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βþ Gamow-Teller Transition Strengths from 46Ti and Stellar Electron-Capture Rates

S. Noji,1,2,* R. G. T. Zegers,1,2,3 Sam M. Austin,1,2,3 T. Baugher,1,3 D. Bazin,1 B. A. Brown,1,3 C. M. Campbell,4

A. L. Cole,5 H. J. Doster,1,3 A. Gade,1,3 C. J. Guess,6,7 S. Gupta,8 G.W. Hitt,9 C. Langer,1,2 S. Lipschutz,1,3 E. Lunderberg,1,3

R. Meharchand,10 Z. Meisel,1,2,3 G. Perdikakis,11,1 J. Pereira,1 F. Recchia,1 H. Schatz,1,2,3 M. Scott,1,3 S. R. Stroberg,1,3

C. Sullivan,1,2,3 L. Valdez,1 C. Walz,1 D. Weisshaar,1 S. J. Williams,1 and K. Wimmer11,1
1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

2Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

4Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA

6Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
7Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, USA

8Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
9Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology, and Research,

P.O. Box 127788 Abu Dhabi, UAE
10Neutron and Nuclear Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

11Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
(Received 5 April 2014; published 25 June 2014)

The Gamow-Teller strength in the βþ direction to 46Sc was extracted via the 46Tiðt; 3Heþ γÞ reaction at
115 MeV=u. The γ-ray coincidences served to precisely measure the very weak Gamow-Teller transition to
a final state at 991 keV. Although this transition is weak, it is crucial for accurately estimating electron-
capture rates in astrophysical scenarios with relatively low stellar densities and temperatures, such as
presupernova stellar evolution. Shell-model calculations with different effective interactions in the pf shell-
model space do not reproduce the experimental Gamow-Teller strengths, which is likely due to sd-shell
admixtures. Calculations in the quasiparticle random phase approximation that are often used in
astrophysical simulations also fail to reproduce the experimental Gamow-Teller strength distribution,
leading to strongly overestimated electron-capture rates. Because reliable theoretical predictions of
Gamow-Teller strengths are important for providing astrophysical electron-capture reaction rates for a
broad set of nuclei in the lower pf shell, we conclude that further theoretical improvements are required to
match astrophysical needs.

DOI: 10.1103/PhysRevLett.112.252501 PACS numbers: 23.40.-s, 25.55.Kr, 26.30.Jk, 27.40.+z

Introduction.—Electron-capture (EC) rates on nuclei are
essential ingredients for the modeling of core-collapse and
thermonuclear supernovæ (SNe) [1]. In addition, EC rates
are important for the description of crustal heating [2] and
cooling [3] processes in neutron stars. The estimation of EC
rates requires detailed knowledge of Gamow-Teller (GT)
transition strengths [BðGTÞ] in the βþ direction, associated
with the transfer of spin (ΔS ¼ 1), isospin (ΔT ¼ 1), and
no orbital angular momentum (ΔL ¼ 0). ECs on a large
number of nuclei, primarily with 40 ≤ A ≤ 120, play a
role in these astrophysical scenarios. Moreover, at the
temperatures and densities present in stellar environments,
transitions from excited states are often significant [4–8]
in addition to those from ground states. Measuring even a
sizable fraction of all relevant strengths is impossible, and
therefore it is important to perform targeted experiments
to validate and improve theoretical calculations. In this
Letter, we report on an experiment aimed at extracting GT
strengths from 46Ti to 46Sc to investigate concerns raised
[9] about the ability of theory to accurately predict βþ GT

strengths for nuclei in the lower pf shell [with the neutron
(N) and proton number (Z) just exceeding themagic number
20]. It is shown that leading configuration-interaction
models in which the model space is truncated to excitations
within the pf shell fail to reproduce the data. Calculations
in the quasiparticle random phase approximation (QRPA),
which are also frequently used for astrophysical purposes,
fail to reproduce the data as well.
GT strengths can be measured in β-decay experiments,

but they only provide access to a limited Q-value window.
Therefore, charge-exchange (CE) reactions at intermediate
energies (≳100 MeV=u), which can provide full BðGTÞ
distributions on the basis of a well-established propor-
tionality between the CE cross section at zero momentum
transfer and BðGTÞ [10–12], have become the preferred
method to test theoretical calculations. In Ref. [9], a
systematic study was performed for 13 stable pf-shell
nuclei with 45 ≤ A ≤ 64 based on CE data from ðn; pÞ,
ðd; 2HeÞ and ðt; 3HeÞ experiments. It was found that EC
rates derived from experimental BðGTÞ values are generally
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Gamow-Teller transitions to 45Ca via the 45Sc(t ,3He + γ ) reaction at 115 MeV/u and its application
to stellar electron-capture rates

