Ten years of the shell evolution driven by the tensor forces

－from magic numbers to dual quantum liquid picture－

Takaharu Otsuka University of Tokyo／MSU／KU Leuven
HPCI project field 5
＂The origin of matter and the universe＂

Outline

1. Shell evolution and tensor force

2. Shell evolution and QCD

3. Dual quantum liquid picture
4. Summary and perspectives

図2－23 1 粒子軌道の順序•図は M．G．Mayer and J．H．D．Jensen，Elementary Theory of Nuclear Shell Structure，p．58，Wiley，New York， 1955 からとった．

Magic numbers

 byMayer and Jensen（1949）

R SHELL MODEL

As N or Z is changed in an open shell, the shell structure is changed (evolved), and the change can be descriobed by

- Monopole component of the NN interaction

$$
v_{m ; j, j^{\prime}}=\sum_{k, k^{\prime}}\left\langle j k j^{\prime} k^{\prime}\right| V\left|j k j^{\prime} k^{\prime}\right\rangle / \sum_{k, k^{\prime}} 1,
$$

\longrightarrow Averaged over possible orientations

Linearity: Shift $\Delta \epsilon_{j}=v_{m ; j, j^{\prime}} n_{j^{\prime}} \quad n_{j^{\prime}}$: \# of particles in j^{\prime}

This can be substantial change in exotic nuclei. For $j^{\prime}=9 / 2$, the multiplication by a factor of 10 !

Poves and Zuker made a major contribution in initiating systematic use of the monopole interaction. (Poves and Zuker, Phys. Rep. 70, 235 (1981))

Monopole effect of tensor force
One-dimensional collision model

TO, Suzuki et al. PRL 95, 232502 (2005)
TO, Phys. Scr. T152, 014007 (2013)

$$
\text { At collision point: } \Psi \propto e^{i k_{1} x_{1}} e^{i k_{2} x_{2}}+e^{i k_{2} x_{1}} e^{i k_{1} x_{2}}=2 e^{i K X} \cos (k x)
$$

large relative momentum k

strong damping

wave function of relative coordinate

$$
k=k_{1}-k_{2}, \quad K=k_{1}+k_{2}
$$

wave function of relative motion

Appearance of $\mathrm{N}=32$ and 34 magic structures

Experiment @ RIBF \rightarrow Finally confirmed

even Ca isotopes and neighbouring n new of first 2^{+}(closed symbols) and 3^{-}(open even-even ${ }^{42-54} \mathrm{Ca}$ isotopes [28]. The res study are indicated by triangular marker data dashed lines are shell-model predictions of respectively (see text for details). Tentat RIBF
\qquad ergies ls for resent 1 and (3_{1}^{-}), signments are enclosed by parentheses. b, $E\left(2_{1}^{+}\right)$along the $N=30,32$ and 34 isotonic chains. The solid and dashed lines are intended to guide the eye. Vertical dotted lines represent the traditional magic numbers in both plots.
er-corrected γ-ray energy spectra. De-excitation γ rays measured in coinci-
${ }^{4} \mathrm{Ca}$ and c , ${ }^{53} \mathrm{Ca}$ reaction products. Peaks a Steppenbeck et al. Nature, 502, 207 (2013)
ve intensities are indicated by italic fonts. The short-blue and long-black dashed

Outline

1. Shell evolution and tensor force

2. Shell evolution and QCD

3. Dual quantum liquid picture
4. Summary and perspectives

Input from chiral Effective Field Theory (EFT) of QCD

N3LO NN interaction
$\mathrm{V}_{\text {low } k}$ treatment of high momentum part
D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
S. K. Bogner, T. T.S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003); S. K. Bogner et al., Nucl. Phys. A 784, 79 (2007).

Fujita-Miyazawa type 3 N interaction

T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).

Novel method for in-medium correction

Kuo-Krenciglowa method *
 KK method

Divergence problem in multi-shell

$$
\begin{aligned}
H= & H=H_{0}^{\prime}+V^{\prime} \\
= & \left.\left(\begin{array}{cc}
P H_{0} P & 0 \\
0 & Q H_{0} Q
\end{array}\right)+\left(\begin{array}{ll}
P V P & P V Q \\
Q V P & Q V Q
\end{array}\right) \quad \begin{array}{ll}
E & 0 \\
0 & Q H_{0} Q
\end{array}\right)+\left(\begin{array}{cc}
P \tilde{H} P & P V Q \\
Q V P & Q V Q
\end{array}\right), \\
\hat{Q}(E)= & P V P+P V Q \frac{1}{E-Q H Q} Q V P
\end{aligned} \quad \begin{aligned}
& H_{\mathrm{BH}}(E)=P H P+P V Q \frac{1}{E-Q H Q} Q V P . \\
& V_{\mathrm{eff}}^{(n)}= \tilde{H}_{\mathrm{eff}}^{(n)}=\tilde{H}_{\mathrm{BH}}(E)+\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \hat{Q}_{k}(E)\left\{\tilde{Q}_{\mathrm{eff}}^{(n-1)}\right\}^{k}\left(\epsilon_{0}\right)\left\{V_{\mathrm{eff}}^{(n-1)}\right\}^{k} .
\end{aligned}
$$

EFT NN int. + Fujita-Miyazawa $3 N$ int. with averaging

 (to be replaced by EFT N2LO 3 N int.)$\mathrm{V}_{\text {low k }}$: treatment of high-momentum components

EKK : in-medium correction (core polarization)

Shell model Hamiltonian

Effective single-particle energy
(N or Z dependence of effects of monopole int.)
Energy levels, electromagnetic matrix elements (diagonalization of Hamiltonian matrix)

Island of Inversion : neutron effective single-particle energies

... and other properties obtained by the shell-model diagonalization in the sd + pf shell

Ground-state energies

Neutron ESPE for Ca isotopes

Ca isotopes in the pf + sdg shell
The prediction of $\mathrm{N}=34$ magic number (2001) Is consistent with EFT (QCD) + EKK theoretical calculation.

