RCNP-HST15 Symposium @ ONC November 18, 2015

Understanding effect of tensor interactions in light nuclei via high momentum neutron-transfer reactions

Hooi Jin ONG (RCNP, Osaka University)

On behalf of • RCNP-E314 • RCNP-E396 • GSI-S436 • RCNP-E443 collaborations

Tensor Interactions in Nucleus

Effective nucleon-nucleon potential (e.g. Hamada-Johnston):

$$V(r) = \begin{cases} V_{\rm C}(r) + V_{LS} \frac{(\mathbf{L} \cdot \mathbf{S})}{\hbar^2} + V_{\rm T}(r)S_{12} + V_{L^2} \frac{(L_{12})}{\hbar^2} , & r > r_{\rm C} \\ +\infty , & r < r_{\rm C} \end{cases}$$

Tensor force:
$$V_{\rm T}(r)S_{12}$$

$$S_{12} = \frac{3(\boldsymbol{\sigma}_1 \cdot \mathbf{r})(\boldsymbol{\sigma}_2 \cdot \mathbf{r})}{r^2} - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$$

$$= \sqrt{24\pi/5} \left([\vec{\sigma}_1 \times \vec{\sigma}_2]^{(2)} \cdot Y^{(2)} \right)$$

Originated mainly from One-Pion Exchange Potential:

$$S_{12} \frac{q^2}{m_{\pi}^2 + q^2}$$

Tensor Interactions in Nucleus

Effective nucleon-nucleon potential (e.g. Hamada-Johnston):

$$V(r) = \begin{cases} V_{\rm C}(r) + V_{LS} \frac{(\mathbf{L} \cdot \mathbf{S})}{\hbar^2} + V_{\rm T}(r)S_{12} + V_{L^2} \frac{(L_{12})}{\hbar^2} , & r > r_{\rm C} \\ +\infty , & r < r_{\rm C} \end{cases}$$

Tensor force:
$$V_{\rm T}(r)S_{12}$$

 $S_{12} = \frac{3(\boldsymbol{\sigma}_1 \cdot \mathbf{r})(\boldsymbol{\sigma}_2 \cdot \mathbf{r})}{r^2} - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$
 $= \sqrt{24\pi/5} \left([\vec{\sigma}_1 \times \vec{\sigma}_2]^{(2)} \cdot Y^{(2)} \right) \qquad \Delta S = 2, \ \Delta L = 2$

Originated mainly from One-Pion Exchange Potential:

$$S_{12} \frac{q^2}{m_{\pi}^2 + q^2}$$

Tensor Interactions in Nucleus

Effective nucleon-nucleon potential (e.g. Hamada-Johnston):

$$V(r) = \begin{cases} V_{\rm C}(r) + V_{LS} \frac{(\mathbf{L} \cdot \mathbf{S})}{\hbar^2} + V_{\rm T}(r)S_{12} + V_{L^2} \frac{(L_{12})}{\hbar^2} , & r > r_{\rm C} \\ +\infty , & r < r_{\rm C} \end{cases}$$

Tensor force:
$$V_{\rm T}(r)S_{12}$$

 $S_{12} = \frac{3(\sigma_1 \cdot \mathbf{r})(\sigma_2 \cdot \mathbf{r})}{r^2} - (\sigma_1 \cdot \sigma_2)$
 $= \sqrt{24\pi/5} \left([\vec{\sigma}_1 \times \vec{\sigma}_2]^{(2)} \cdot Y^{(2)} \right) \longrightarrow \Delta S=2, \Delta L=2$
Driginated mainly from One-Pion Exchange Potential:

High-momentum components in nuclei

2015年11月18日水曜日

 $S_{12} \frac{1}{m_{\pi}^2 + q^2}$

Deuteron

→ L=2

Measured proton, neutron and deuteron properties⁺

L=0	Proton	Neutron	Deuteron	¢,
Binding energy (MeV)	-	-	-2.22452(20)	-
Spin-parity	1/2+	1/2+	1+	
Magnetic moment (µ _N)	+2.79276(2)	-1.91335(4)	+0.8574114(4)	
Electric quadrupole moment (b)	0	0	+0.002738(14)	

Deuteron (continued)

Alpha Particles

	Faddeev- Yakubovsky†	TOSM + UCOM‡	Exp.
Energy (MeV)	-25.94	-22.30	-28.2957¶
Kinetic (MeV)	102.39	90.50	
Central (MeV)	-55.26	-55.71	
Tensor (MeV)	-68.35	-54.55	
LS (MeV)	-4.72	-2.53	
Radius (fm)	1.49	1.55	1.6755(28)§
		[†] H.Kamada <i>et</i> [‡] T.Myo <i>et al.</i> P ¶AME2012 § I. Angeli <i>et al</i> .	<i>al</i> . PRC 64 ('01) 0440 PTP 121 ('09) 511 ADNDT 99 ('13) 69

