Alpha particle scattering and alpha clustering in the MCAS

S. Karataglidis, University of Johannesburg

MCAS Collaboration

K. Amos, D. van der Knijff, University of Melbourne
L. Canton, INFN/Padova
J. P. Svenne, University of Manitoba
P. R. Fraser, Curtin University

HST 15

Introduction

Low-energy α -nucleus interactions play a central role in nucleosynthesis. Beyond the *p*-*p* chain, the triple- α process forms ¹²C, beyond which the star enters the CNO cycle.

Alpha capture reactions then play a central role beyond the CNO cycle forming the α -nuclei up to ⁴⁰Ca.

Studying alpha scattering yields knowledge of those interactions.

We seek to obtain *S* matrices and evaluate:

Total elastic scattering cross sections:

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} \left\{ (l+1) \left| S_{ll+\frac{1}{2}}(k) - 1 \right|^2 + l \left| S_{ll-\frac{1}{2}}(k) - 1 \right|^2 \right\}$$

Total reaction cross sections:

$$\sigma_{\rm R} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} \left\{ (l+1) \left[1 - \left| S_{ll+\frac{1}{2}}(k) \right|^2 \right] + l \left[1 - \left| S_{ll-\frac{1}{2}}(k) \right|^2 \right] \right\}$$

The MCAS approach is built upon:

1. Finite-rank separable representations of realistic interactions;

- 2. Scattering matrices for separable Schrödinger interactions;
- 3. Sturmian functions (Weinberg states) to define form factors.

Multi-channel T matrices

Solution of coupled Lippmann-Schwinger equations:

$$\begin{split} T_{cc'}(p,q;E) &= V_{cc'}(p,q) - \mu \sum_{c'=1}^{\text{closed}} \int_0^\infty V_{cc''}(p,x) \frac{1}{h_{c''}^2 + x^2} T_{c''c'}(x,q;E) \; x^2 dx \\ &+ \mu \sum_{c'=1}^{\text{open}} \int_0^\infty V_{cc''}(p,x) \frac{1}{k_{c''}^2 - x^2 + i\varepsilon} T_{c''c'}(x,q;E) \; x^2 dx \end{split}$$

Expand the potential matrix:

$$V_{cc'}(p,q) \sim V_{cc'}^{(N)}(p,q) = \sum_{n=1}^{N} \hat{\chi}_{cn}(p) \eta_n^{-1} \hat{\chi}_{c'n}(q)$$

Optimal functions, $\hat{\chi}_{cn}(q)$, involve Sturmians $|\Phi_{c'n}\rangle$:

$$\begin{split} |\hat{\chi}_{cn}\rangle &= \sum_{c'} V_{cc'} |\Phi_{c'n}\rangle \\ \sum_{c'} G_c^{(0)} V_{cc'} |\Phi_{c'n}\rangle &= -\eta_n |\Phi_{cn}\rangle \end{split}$$

Multi-channel S matrices

Separable expansion of multi-channel $V_{cc'} \Rightarrow$ multi-channel *S* matrix (*c*,*c*' are open channels, specified by J^{π}):

$$S_{cc'} = \delta_{cc'} - i\pi\mu\sqrt{k_c k_{c'} T_{cc'}}$$

= $\delta_{cc'} - i\pi\mu \sum_{n,n'=1}^{N} \sqrt{k_c} \chi_{cn}(k_c) \left([\boldsymbol{\eta} - \mathbf{G}_0]^{-1} \right)_{nn'} \chi_{c'n'}(k_{c'}) \sqrt{k_{c'}}$

Matrix elements (Sturmian basis) $[\eta]_{nn'} = \eta_n \delta_{nn'}$, with:

$$\begin{aligned} \mathbf{G}_{0}]_{nn'} &= \mu \sum_{c=1}^{\text{open}} \int_{0}^{\infty} \hat{\chi}_{cn}(x) \frac{x^{2}}{k_{c}^{2} - x^{2} + i\varepsilon} \hat{\chi}_{cn'}(x) \, dx \\ &- \mu \sum_{c=1}^{\text{closed}} \int_{0}^{\infty} \hat{\chi}_{cn}(x) \frac{x^{2}}{h_{c}^{2} + x^{2}} \hat{\chi}_{cn'}(x) \, dx \end{aligned}$$

Alpha-nucleus potentials

Consider a basis of channel states defined by the coupling

 $|c\rangle = |lI; J^{\pi}\rangle$ $= [|l\rangle \otimes |\psi_I\rangle]_J^{M,\pi}$

 $l: \text{ relative orbital angular momentum for spin-0 projectile on the target} \\ \left|\psi_I^{(N)}\right\rangle: \text{target state}$