TO et al, PRL 87, 082502 (2001)
E^{2+} of Ca isotopes

Outline

1. Shell evolution and tensor force
2. Shell evolution and QCD
3. Dual quantum liquid picture
4. Summary and perspectives

shape coexistence

${ }^{16} \mathrm{O}$
H. Morinaga (1956)

REVIEWS OF MODERN PHYSICS, VOLUME 83, Shape coexistence in atomic nuclei Kris Heyde* John L. Wood ${ }^{\dagger}$

Monte Carlo Shell Model (MCSM) calculation on Ni isotopes

This model space is wide enough to discuss how magic numbers 28,50 and semi-magic number 40 are visible or smeared out.

Interaction:
A3DA interaction is used with minor corrections

Energy levels and $\mathrm{B}(\mathrm{E} 2)$ values of Ni isotopes

Description by the same Hamiltonian
Shape coexistence in ${ }^{68} \mathrm{Ni}$

Occupation numbers

Effective s.p.e. by actual occupation numbers

Underlying mechanism of the appearance of low-lying deformed states: Type II Shell Evolution

Type II Shell Evolution in ${ }^{68} \mathrm{Ni}(\mathrm{Z}=28, \mathrm{~N}=40)$

Spin-orbit splitting works against quadrupole deformation
(cf. Elliott's SU(3)).
weakening of spin-orbit splitting
Type II shell evolution
stronger deformation of protons
\rightarrow more neutron p -h excitation

PES along axially symmetric shape

Type II shell evolution is suppressed by resetting monopole interactions as

$$
\begin{aligned}
& \pi f_{7 / 2}-v g_{9 / 2}=\pi f_{5 / 2}-v g_{9 / 2} \\
& \pi f_{7 / 2}-v f_{5 / 2}=\pi f_{5 / 2}-v f_{5 / 2}
\end{aligned}
$$

The local minima become much less pronounced.

Shape coexistence is enhanced by type II shell evolution as the same quadrupole interaction works more efficiently.

Effect of the tensor force

Bohr-model calc. by HFB with Gogny force, Girod, Dessagne, Bernes, Langevin, Pougheon and Roussel, PRC 37,2600 (1988)

This picture may be expanded ...

Dual quantum liquids in the same nucleus

Certain configurations produce different shell structures owing to (i) tensor force and (ii) proton-neutron compositions

Liquid 1 (~constant spherical SPE)
relevant to normal states in general
\qquad

core
proton

Liquid 2 (varying spherical SPE) relevant to specific intruder states

Note : density -> single-particle energies in other many-body systems

Shape evolution and phase transitions

Other cases just an example

${ }^{186} \mathrm{~Pb}$ Andreyev et al., Nature 405, 430 (2000)

Fission and Type II shell evolution

Type II shell evolution reduces the barrier and make the local minimum more profound
-> passage to fission ... (long-term open question)

Quantum Liquid picture (of Landau) with stable shell structure (a la Mayer-Jensen) has been a good conceptual guidance for most of states of many nuclei near the stability line on the Segre chart.

The central and tensor parts of nuclear force produce Type I Shell Evolution in many domains on the nuclear chart particularly away from the stability line, presenting a paradigm shift. Type I Shell Evolution is shown to occur in ab initio-type approaches with EFT (QCD) + EKK.

There is another new aspect, Type II Shell Evolution, resulting in
Dual Quantum Liquid picture. This produces dynamical (softer) shell structure in a non-linear way, where the two essential ingredients may be

- force that can change Is-splitting, like the tensor force
- proton-neutron contents of quantum liquids

Could we solve the problem of (spontaneous) fission?
Could it be a way to Island of Stability ?

Collaborators

- Naofumi Tsunoda (CNS-HPCI, Tokyo)
- K. Takayanagi (Sophia)
- Morten Hjorth-Jensen (Oslo/MSU)
- Yusuke Tsunoda (CNS, Tokyo)
- Noritaka Shimuzu (CNS-HPCI, Tokyo)
- Yutaka Utsuno (JAEA)
- Michio Honma (Aizu)

The atomic nucleus is a Quantum (Fermi) Liquid (of Landau) described by
interplay between single-particle energies and "residual" interaction

- in a way like free particles -

For most of states, there may have been Ansatz that

Spherical single particle energies remain basically unchanged.
-> spherical part of Nilsson model

Correlations originating in nuclear forces (residual interaction) produce various features, including shape evolution and shape coexistence.

Evolution of shell structure due to the tensor force

Tensor Interaction by pion exchange

$$
\mathbf{V}_{\mathrm{T}}=\left(\tau_{1} \tau_{2}\right)\left(\left[\sigma_{1} \sigma_{2}\right]^{(2)} \mathbf{Y}^{(2)}(\boldsymbol{\Omega})\right) \mathbb{Z}(\boldsymbol{r})
$$

Proc. Phys. Math. Soc. Japan 17, 48 (1935)
ρ meson ($\sim \pi+\pi$) : minor ($\sim 1 / 4$) cancellation
Ref: Osterfeld, Rev. Mod. Phys. 64, 491 (92)

How does the tensor force work?

Spin of each nucleon \uparrow is parallel, because the total spin must be $S=1$

The potential has the following dependence on the angle θ with respect to the total spin \vec{S}.

occupation numbers

effective single-particle energies (ESPE) for correlated eigenstate
$\epsilon_{j}=<\frac{\partial H_{m}}{\partial n_{j}}>$
H_{m} monopole part of H
< > : by actual occup. numbers