Independent Particle Model (IPM)

Independent Particle Model (IPM)

Nuclear Shell Model (1949)

- developed by Mayer, Jensen, Wigner
- complex many-body nucleon-nucleon interactions
 - \Rightarrow average potential:
 - i) 3 dimensional harmonic oscillatorii) spin-orbit interactions
- reproduces nuclear magic numbers
- enhances understanding of nuclear structures, predicts energy levels and other observables
- helps to understand/predict (direct) nuclear reactions
 - spectroscopic factor

Limitation of IPM

- Underestimates (direct) nuclear reactions, especially those that involve transfer/knockout of high momentum nucleons
 - ⇒ the need to consider explicitly tensor and short-range correlations.

Limitation of IPM

- Underestimates (direct) nuclear reactions, especially those that involve transfer/knockout of high momentum nucleons
 - ⇒ the need to consider explicitly tensor and short-range correlations. But how?

Wanted: Experiment data

Limitation of IPM

- Underestimates (direct) nuclear reactions, especially those that involve transfer/knockout of high momentum nucleons
 - ⇒ the need to consider explicitly tensor and short-range correlations. But how?

Wanted: Experiment data

Can we measure/observe directly effect of tensor interactions in nuclei heavier than the alpha particle?

Can we measure/observe directly effect of tensor interactions in nuclei heavier than the alpha particle?

YES!

 $1d_{5/2}, 2s_{1/2}$

$$1p_{1/2}$$

$$1s_{1/2}$$
 — O O O O

proton neutron

Ground state of ¹⁶O

Can we measure/observe directly effect of tensor interactions in nuclei heavier than the alpha particle?

Predicted Momentum Distribution of Nucleons

Predicted Momentum Distribution of Nucleons

Probe internal momentum of nucleon by neutron-transfer reactions

Probe internal momentum of nucleon by neutron-transfer reactions

Probe internal momentum of nucleon by neutron-transfer reactions

Probe internal momentum of nucleon by (p,d) reaction

 taking advantage of the momentum selectivity

G. W. Bennett *et al.* PRL19, 387(1967)

C

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[\tilde{B}_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d / 2)^2 \right]^2 \left| \langle \varphi(r), e^{i(\mathbf{p} - \mathbf{P}_d + \mathbf{r} / 2)} \rangle \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

PRL95, 162301(2004)

RCNP-E314 collaboration

RCNP	H.J. Ong, I. Tanihata, A. Tamii, T. Myo, K. Ogata, K. Hirota, D. Ishikawa, H. Matsubara, T. Naito, Y. Ogawa, H. Sakaguchi, T. Suzuki, M. Takashina H. Toki, Y. Yasuda, M. Yosoi, J. Zenihiro	, ,
Osaka Univ.	M. Fukuda, K. Matsuta, M. Mihara, D.Nishimura	
Kyoto Univ.	T. Kawabata	
Tsukuba Univ.	A. Ozawa	
RIKEN Nishina Center	K. Sekiguchi, K. Ikeda	
Nara Women' s Univ.	M. Taniguchi	
Beihang Univ.	S. Terashima, D.Y. Pang	0.0

[RCNP-E314] Experiment

RCNP Grand RAIDEN (*p*/Δ*p* ~ 37000)

M. Fujiwara et al., NIMA422, 484(1999)

[RCNP-E314] Missing mass spectra

2015年11月18日水曜日

* J.L. Snelgrove *et al.*, PR 187 (1969) 1246

** T. Myo, private communication

Possible Signature of Tensor Interactions

• CDCC-BA calculation with known spectroscopic factors:

 ✓ qualitatively agree with ratios for the neutron-hole states (3/2to 1/2-)

✓ cannot explain the ratios for the positive-parity state (1/2+ or 5/2+ to 1/2-)

• Two(Multi)-step process does not help

• TOSM-type momentum wave functions that include highmomentum components "fit" the data well.

T. Myo, PTP 117 (2007) 257.

Issues to be addressed...

(p,d) at finite (≥10 deg) scattering angle

\Rightarrow 0 degree measurement

- (p,d) at 0 deg with 400-MeV proton
 -> RCNP-E396 (Nov. 2013)
- (p,d) at 0 deg with 400~1200-MeV proton to cover 2 fm⁻¹
 -> GSI-S436/S437 (July, 2014)

ambiguity of contributions from p-n and/or n-n pairs

p

Issues to be addressed...