S. Noji,1,2,* R. G. T. Zegers,1,2,3 Sam M. Austin,1,2 T. Baugher,1,3,† D. Bazin,1 B. A. Brown,1,2,3 C. M. Campbell,4

A. L. Cole,2,5 H. J. Doster,1,3 A. Gade,1,3 C. J. Guess,6,‡ S. Gupta,7 G. W. Hitt,8 C. Langer,1,2,§ S. Lipschutz,1,2,3

E. Lunderberg,1,3 R. Meharchand,9,∥ Z. Meisel,1,2,3 G. Perdikakis,1,2,10 J. Pereira,1,2 F. Recchia,1,¶ H. Schatz,1,2,3 M. Scott,1,3

S. R. Stroberg,1,3,# C. Sullivan,1,2,3 L. Valdez,11 C. Walz,1,** D. Weisshaar,1 S. J. Williams,1 and K. Wimmer1,10,††
1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

2Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

4Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA

6Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
7Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India

8Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology, and Research,
P.O. Box 127788 Abu Dhabi, UAE

9Neutron and Nuclear Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
10Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA

11Orange High School, Orange, New Jersey 07050, USA
(Received 19 March 2015; published 17 August 2015)

Background: Stellar electron-capture reactions on medium-heavy nuclei are important for many astrophysical
phenomena, including core-collapse and thermonuclear supernovæ and neutron stars. Estimates of electron-
capture rates rely on accurate estimates of Gamow-Teller strength distributions, which can be extracted
from charge-exchange reactions at intermediate beam energies. Measured Gamow-Teller transition strength
distributions for stable pf-shell nuclei are reasonably well reproduced by theoretical calculations in the shell
model, except for lower mass nuclei where admixtures from the sd shell can become important.
Purpose: This paper presents a β+ charge-exchange experiment on 45Sc, one of the lightest pf-shell nuclei. The
focus was on Gamow-Teller transitions to final states at low excitation energies, which are particularly important
for accurate estimations of electron-capture rates at relatively low stellar densities. The experimental results are
compared with various theoretical models.
Method: The double-differential cross section for the 45Sc(t,3He + γ ) reaction was measured using the NSCL
Coupled-Cyclotron Facility at 115 MeV/u. Gamow-Teller contributions to the excitation-energy spectra were
extracted by means of a multipole-decomposition analysis. γ rays emitted due to the deexcitation of 45Ca were
measured using GRETINA to allow for the extraction of Gamow-Teller strengths from very weak transitions at
low excitation energies.
Results: Gamow-Teller transition strengths to 45Ca were extracted up to an excitation energy of 20 MeV, and
that to the first excited state in 45Ca at 174 keV was extracted from the γ -ray measurement, which, even though
weak, is important for the astrophysical applications and dominates under certain stellar conditions. Shell-model
calculations performed in the pf shell-model space with the GXPF1A, KB3G, and FPD6 interactions did not
reproduce the experimental Gamow-Teller strength distribution, and a calculation using the quasiparticle random
phase approximation that is often used in astrophysical simulations also could not reproduce the experimental
strength distribution.
Conclusions: Theoretical models aimed at describing Gamow-Teller transition strengths from nuclei in the
lower pf shell for the purpose of estimating electron-capture rates for astrophysical simulations require further
development. The likely cause for the relatively poor performance of the shell-model theory is the influence
of intruder configurations from the sd shell. The combination of charge-exchange experiments at intermediate
beam energy and high-resolution γ -ray detection provides a powerful technique to identify weak transitions to
low-lying final states that are nearly impossible to identify without the coincidences. Identification of these weak
low-lying transitions is important for providing accurate electron-capture rates for astrophysical simulations.
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Electron Captures in Supernovæ

