

Probing effect of tensor interactions in nuclei via (p, d) reaction

Guo Chenlei

(On behalf of RCNP-E396)

Research Center of Nuclear Science and Technology (RCNST)

Beihang University

HST15 INTERNATIONAL SYMPOSIUM ON HIGH-RESOLUTION SPECTROSCOPY & TENSOR INTERACTIONS

Contents

- □ Physics Motivation (Already talked a lot in this symposium...)
- □ Experiments in RCNP, Osaka
- Preliminary results & Discussion
- □ Summary & Acknowledgments

Nucleon pick-up reaction(¹²C(p,d) & ¹⁶O(p,d)) @ RCNP, Osaka

Nucleon pick-up reaction(¹²C(p,d) &¹⁶O(p,d)) @ RCNP, Osaka

Nucleon pick-up reaction(¹²C(p,d) & ¹⁶O(p,d)) @ RCNP, Osaka

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d)$) @ RCNP, Osaka

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

C.L. Guo

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Tensor selection rule: $\Delta L=2$, $\Delta s=2$, $\Delta J=0$

proton

neutron

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Ground state of ¹⁶O ($J^{\pi}=0^+$): mixing of 2p-2h configuration

Tensor selection rule: $\Delta L=2, \Delta s=2, \Delta J=0$

Ground state of ${}^{12}C (J^{\pi}=0^+)$: mixing of 2p-2h configuration

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Ground state of ¹⁶O (J^{π}=0⁺): mixing of 2p-2h configuration \rightarrow ¹⁵O: positive parity excited state (J^{π}=5/2+) **Tensor selection rule:** $\Delta L=2$, $\Delta s=2$, $\Delta J=0$

Ground state of ${}^{12}C (J^{\pi}=0^+)$: mixing of 2p-2h configuration

C.L. Guo

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Ground state of ¹⁶O (J^{π}=0⁺): mixing of 2p-2h configuration \rightarrow ¹⁵O: positive parity excited state (J^{π}=5/2+) Tensor selection rule: $\Delta L=2, \Delta s=2, \Delta J=0$

Ground state of ¹²C ($J^{\pi}=0^+$): mixing of 2p-2h configuration \rightarrow^{11} C: ground state ($J^{\pi}=3/2-$)

Nucleon pick-up reaction(${}^{12}C(p,d) \& {}^{16}O(p,d))$ @ RCNP, Osaka

Configuration difference for ¹⁶O & ¹²C

Ground state of ¹⁶O (J^{π}=0⁺): mixing of 2p-2h configuration \rightarrow ¹⁵O: positive parity excited state (J^{π}=5/2+) Tensor selection rule: $\Delta L=2, \Delta s=2, \Delta J=0$

Ground state of ¹²C (J^{π}=0⁺): **mixing of 2p-2h configuration** \rightarrow ¹¹C: ground state (J^{π}=3/2-) excited state (J^{π}=1/2-)

C.L. Guo

Nucleon pick-up reaction(¹²C(p,d) & ¹⁶O(p,d)) @ RCNP, Osaka

Grand RAIDEN Spectrometer $p/\Delta p \sim 37000$

Focal Plane Detector: Two Plastic scintillator for ΔE & TOF Two VDCs (drift chamber) for position and angle (x,dx,y,dy) Beam energy: 392 MeV/nucleon Beam Intensity: 10 nA Energy resolution ≤ 150keV (Achromatic mode)

C.L. Guo

C.L. Guo

Nucleon pick-up reaction(¹²C(p,d) & ¹⁶O(p,d)) @ RCNP, Osaka

C.L. Guo

Nucleon pick-up reaction(¹²C(p,d) & ¹⁶O(p,d)) @ RCNP, Osaka

 18.5MeV: Phys. Rev. 129, 272 (1963)
 19MeV: Phys. Rev. 129, 272 (1963)

 30.3MeV: Nucl. Phys. A 99, 669 (1967)
 45MeV: Phys. Rev. 187, 1246 (1969)

 65MeV: Nucl. Phys. A 255, 187 (1975)
 100MeV: Nucl. Phys. A 106, 357 (1968)

 200MeV: Phys. Rev. C 39, 65 (1989)
 800MeV: Phys. Rev. C 30, 593 (1984)

 E314 198MeV & 295MeV & 392MeV: Phys. Lett. B 725, 277 (2013)

C.L. Guo

$^{12}C(p,d)^{11}C: 3/2$ -

30.3MeV: Nucl. Phys. A 99, 669 (1967) 61MeV: Phys. Rev. C 8,1045 (1973) 100MeV: Nucl. Phys. A 106, 357 (1968) E314 198MeV & 295MeV & 392MeV: Phys. Lett. B 725, 277 (2013)