The potential may be written as

$$V_{cc'} = \langle lI | W(r) | l'I' \rangle$$

= $[V_0 f(r) + V_{ll} f(r) [l \cdot l] + V_{II} f(r) [\mathbf{I} \cdot \mathbf{I}] + V_{lI} g(r) [l \cdot \mathbf{I}]]_{cc'}$
+ $V_{\text{mono}} \delta_{cc'} \delta_{I0_{gs}^+} f(r);$
 $f(r) = \left[1 + \exp\left(\frac{r-R}{a}\right)\right]^{-1}$ Monopole term: for N=Z systems in which pairing leads to extra binding.
 $g(r) = \frac{1}{r} \frac{df}{dr}.$

Effects of deformation are included to second order, viz.

$$f(r) = f(r - R(\theta, \varphi))$$

$$R(\theta, \varphi) = R_0(1 + \varepsilon)$$

$$\Rightarrow f(r) = f_0(r) + \varepsilon \left[\frac{df}{d\varepsilon}\right]_0 + \frac{1}{2}\varepsilon^2 \left[\frac{d^2f}{dr^2}\right]_0$$

$$= f_0(r) - R_0\varepsilon \frac{df_0}{dr} + \frac{1}{2}R_0^2\varepsilon^2 \frac{d^2f_0}{dr^2}$$

0: indicates spherical Woods-Saxon functional form, $R=R_{0.}$

Pauli principle considerations

No natural inclusion of the Pauli principle in a collective model. MCAS accounts for Pauli among the nucleons by the inclusion of an orthogonalising pseudo-potential (OPP). The potential becomes

$$\mathcal{V}_{oc'} = V_{oc'}\delta(r - r') + \lambda_c A_c(r) A_{c'}(r')\delta_{cc'}$$

 $V_{oc'}$: nuclear interaction potential λ_c : scale for Pauli blocking $A_c(r)$: bound state wave functions of the α

 $\lambda \sim 10^6~{\rm MeV}$ - Pauli blocking

Test cases: α + ³ H, α + ³ He, α + α								
NB: All results presented are preliminary .								
		7Li			⁷ Be			
Jπ	³ H(α,n)	⁴ He(³ He,π ⁺)	⁴ He(α,p)	⁴ He(³ He, γ)	⁴ He(³ He, ³ He),(³ He,p)	⁴ He(<i>α</i> ,n)		
3/2-	~	\checkmark	\checkmark	\checkmark		\checkmark		
1/2-		\checkmark	\checkmark	\checkmark		\checkmark		
7/2-			~		\checkmark			
5/2-		\checkmark			\checkmark			

.........

..........

........

Spectra of 7Li and 7Be

Energies in MeV, widths in keV

		7Li			⁷ Be	
J^{π}	Exp.	present	previous	Exp.	present	previous
3/2-	spurious	-29.6	-29.4	spurious	-27.8	-28.0
1/2-	spurious	-28.0	-27.8	spurious	-26.3	-26.4
3/2-	-2.47	-2.59	-2.47	-1.59	-1.53	-1.53
1/2-	-1.99	-1.87	-1.75	-1.16	-0.85	-0.84
7/2-	2.18(69)	2.09(80)	2.12(83)	2.98(175)	3.14(204)	3.07(180)
5/2-	4.13(918)	4.05(800)	4.12(834)	5.14(1200)	5.13(1250)	5.09(1194)

¹²C: α +⁸Be

⁸Be is unstable to emission of α particles. Ground state (0⁺) is 0.092 MeV above the breakup threshold, but very narrow, allowing formation in the stellar environment of ¹²C by the capture of a third α . The state formed is the Hoyle state at 7.65 MeV.

Potential		Geometry/OPP	
V_0	-39.5	$R_0 = R_c$	2.8
V 11	1.5	$a_0 = a_c$	0.65
V _{lI}	-1.8	β2	-0.7
VII	2.0	β4	0.2
V _{mono}	-2.7	$\lambda_s = \lambda_p$	106

Energies in MeV, lengths in fm.

Spectrum of ¹²C.

Effects of varying Pauli blocking.

 $^{16}O: \alpha + {}^{12}C$

Spectrum of ¹⁶O.

Effects of OPP on spectrum of ¹⁶O.

²⁰Ne: $\alpha + {}^{16}O$

Spectrum of ²⁰Ne.

Conclusions

We have an MCAS which handles the scattering of alphas from nuclei. The version allows:

- Considers spin-zero projectiles on spin-zero targets.
- Collective model specification of the target with up to octupole deformation when required.
- Known states of ⁸Be are reproduced.
- Spectra of ¹²C, ¹⁶O, and ²⁰Ne are reasonably well reproduced, but more work is required to define the nuclear potentials.