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Abstract

The isoscalar (IS) and the isovector (IV) spin-M1 transition strengths were systemat-

ically measured for the study of the 1+ (M1) transitions that are mediated by ”σ” and

”στ” operators, respectively. The cross sections of the (p, p′) reaction using 295 MeV

proton beam were measured in the range of the scattering angle of 0−14◦. The experi-

ment was performed at the RCNP by using the Grand Raiden spectrometer applying the

dispersion matching technique for high energy resolution. The target nuclei of 12C, 16O,
20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca, the N = Z and even-even nuclei in the sd-shell

region, were measured for the systematic study. These nuclei allowed us to separately

observe the pure IS and the IV spin-M1 transition because their ground states are T = 0.

The gas target system was newly developed to employ neon and argon gas, and the ele-

mental sulfur was successfully used as a target with charged particle irradiation for the

first time.

The Jπand T assignments for the low-lying discrete states were performed by the

angular distribution of the differential cross section based on the distorted wave Born ap-

proximation (DWBA) calculation. The spin-M1 transition strengths were derived from

the cross section at 0◦ using the unit cross sections. The unit cross sections were deter-

mined from the β-decay and the γ-decay experiments in literature.

The quenching factors, the strength ratio of the experiment to the shell model calcu-

lation accumulated up to Ex = 16 MeV, were systematically 1.0 and 0.6 for the IS and

the IV transitions, respectively. The IV 1+ quenching factors were found to be consistent

with the GT quenching factors that were derived from the shell model calculation. The

difference of the quenching factors between the IS and the IV 1+ transitions was supposed

to originate from the different contribution of the 2p2h configuration mixing into the high

excitation energy region in each transition. Such difference in the 2p2h configuration

mixing has not been considered in theory.



Abstract

”σ” と ”στ” の遷移演算子によって引き起こされる 1+ の原子核遷移を調べるために

我々はアイソスカラー・アイソベクター型のスピンM1遷移強度を系統的に測定した。

295 MeV に加速した陽子ビームを用いて (p, p′)反応の微分散乱断面積を 0～14◦ の散乱角

度範囲内で測定した。実験は RCNP施設においてグランドライデンスペクトロメーター

を用いて行われ、エネルギー高分解能測定のために分散整合の手法が執られた。 sd 殻領

域に渡る全ての N = Z の偶々核である 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca の原

子核に対して系統的な研究を行った。これらは T = 0 の原子核であるので、純粋なアイ

ソスカラー・アイソベクター型のスピンM1遷移強度の測定を可能にしてくれる唯一の原

子核である。本研究の 0度高分解能測定に適している、自己保持型の単体硫黄標的やネオ

ン・アルゴン用のガス標的システムを新たに開発した。

励起エネルギースペクトルで観測された低励起なピークそれぞれに対して、歪曲波ボ

ルン近似（DWBA）計算に基づく微分断面積の角度分布の形よりスピンパリティとアイ

ソスピンを決定した。０度の微分断面積の値から単位断面積の比例性を用いてスピンM1

遷移強度を求めている。ここでこの単位断面積はβ崩壊やγ崩壊の既存のデータから求め

られている。

励起エネルギー 16 MeVまでの積算値の遷移強度に関する実験と殻模型計算の比をク

エンチング因子と定義すると、質量数に関わらず系統的に IS遷移では 1.0、IV遷移では

0.6という結果になった。この IV 1+ 遷移のクエンチング因子はGT遷移での殻模型計算

から得たクエンチング因子の結果と一致している。この ISと IV 1+ 遷移でのクエンチン

グ因子の違いは、2p2h励起の配位混合の影響がそれぞれの遷移で異なっていることに起

因すると考えられる。このような 2p2h励起の配位混合の IS、IV遷移での違いは理論的に

はこれまで全く考えられてこなかった。
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Chapter 1

Introduction

1.1 Electro-magnetic monents and nuclear structure

Nuclear structure has been studied in the light of electromagnetic properties of the nu-

cleus both experimentally and theoretically over the past decades. The interaction of the

nucleus with external electromagnetic field is expressed by the operators of electric as well

as magnetic multipole moments. The static multipole moments are represented in terms

of the diagonal matrix elements of the operators and the transition amplitudes between

the states by the off-diagonal elements.