(p,d) at finite (≥10 deg) scattering angle

reaction mechanism effect at finite angle

⇒ 0 degree measurement

- (p,d) at 0 deg with 400-MeV proton
 -> RCNP-E396 (Nov. 2013)
- (p,d) at 0 deg with 400~1200-MeV proton to cover 2 fm⁻¹
 -> GSI-S436/S437 (July, 2014)

ambiguity of contributions from p-n and/or n-n pairs

\Rightarrow (p,dp) and (p,dn) measurements

- (p,dp), (p,dn) at finite angles with 400-MeV proton to study p-n and n-n correlations
 -> RCNP-E443 (Autumn 2015)
- (p,dp), (p,dn) at higher energy to cover 2 fm⁻¹ is being planned at the future SuperFRS at FAIR/GSI, Germany.

Tensor-effect studies via (p,d) reactions: Past works and our strategy

RCNP-E396 Collaboration

RCNP H. J. Ong, I. Tanihata, N. Aoi, Y. Ayyad, T. Hashimoto, A. Inoue, T. Ito, C. Iwamoto, K. Miki, M. Miura, K. Ogata, Y. Ogawa, A. Tamii, D.T. Tran, H. Toki, T. Yamamoto Beihang Univ. S. Terashima, C.L. Guo*, X.Y. Le, W.W. Qu, B.H. Sun, T.F. Wang, L. Yu, G.L. Zhang Osaka Inst. of Tech. T. Myo Dep. of Phys., Osaka Univ. M. Fukuda, K. Matsuta, M. Mihara Tsukuba Univ. A. Ozawa RIKEN Nishina Center J. Zenihiro Kyoto Univ. T. Kawabata, Y. Matsuda

18

[RCNP-E396] ¹⁶O(p,d),¹²C(p,d) reactions at forward angles with 392 MeV proton beam

0.24 1/2-0MeV 0.22 - 5.2MeV 1/2+.5/2+ Cross Section in Lab (mb/sr) 0.20 6.18MeV 3/2-0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 Preliminary 0.02 0.00 2 7 10 0 1 3 Δ 5 6 8 9 11 -1 Scattering Angle_lab (degree)

Angular distribution in Lab

[RCNP-E396] ¹⁶O(p,d),¹²C(p,d) reactions at forward angles with 392 MeV proton beam

[RCNP-E396] ¹⁶O(p,d),¹²C(p,d) reactions at forward angles with 392 MeV proton beam

Effect of reaction mechanism is negligible

GSI-S436/S437 collaboration

Y. Ayyad, J. Benlliure, K.-T. Brinkmann, S. Friedrich, H. Fujioka, H. Geissel, J. Gellanki, C.L. Guo, E. Haettner, R. S. Hayano,
Y. Higashi, S. Hirenzaki, Y. Igarashi, N. Ikeno, K. Itahashi, M. Iwasaki,
D. Jido, N. Kalantar, R. Knoebel, N. Kurz, V. Metag, K. Miki, I. Mukha,
M. Harakeh, T. Myo, T. Nagae, H. Nagahiro, M. Nanova, C. Nociforo, T. Nishi, H.J. Ong, S. Pietri, A. Prochazka, S. Purushothaman, C. Rappold, M.P. Reiter, K. Rituparna, J.L.R. Sanchez,
C. Scheidenberger, H. Simon, B.H. Sun, K. Suzuki, M. Takechi,
Y.K. Tanaka, I. Tanihata, S. Terashima, H. Toki, Y.N. Watanabe,
H. Weick, E. Widmann, J. Winfield, X. Xu, H. Yamakami, J.W. Zhao

Osaka University, Universidade de Santiago de Compostela, Universitaet Giessen, Kyoto University, GSI, University of Groningen, Beihang University, The University of Tokyo, Nara Women's University, KEK, RIKEN, Tokyo Metropolitan University, Technische Universitaet Darmstadt, TRIUMF and Saint Mary's University, Stefan Meyer Institut, Niigata University

[GSI-S436] ¹⁶O(p,d),¹²C(p,d) reactions at forward angles with 400 - 1200 MeV/u proton beams

Proton beam @400 MeV/u, with 107 mg/cm^{2 nat}C target

[GSI-S436] Preliminary Results for ¹⁶O(p,d) @ 400 MeV/u

[GSI-S436] Preliminary Results for ¹⁶O(p,d)@400 MeV/u

Ratios consistent with RCNP data

```
2015年11月18日水曜日
```

Hot News!