‣ Stellar electron captures (EC)
• Takes place in stellar interiors: high T

‣ Important process for supernovæ (SNe)
• Neutronizes stellar core, decreases electron abundance
• Reduces electron degeneracy pressure (which supports stars) → Leads to explosion

Stellar EC is a key to supernova evolution.

cf.) Terrestrial electron capture

bound (orbital)
electrons

A
Z X A

Z−1Y

e−
νe

free electrons
in hot plasma



Stellar Electron Captures

‣ Stellar electron captures (EC)
• Dominated by Gamow-Teller transitions

- ΔL = 0, ΔS = 1, ΔT = 1
• Capture of free electrons in hot plasma

- Can get excited to high Ex states incl. GTGR
- Electrons: Fermi-Dirac distribution

• Thermal ensemble of initial states
- ECs take place from excited states

• Many nuclei play an important role
- Majority are unstable nuclei
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Impossible to measure even a sizable fraction of cases

• Accurate theory that constrains key model parameters
• Experimental information for most crucial cases (importantly contributing nuclei) 

to guide and test development of theory



Sensitivity Study: Importance for SN Collapse

‣ Time evolution of the electron fraction in CCSNe center arXiv:1508.07348v1, ApJ
Chris Sullivan (NSCL)
Evan O’Connor (NCSU)
Remco G. T. Zegers (NSCL)
Thomas Grubb (NSCL)
Sam M. Austin (NSCL)
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Sensitivity of late SN evolution
to electron-capture rates

Identify most critical experiments 
to be performed in the future
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Experimental Approach to Stellar Electron Captures

‣ β decays
• Strength B(GT) from life time
• Q-value restrictions

‣ Charge-exchange reactions
• Accessible to high Ex states
• Reliable B(GT) extraction from cross section  
→ Proportionality  

 
 
 
 

T. N. Taddeucci et al., Nucl. Phys. A469 (1987) 125  
G. Perdikakis et al., Phys. Rev. C 83, 054614 (2011)

unit cross section: calibrated for (t,3He)

σ̂GT = 109/A0.65

σ∆L=0(0◦) ≈ σ̂GTB(GT)

CE reactions on important pf-shell nuclei  
can be a powerful tool to study ECs
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Charge-Exchange Reactions on pf-shell Nuclei

‣ B(GT) in pf-shell nuclei
• Studied with intermediate-energy CE reactions in β+ direction: (n,p), (d,2He), (t,3He)

A systematic study of EC rates: A. L. Cole et al., PRC 86, 015809 (2012)
(p,n) inverse kinematics: M. Sasano et al., PRL 107, 202501 (2011), PRC 86, 034324 (2012)

• Shell models do generally well in predicting B(GT) 
GXPF1 (M. Honma et al., EPJ A25, 499 (2005)) 
KB3G (A. Poves et al., NP A694, 157 (2001)) 

but significant deficiencies possible
• In light nuclei pf & sd mixing  

can affect low-lying states 
(not considered there)
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Charge-Exchange Reactions on pf-shell Nuclei
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‣ B(GT) in pf-shell nuclei
• Studied with intermediate-energy CE reactions in β+ direction: (n,p), (d,2He), (t,3He)

A systematic study of EC rates: A. L. Cole et al., PRC 86, 015809 (2012)
(p,n) inverse kinematics: M. Sasano et al., PRL 107, 202501 (2011), PRC 86, 034324 (2012)

• Shell models do generally well in predicting B(GT) 
GXPF1 (M. Honma et al., EPJ A25, 499 (2005)) 
KB3G (A. Poves et al., NP A694, 157 (2001)) 

but significant deficiencies possible
• In light nuclei pf & sd mixing  

can affect low-lying states 
(not considered there)

‣ This study
• Lightest pf nuclei 46Ti & 45Sc

- SM deficiency may be pronounced
- Specific interests: 

pre-SN stars, neutron-star crustal heating
• B(GT+) in 46Sc & 45Ca  

via the (t,3He) reaction



EC Rates: Importance of Detailed Low-lying Structure

‣ Electron-capture rates

• Phasespace
- Decreases as Ex becomes higher
- Increases as temp. & density become larger
- Contrib. from low-lying strength is important