The electric multipole moments involve the charge distribution and its motion in

the nuclei. The electric monopole (E0) transition has suggested the presence of nuclear

oscillation of“ breathing mode”and the electric dipole (E1) resonance observed in the

photo-absorption experiment has provided the signature of a collective dipole oscillation of

the protons relative to the neutrons. Furthermore, the electric quadrupole (E2) moment

have provided the decisive proof for the spheroid deformation of nuclear shape and the

quadrupole oscillations of the nucleus, as a whole, to allow the establishment of the

concept on the collective motion of the nucleons inside the nucleus.　

The magnetic multipole moments, on the other hand, represents the interaction of

the current density inside the nucleus with the electromagnetic field. Since the current

density involves two different contributions due to orbital motions and intrinsic spins of

the nucleons inside the nucleus, the situation becomes somewhat complicated compared

with the case of electric moments. For the odd mass nucleus, however, the magnetic

dipole (M1) moment, the lowest order moment, has served as a good probe for the single

particle characters of the last odd nucleon in the nucleus, thus strongly stimulating the

development of the shell model i.e., the particle picture of the nuclear structure.

The simple shell model, however, has been unable to correctly explain the observed

values of the magnetic dipole moments of odd nuclei as well as the hindered M1 transition

rates between the nuclear states. These have been discussed phenomenologically in terms
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of the quenching of the nucleon spin gyromagnetic factor (gs), as compared to the free

nucleon value. The improvements of the theory have been considered by taking into

account the configuration mixings (or core polarization) in the nuclear states. Since,

however, only a limited amount of experimental data have been available to separate the

contributions of the nucleon orbital motions and the intrinsic spins to the current density

in the nucleus, the thorough understanding of the situation with the M1 moment is still

an open problem in nuclear physics and awaits further experimental information. The

present study follows this line and especially aims to provide the systematic information

on the spin contributions to the M1 moment.

1.2 ”Quenching problem” of magnetic dipole moment

One of the interest subjects is the ”quenching problem” in the magnetic dipole moment

i.e., reduction of the values of the matrix elements related to the M1 operator. Before

going into details of the problem, it would be of value to describe the form of the M1

moment operator briefly.

1.2.1 Operator of magnetic dipole moment

The M1 moment operator Ô(M1) is represented by the sum of the contributions of

protons and neutrons in the nucleus, and rewritten into the sum of isoscalar and isovector

moments in the isospin formalism, as follows.

Ô(M1) =

⎡
⎣ Z∑

k=1

(g π
l lk + g π

s sk) +
A∑

k=Z+1

(g ν
l lk + g ν

s sk)

⎤
⎦μN (1.1)

=

[
A∑

k=1

{(
g IS

l lk + g IS
s

σk

2

)
+
(
g IV

l lk + g IV
s

σk

2

)
τz(k)

}]
μN , (1.2)

where μN denotes the nuclear magneton, g’s are the gyromagnetic factors (g-factors) for

the protons or neutrons denoted by the superscripts π or ν. The suffixes IS and IV denote

isoscalar and isovector quantities, respectively, in the isospin representation. The vectors

lk, sk, and σk denote the orbital angular momentum, spin and Pauli spin operators acting

on the k-th nucleon. The operator τz(k) is the third component of the isospin operator

τ acting on the k-th nucleon and the eigen value is +1 for neutrons and −1 for protons.

The values of the g-factors for the free nucleons are g π
l = 1, g ν

l = 0, g π
s = 5.586, and

g ν
s = −3.826, giving g IS

l , g IS
s , g IV

l , and g IV
s to be 0.5, 0.880, −0.5, −4.706, respectively.

Each term of the isoscalar (IS) and the isovector (IV) components may be seen to be

composed of the two terms of orbital part and spin part. Leaving out the gyromagnetic

ratios and a constant, the matrix element of the M1 operator is thus given by the sum
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of the four reduced matrix elements of IS orbital, IS spin, IV orbital and IV spin parts,

symbolically expressed by M(l), M(σ), M(lτ ) and M(στ ), respectively, hereafter.

