Low-energy E1 mode and constraint on nuclear equation of state

International symposium on
High-resolution Spectroscopy \& Tensor interactions (HST15)
November $16^{\text {th }}$ to $19^{\text {th }}, 2015$
Osaka University Nakanoshima Center

INAKURA Tsunenori (Niigata U.)

Collaborations:
NAKATSUKASA Takashi (U. Tsukuba/RIKEN)
YABANA Kazuhiro (U. Tsukuba)
NAKADA Hitoshi (Chiba U.)
EBATA Shuichiro (Hokkaido U.)

Low-Energy E1 mode (LED)

= Low-lying dipole mode
~ Pygmy Dipole Resonance (PDR)

$>$ Emerge around (neutron) threshold.
$>$ Decoupled from GDR.
$>$ Observed in several mass region.
$>$ Several \% of cross section in n-rich nuclei, while a few \% in stable nuclei.

- Nature is still under debate.
- New collective mode such as oscillation
between excess neutrons and core?
- Provide constraint on neutron matter EoS?

Observed LED

$>$ 68Ni, 132Sn, 208Pb
$>\mathrm{Ni}$ isotope
$>$ Sn isotope
$>\mathrm{N}=82$ isotone, etc.

Tamii+,
PRL 107, 062502.

Adrich+, PRL 95, 132501.
Rossi+, PRL 111, 242503

Linear response calc. (RPA) with Skyrme in 3D mesh

- Density Functional Theory with Skyrme energy functional.
- Fully self-consistent calculation. PARAMETER FREE!
- 3D mesh representation
- applicable to deformed nuclei.
- suitable for describing unstable nuclei having skin or halo.
- deal with continuum states in good approximation.
- Linear response calculation
- compute linear response at fixed complex energy.
- good compatibility with paralleled computer.
- No pairing correlation: small impact on E1 mode. [PRC90, 024303]

$$
\left\{\left[\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right]-\hbar \omega\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right\}\left[\begin{array}{l}
X_{n j}(\omega) \\
Y_{n j}(\omega)
\end{array}\right]=-\left[\begin{array}{l}
f(\omega) \\
g(\omega)
\end{array}\right]
$$

Transition density of LED \& GDR

Magic numbers for LDD

$$
\mathrm{LED}=\int_{0}^{10 \mathrm{MeV}} \mathrm{~d} E \sigma_{\mathrm{abs}}(E)
$$

Neutron number

Canonical-basis TDHFB (with pairing corr.) Ebata, Nakatsukasa, Inakura, PRC90, 024303

Magic numbers for LDD

Canonical-basis TDHFB (with pairing corr.) Ebata, Nakatsukasa, Inakura, PRC90, 024303

Collective LED (in ${ }^{132} \mathrm{Sn}$)

Non-collective LED

N <= 82 collective LED
N > 82 collective + non-collective LED.

Ebata, Nakatsukasa, Inakura, PRC90, 024303

Non-collective LED

N <= 82 collective LED
N > 82
collective + non-collective LED.

Ebata, Nakatsukasa, Inakura, PRC90, 024303

Non-collective LED

Single particle-hole excitation to continuum state (= neutron emission mode)

- appear above threshold S_{n}.
- $\delta \rho$ similar to collective LED.

Ebata, Nakatsukasa, Inakura, PRC90, 024303

Fragmentation of GDR?

Nakada, Inakura, Sawai,

Constraint on E0S from LED

Inakura and Nakada, accepted in PRC. arXiv: 1509.02982

Quantities characteriving EoS

$\frac{E}{A}(\rho, \delta)=\frac{E}{A}(\rho, \delta=0)+E_{\mathrm{sym}}(\rho) \delta^{2}+O\left(\delta^{4}\right)$

$$
\delta=\frac{\rho_{n}-\rho_{p}}{\rho_{n}+\rho_{p}}, x=\frac{\rho-\rho_{0}}{3 \rho_{0}}
$$

SNM $: \frac{E}{A}(\rho, \delta=0)=E_{0}+\frac{K_{\infty}}{2} x^{2}+\cdots$ PNM : $E_{\mathrm{sym}}(\rho)=S_{0}+L x+\cdots$

Quantities characteriving EoS

$\frac{E}{A}(\rho, \delta)=\frac{E}{A}(\rho, \delta=0)+E_{\mathrm{sym}}(\rho) \delta^{2}+O\left(\delta^{4}\right)$

$$
\delta=\frac{\rho_{n}-\rho_{p}}{\rho_{n}+\rho_{p}}, x=\frac{\rho-\rho_{0}}{3 \rho_{0}}
$$

$\mathrm{SNM}: \frac{E}{A}(\rho, \delta=0)=E_{0}+\frac{K_{\infty}}{2} x^{2}+\cdots$ PNM : $E_{\text {sym }}(\rho)=S_{0}+L x+\cdots$
$\rho_{0} \sim 0.16 \mathrm{fm}^{-3}$
$E_{0} \sim-16 \mathrm{MeV}$
$K_{\infty}=200-240 \mathrm{MeV}$
$S_{0}=28-34 \mathrm{MeV}$
$L=30-80 \mathrm{MeV}$

Constraint on EoS from LED

- LED emerges and develops in neutron-rich nuclei with neutron skin which is approximately neutron matter.
- Does LED provide some information on EoS !?

L from LED

Carbone+, PRC81, 041301

LED cross section
$\sigma_{\text {LED }} \propto \int \mathrm{d} E S(E 1) E$

Reinhard+,
PRC81, 051303

Roca-Maza+, PRC88, 024316

$S_{0}($ or $J)$: Symm. energy

Dipole polarizability $\alpha_{D} S_{0}$
$\alpha_{D} \propto \int \mathrm{~d} E \frac{S(E 1)}{E}$

Introduction of L-dependence

$$
v_{i j} \Rightarrow v_{i j}-V_{L}\left[\rho^{\alpha}(r)-\rho_{0}^{\alpha}\right] P_{\sigma} \delta(r)
$$

Ono+, PRC68, 051601
The additional term
$>$ does not affect SNM EoS nor S_{0}.
$>$ changes L.

V_{L} is a parameter to control L.

Inakura and Nakada, accepted in PRC.
arXiv: 1509.02982

Correlations in ${ }^{132} \mathrm{Sn}$

Uncertainty for $L: 12 \mathrm{MeV}$.

Summary

$>$ LED emerges $\&$ develops in all isotopes beyond $N=28,50,82$.

- collective motion: oscillation between skin and core.
- single p-h excitation to continuum: neutron emission.
- fragmentation of GDR.
$>$ LED provide constraint on neutron matter EoS.
- $\alpha_{\mathrm{D}} \mathrm{S}_{0}$ correlates well with slope parameter L.