• In particular at low temp. & density

‣ This study
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Experiment

10 m

National Superconducting Cyclotron Laboratory
Michigan State University

0
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Spectrograph
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production target
9Be

3525 mg/cm2

primary beam
16O

150 MeV/u, 150 pnA reaction target
46Ti, 45Sc
10 mg/cm2

secondary beam
3H

115 MeV/u, 5 Mpps, >99%

‣ 46Ti, 45Sc(t,3He+γ)46Sc at 115 MeV/u



Experiment

Cathode Readout Drift Chambers
(CRDCs)plastic

scintillator

3He
ejectile

(ΔE, TOF)
(x, y, a, b)

3H (triton)beam
115 MeV/u

~5 Mcps, >99%

46Ti/45Sc
target

10 mg/cm2

‣ 46Ti, 45Sc(t,3He+γ)46Sc at 115 MeV/u
• S800 + GRETINA
• Forward kinematics

- 3H beam + stationary 46Ti/45Sc targets
• Missing mass method

- Ex in 46Sc & 45Ca  
→ d2σ/dθdEx (0 MeV ≤ Ex ≤ 25 MeV, 0° ≤ θcm ≤ 6°) 

• Dispersion-matching beam transport 
→ ΔE ~ 300 keV (FWHM) (w/o momentum measurement)



Excitation Energy Spectra

‣ Multipole Decomposition Analysis
• Experimental data points fitted  

with sum of DWBA cross sections

- DWBA code FOLD/DWHI 
for heavy-ion charge-exchange  
[double-folding & microscopic form factor]

• Extract each ΔJπ component 
(GT, dipole, quadrupole,...) 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Refs. T. N. Taddeucci et al., Nucl. Phys. A469 (1987) 125  
G. Perdikakis et al., Phys. Rev. C 83, 054614 (2011)

B(GT) Distribution

‣ B(GT) distribution from experiment
• GT Proportionality ΔL=0 cross section

from MD analysis

Kinematical correctionGT unit cross section
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γ Rays for Detailed Information on Low-lying States

‣ Eγ (GRETINA) vs Ex (S800)
• Distinct Eγ = Ex line: no γ’s greater than Ex → Clean Ex selection possible
• Separation energies Sp & Sn: particle decay channels open

‣ γ decays from GT states (Ex gated Eγ spectrum)
• Lowest known 1+ state at 991 keV → decay with 547-keV γ ray 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Comparison with Theory

‣ Shell model
• Full pf-shell model space  

with quenched operator
• Interactions:

- GXPF1A  
M. Honma et al., PRC 65, 061301(R) (2002); 
PRC 69, 034335 (2004); EPJ A25, 499 (2005)

- KB3G  
A. Poves, et al., NP A649, 157 (2001)

- FPD6  
W. A. Richter, et al., NP A523, 325 (1991)

‣ QRPA (P. Möller and J. Randrup, NP A514, 1, 1990)

• Frequently used  
in astrophysical simulations

(στ+)eff = 0.744στ+

None of the calculations
agree well with the data! 0 1 2 3 4 5 6 7
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Comparison with Shell Model Calculations

‣ Intruder states  
due to admixtures with states from sd shell  
play an important role in the lower pf shell

- Some low-lying levels
- Large B(E2) values for 42,44Ca

e.g.
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Results for 45Sc

‣ 45Sc(t,3He) at 115 MeV/u
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EC rates & Comparison with Theory

‣ Electron-capture rate

• Conditions: Pre-SN evolution of massive stars = Lower pf-shell nuclei are important
- Electron density ρYe = 107 g/cm3; Temperature 2.5-4.5 GK
- Only transitions from the ground state are included to infer the rate
- Low-lying strengths dominate the total rate

λEC(T , ρ) = const.
∑

i ,j

fij (T , ρ) Bij (GT)

Remarks:
• Strength to the 991 keV state 

dominates the total rate  
(except for the higher temps)

• SMs give lower rates 
as strengths locate at higher Ex

• Among SMs, GXPF1A is closest, 
but it is just coincidental  
given the overall poorer description

• QRPA overestimates the rate  
due to larger low-lying strengths

• Similarly for the 45Sc case
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