX. Cluster EX. MO EX.

1. All the strengths are comparable to or larger than  $M(IS)_{S.P.} = 3.37 \text{ fm}^2$  $\Rightarrow M(IS)$  is prominently enhanced for the clusters' relative excitation.

2. M(IS) of  $0_1^+ \Rightarrow 0_2^+$  is not charge-symmetric in <sup>10</sup>Be and <sup>10</sup>C  $\Rightarrow$  Due to the Cluster TES ( $\angle$ E=0.9 MeV) appearing n <sup>10</sup>C.



We have investigated the structure changes of the two-center systems and the enhancement of the IS monopole transition.

## Results

- 1. Chemical bonding structure and M(IS) transition in <sup>10</sup>Be
  - ① Wide variety appears by the combination of cluster-core and excess-nucleons
  - (2) IS monopole transition has a strong responsibility for the cluster excitation
- 2. Analysis of the mirror system, <sup>10</sup>Be and <sup>10</sup>C
  - 1 Suppression of the Coulomb shift
    - ⇒ Suppression occur in the cluster state (Spatially extended structure)
  - (2) Monopole transition
    - $\Rightarrow$  Asymmetry in the  $0_1^+ \Rightarrow 0_2^+$  transition is predicted

Analysis of the mirror system will give an important information on the spatially extended cluster structure in the excited state

## cf. <sup>8</sup>C-<sup>8</sup>He, by T. Myo and K. Kato, PTEP2014,083D01