[RCNP-E443] Understanding the effect of tensor interactions in light nuclei - Studies of

proton-neutron and neutron-neutron correlations -

TERASHIMA Satoru (Beihang University) ONG Hooi Jin (RCNP, Osaka University)

--Collaborators--

Lei Yu, P.Y. Chan, X.Y. Le, L.H. Zhu, G.L. Zhang, B.H. Sun, T.F. Wang, I. Tanihata, N. Aoi, A. Tamii, Y. Ayyad, J. Tanaka, D.T. Tran, H. Sakaguchi, M. Fukuda, K. Matsuta, M. Mihara, T. Kawabata, Y. Matsuda, J. Zenihiro, K. Miki, C. Schiedenberger, H. Geissel, H. Weick, E. Haettner --Theoretical support--

H. Toki, K. Ogata, T. Myo, Y. Ogawa, D.Y. Pang

Performed! Oct.31-Nov.4, 2015 [RCNP-E443] Understanding the effect of tensor interactions in light nuclei - Studies of

proton-neutron and neutron-neutron correlations -

TERASHIMA Satoru (Beihang University) ONG Hooi Jin (RCNP, Osaka University)

--Collaborators--

Lei Yu, P.Y. Chan, X.Y. Le, L.H. Zhu, G.L. Zhang, B.H. Sun, T.F. Wang, I. Tanihata, N. Aoi, A. Tamii, Y. Ayyad, J. Tanaka, D.T. Tran, H. Sakaguchi, M. Fukuda, K. Matsuta, M. Mihara, T. Kawabata, Y. Matsuda, J. Zenihiro, K. Miki, C. Schiedenberger, H. Geissel, H. Weick, E. Haettner --Theoretical support--

H. Toki, K. Ogata, T. Myo, Y. Ogawa, D.Y. Pang

[RCNP-E443] (p,dp), (p,dn) measurements

Proton beam: 400 MeV; 20 pnA Target: 60 mg/cm²

 θ_{GR} =8.7°, 15.0° θ_{BAND} =112°,135°

Past experiments with triple coincidence

In the upper panel the total number of triple coincidences, measured for $\theta_{p_1} = 53^{\circ} (\gamma_{p_1 q}^{+m} = 35')$ and $\theta_{p_2} = -90'$ -104°, and -118°, is displayed as a function of the double missing energy E₁₀. The data have been corrected for incfficiencies and accidental coincidences. In the lower panel the cross sections obtained from these data are presented. They are corrected for radiative effects.

¹²C, ¹⁶O(e, e'pp) at NIKEFF PRL74(95), 1712, PRL81(98), 2213

FIG. 2 (color online). Plots of cosy, where y is the angle between \mathbf{p}_n and \mathbf{p}_f , for ${}^{12}\mathbf{C}(p, 2p + n)$ events. Panel (a) is for events with $p_s > 0.22$ GeV/c, and panel (b) is for events with $p_e < 0.22 \text{ GeV}/c$; 0.22 GeV/ $c = k_F$, the Fermi momentum for 12C.

High statistics measurement is needed => (p,dN) reaction

FIG. 3. The distribution of the cosine of the opening angle between the \vec{p}_{miss} and \vec{p}_{rec} for the $p_{miss} = 0.55 \text{ GeV}/c$ kinematics. The histogram shows the distribution of random events. The curve is a simulation of the scattering off a moving pair with a width of 0.136 GeV/c for the pair c.m. momentum.

-0.96

-0.94

-0.92

-0.90

cos y

¹²C(e,e'pp[or n]) at JLab PRL99(07)072501

2015年11月18日水曜日

FIG. 1.

Counts

40

30

20

10

0_1.00

0.98

¹²C(p,ppn) at BNL PRL90(03),042301 WSF/GRAF(WS/Grand-RAiden Forward mode)

- New beam line for low-background coincidence measurement

WSF/GRAF(WS/Grand-RAiden Forward mode)

- New beam line for low-background coincidence measurement

Before GRAF

[RCNP-E443] Snapshots of online data

3% in σ for Pla-QDC 150 psec in σ for RF-Pla-TDC

Roadmap of Experiments at RCNP & GSI-FAIR, ...

Stage 1-4: p(⁶He/⁶Li,d) experiment @ FRS

Stage 1-4: p(⁶He/⁶Li,d) experiment @ FRS

Stage 2-2: (p,dN) experiment @ Super-FRS

Summary

- We have observed large components of high-momentum neutrons in the ¹⁶O ground state via (p,d) reaction.
- The results indicate possible evidence on the effect of tensor interactions in ¹⁶O.
- Further ¹⁶O(p,d) experiments at RCNP, GSI-(FAIR) using proton beams at 400-1200 MeV were performed to confirm the results, and to provide more experimental information.
- ¹²C/¹⁶O(p,dN) experiment was (successfully) performed at RCNP using newly constructed WSF (GRAF).
- Further experiments to study the effect of tensor interactions in ⁶He/⁶Li, and ¹²C/¹⁶O(p,dN) at GSI-FAIR are planned/proposed.

Thank you very much for your attention!