

Beta decay of the exotic T_z = -2 nuclei ⁴⁸Fe, ⁵²Ni and ⁵⁶Zn

Sonja Orrigo

Outline

Beta decay experiments

β-decay spectroscopy of T_z = -1 and T_z = -2
 proton-rich nuclei (B. Rubio's talk)

- Focus on the study of T_z = -2 nuclei (GANIL experiment)
- Details of the data analysis (differences in comparison to the T_z = -1 case)
- Experimental results on the exotic ⁴⁸Fe, ⁵²Ni and ⁵⁶Zn nuclei

Charge-exchange (CE) experiments

- β-decay and CE experiments are complementary
- For each nucleus studied via β-decay there is already the corresponding CE experiment
- The CE exps. are performed at RCNP Osaka
 (Y. Fushita, H. Fujita, E. Ganioğlu)

Complementarity of β decay and CE reactions

Under the assumption of isospin symmetry, mirror Fermi and Gamow Teller transitions are expected to have the same strength

- β decay gives access to the absolute B(F) and B(GT) values
- The Charge Exchange cross section is proportional to B(F) and B(GT)
 Y. Fujita, B. Rubio, W. Gelletly, Progress in Particle and Nuclear Physics 66, 549 (2011)

The T = 2 case

⁵⁸Ni²⁶⁺ (74.5 AMeV) + ^{nat}Ni @ GANIL

DETECTORS

⁵⁸Ni²⁶⁺ (74.5 AMeV) + ^{nat}Ni @ GANIL

⁵⁸Ni²⁶⁺ (74.5 AMeV) + ^{nat}Ni @ GANIL

New results on $T_z = -2$ nuclei

Sonja Orrigo

Expected β decay of T_z = -2 nuclei

In the $T_z = -2$ proton-rich nuclei the decay is expected to proceed mostly by **proton emission** However the p-decay of the T = 2 Isobaric Analogue State (IAS) is usually isospin-forbidden, making possible the **gamma emission** in competition

• This situation is very different from the case of $T_z = -1$ nuclei, where only γ emission happens

Sonja Orrigo

β -decay \leftrightarrow Implant correlations

The time difference between implants and β-decay events give us the Half-life $T_{1/2}$ Each decay is correlated with all the implants happening in the same pixel of the DSSSD (statistical correlation)

Sonja Orrigo

The background subtraction procedure

It is important to remove the background due to random correlations in both DSSSD and γ spectra
 (a) Initial energy spectrum (1st time cut)
 (b) Background energy spectrum (2nd time cut)
 (c) BG-free energy (subtraction of previous ones)

The background subtraction procedure

HST 2015, Osaka, Japan

It is important to remove the background due to random correlations in both DSSSD and γ spectra
 (a) Initial energy spectrum (1st time cut)
 (b) Background energy spectrum (2nd time cut)
 (c) BG-free energy (subtraction of previous ones)

19/11/2015

12

Sonja Orrigo

New results for ⁴⁸Fe: the DSSSD spectrum

⁴⁸Fe: the DSSSD spectrum

19/11/2015

14

⁴⁸Fe: comparison of DSSSD and CE spectra

⁴⁸Fe: the half-life $T_{1/2}$

⁴⁸Fe: the gamma spectrum

Sonja Orrigo

New results for ⁵²Ni: the DSSSD spectrum

⁵²Ni: the DSSSD spectrum

Sonja Orrigo

⁵²Ni: comparison of DSSSD and CE spectra

⁵²Ni: the half-life $T_{1/2}$

⁵²Ni: the gamma spectrum

HST 2015, Osaka, Japan

Sonja Orrigo

⁵⁶Zn: β-decay strengths

TABLE III: Summary of the results for the β^+ decay of ⁵⁶Zn. Centre-of-mass proton energies, γ -ray energies, and their intensities (normalized to 100 decays). β feedings, Fermi and Gamow Teller transition strengths to the ⁵⁶Cu levels.

$E_p(\text{keV})$	$I_p(\%)$	$E_{\gamma}(\text{keV})$	$I_\gamma(\%)$	$E_X(\text{keV})$	$I_eta(\%)$	$B(\mathrm{F})$	B(GT)
2948(10)	18.8(10)	1834.5(10)	16.3(49)	3508(140)*	43(5)	2.7(5)	
		861.2(10)	2.9(10)				
2863(10)	21.2(10)			3423(140)	21(1)	1.3(5)	≤ 0.32
2101(10)	17.1(9)			2661(140)	14(1)		0.34(6)
1977(10)	4.6(8)			2537(140)	0		0
1131(10)	23.8(11)	309.0(10)		1691(140)	22(6)		0.30(9)
831(10)	3.0(4)			1391(140)	0		0
*Main component of the IAS							

S.E.A. Orrigo et al., Phys. Rev. Lett. 112, 222501 (2014)

Summary and outlooks

We have studied the β **decay of the** T_z **= -2,** ⁴⁸**Fe,** ⁵²**Ni and** ⁵⁶**Zn proton rich-nuclei** at GANIL

- ✓ New decay schemes have been determined
- ✓ The corresponding B(F), B(GT) values have been determined (in progress for ⁵²Ni)

B⁺ decay ⇔ (³He,t) : nice mirror symmetry, helps in the understanding

- ⁵⁶Zn: Isobaric Analogue State
 - ✓ Evidence for fragmentation due to strong isospin mixing of 33(10)%
 - \checkmark Nuclear structure is responsible for the **competition of the proton and** γ **decays**
 - ✓ Shell Model calculations (A. Poves)

We have observed the β-delayed gamma-proton decay

for the first time in the *fp*-shell in 3 branches

 \checkmark This exotic decay affects the conventional determination

of B(GT) in proton-rich nuclei

- \checkmark Importance of detecting the γ rays also for p-rich nuclei
- ✓ It is expected to be important in heavier nuclei

The E556a Collaboration

PRL 112, 222501 (2014)

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2014

Observation of the β -Delayed γ -Proton Decay of ⁵⁶Zn and its Impact on the Gamow-Teller Strength Evaluation

S. E. A. Orrigo,^{1,*} B. Rubio,¹ Y. Fujita,^{2,3} B. Blank,⁴ W. Gelletly,⁵ J. Agramunt,¹ A. Algora,^{1,6} P. Ascher,⁴ B. Bilgier,⁷ L. Cáceres,⁸ R. B. Cakirli,⁷ H. Fujita,³ E. Ganioğlu,⁷ M. Gerbaux,⁴ J. Giovinazzo,⁴ S. Grévy,⁴ O. Kamalou,⁸ H. C. Kozer,⁷ L. Kucuk,⁷ T. Kurtukian-Nieto,⁴ F. Molina,^{1,9} L. Popescu,¹⁰ A. M. Rogers,¹¹ G. Susoy,⁷ C. Stodel,⁸ T. Suzuki,³ A. Tamii,³ and J. C. Thomas⁸ ¹Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain ²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ⁴Centre d'Etudes Nucléaires de Bordeaux Gradignan, CNRS/IN2P3—Université Bordeaux 1, 33175 Gradignan Cedex, France ⁵Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom ⁶Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026, Hungary ⁷Department of Physics, Istanbul University, Istanbul 34134, Turkey ⁸Grand Accélérateur National d'Ions Lourds, BP 55027, F-14076 Caen, France ⁹Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile ¹⁰SCK·CEN, Boeretang 200, 2400 Mol, Belgium ¹¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 13 February 2014; published 3 June 2014)

Thank you for your attention!