51.93MeV: J. Phys. Journal 48, 1812 (1980) 65MeV: Nucl. Phys. A 255, 187 (1975) 800MeV: Phys. Rev. C 30, 593 (1984)

C.L. Guo

C.L. Guo

Preliminary results and discussion

6

C.L. Guo

100MeV: Nucl. Phys. A

Preliminary results and discussion

E314 295MeV

E314 392MeV

1E-8

E314 198MeV & 295Mev & 392IVIEV. FILYS. Lett. B (25, 211 (2013)

6

 \triangleright

C.L. Guo

北京航空航天大学

HST15 INTERNATIONAL SYMPOSIUM ON High-resolution Spectroscopy & Tensor interactions

As long as ratio is concerned, 0° data and finite angle data are consistent with each other. Therefore reaction mechanism effect is negligible and we obtain the conclusion same as Ong, et. al..

 45MeV: Phys. Rev. 187, 1246 (1969)
 65MeV: Nucl. Phys. A 255, 187 (1975)

 100MeV: Nucl. Phys. A 106, 357 (1968)
 200MeV: Phys. Rev. C 39, 65 (1989)

 E314 198MeV & 295MeV & 392MeV: Phys. Lett. B 725, 277 (2013)

 800MeV: Phys. Rev. C 30, 593 (1984)

C.L. Guo

Among the ratio of cross sections of excited states (5/2+ & 3/2-) to ground state of ¹⁵O, stronger momentum dependence is observed for the 5/2+ state, which is indicated to be consistent with the effect of tensor interaction

• CDCC-BA calculation with known spectroscopic factors:

✓ qualitatively agree with ratios for the neutron-hole states (3/2- to 1/2-)

✓ cannot explain the ratios for the positive-parity state (5/2 + to 1/2 -)

- Two(Multi)-step process does not help
- **TOSCOM-type momentum wave functions** that include highmomentum components "fit" the data well.

 45MeV: Phys. Rev. 187, 1246 (1969)
 65MeV: Nucl. Phys. A 255, 187 (1975)

 100MeV: Nucl. Phys. A 106, 357 (1968)
 200MeV: Phys. Rev. C 39, 65 (1989)

 E314 198MeV & 295MeV & 392MeV: Phys. Lett. B 725, 277 (2013)

 800MeV: Phys. Rev. C 30, 593 (1984)

C.L. Guo

L京航空航天大

HST15 INTERNATIONAL SYMPOSIUM ON HIGH-RESOLUTION SPECTROSCOPY & TENSOR INTERACTIONS

Summary

- □ Tensor force is the important part of nuclear force.
- □ Nucleon pick-up reaction is a good tool to probe the high-momentum component.
- \square We have studied the high-momentum neutrons in the initial gs-configuration by (p,d) reactions.
 - Among the ratio of cross sections of excited states (5/2+ & 3/2-) to ground state of ¹⁵O, stronger momentum dependence is observed for the 5/2+ state, which is indicated to be consistent with the effect of tensor interaction.
 - As long as ratio is concerned, 0° data and finite angle data are consistent with each other.
 Therefore reaction mechanism effect is negligible and we obtain the conclusion same as Ong, et. al..
 - By comparing the ratio of cross sections of ground state (3/2-) and excited state (1/2-) of ¹¹C to ground state of ¹⁵O, respectively, we observed a difference in the momentum transfer dependence in ¹¹C and ¹⁵O ground state, which is also indicated to be consistent with the effect of tensor interaction.

RCNP-E396 Collaboration

RCNP	H. J. Ong, I. Tanihata, N. Aoi, Y. Ayyad, T. Hashimoto, A. Inoue, T. Ito, C. Iwamoto, K. Miki, M.Miura, K.Ogata, Y. Ogawa, A. Tamii, D.T. Tran, H.Toki, T. Yamamoto
Beihang Univ.	<u>S. Terashima</u> , <u>C.L. Guo</u> , X.Y. Le, W.W. Qu, B.H. Sun, T.F. Wang, L. Yu, G.L. Zhang
Osaka Inst. of Tech.	T. Myo
Osaka Univ.	M. Fukuda, K. Matsuta, M. Mihara
Tsukuba Univ.	A. Ozawa
RIKEN Nishina Center J. Zenihiro	
Kyoto Univ.	T. Kawabata, Y. Matsude

RCNP-E396 Collaboration

C.L. Guo

WAVE FUNCTIONS

> The most important origin of the momentum distribution is the movement of nucleons in a nuclear potential and typically expressed by Fermi momentum (mainly momentum below 1 fm⁻¹).

 \succ The momentum distributions are also affected by the n-n correlations. One of the well-known origins is the short-range repulsion of the central forces.

> The tensor forces also give a characteristic range in the n–n interaction and make a large contribution at momentum at around 2 fm⁻¹.

Theoretical Calculation