1.2.2 Static magnetic moment and Gammow-Teller transition
rate

As mentioned above, the static magnetic moments of the ground states of odd nuclei have

not been reproduced correctly by the single particle model. The experimental values have

been known to fall in the range between the single particle predictions for the particles

in the orbits of l ± 1/2 (Schmidt value). This fact has strongly suggested the presence

of configuration mixings in the ground states to reduce the matrix elements of M(σ)

and M(στ ), and has been discussed in terms of gs-quenching. The deviation of the

magnetic moment from the Schmidt value, however, is rather complicated because of the

combined contributions of the four components mentioned above. The separation of the

contributions of the different components is expected to provide precious information for

the nuclear structure.

In the past decade, there bas been experimentally observed another quenching problem

in the Gammow-Teller (GT) transitions of ΔS=1, ΔL=0, and ΔT=1. The GT transition

is considered to be caused by the operator proportional to στ . The summed GT strengths

in the GT giant resonance of up to Ex ∼ 20 MeV in the (p, n) reactions have been observed

to be ∼50% [1] of the model independent prediction of the Ikeda sum rule [2], nearly

irrespective of the mass number, as shown in Fig 1.1. The quenching problem has been

solved by extending the measuring region in terms of excitation energy. The detailed

strength measurements by the (p, n) and (n, p) reactions up to Ex = 50 MeV [3] have

revealed that a significant amount of the GT strength, ∼40% of the sum rule, distributes

in the continuum region, showing a presence of the 2p2h configuration coupling to the

1p1h state. Thus, the quenching phenomena observed in the region of low excitation

energy reflect the strength distribution at the region of high excitation energy.

1.2.3 Quenching phenomena in spin-flip transition operator

Since the GT transition operator is analogous to the last term in Eq. (1.2) for the M1

transition, it is of considerable interest to explore the IV spin part (mediated by στ

operator) of the M1 strength systematically, for comparison with the behavior of the GT

transition strength. It is also of interest to study how differently the IS and the IV spin

parts (mediated by σ and στ operators, respectively) behave in the nuclear chart since

they are mediated by the spin-flip operators.

How does the present theory predict the IS and the IV spin-flip transitions? The

shell model calculation shows the similar strength distributions and the similar quenching
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degree for the IS and IV spin-M1 transitions. In one meson exchanging model, however,

pseudo-scalar mesons of η and π correlates with a nucleon for the IS and IV spin-M1

transitions, respectively. Since their masses and coupling constants are not identical,

different quenching phenomena and different strength distributions may be to be observed

in the IS and IV spin-M1 excitations.

Unfortunately, the IS spin-flip transition is much weaker than the IV one i.e, the IS

transition strength is as weak as 3.5% and ∼10% of the IV one in electro-magnetic in-

teractions and hadronic interactions, respectively. Since few experimental data of the IS

spin-M1 transition have been observed owing to the weakness of the transition, new mea-

surements which allow us to study the IS and IV spin-M1 transition strength distributions

are required.

1.3 Measurement of spin-M1 transition strength

1.3.1 Definition of spin-M1 strength

Following the convention of Edmonds [4], the IS and IV spin-M1 transition strengths can

be defined as

B(M1)σ =
1

2Ji + 1

3

4π

∣∣∣∣∣g
IS
s

2
M(σ)

∣∣∣∣∣
2

μ 2
N (1.3)

B(M1)στ =
1

2Ji + 1

3

4π

∣∣∣∣∣g
IV
s

2
M(στz)

∣∣∣∣∣
2

μ 2
N , (1.4)

respectively. The details of the formalism are described in Appendix A.
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1.3.2 Proton inelastic scattering at small angles for spin-M1 ex-

citation

The proton inelastic scattering at small scattering angles is supposed to be the best probe

for the study of the IS and IV spin-M1 transition strength because the probe is believed

to excite only spin parts in the M1 transition and the response for the IS transition by

the hadronic interaction is stronger than that by the electro-magnetic interaction. The

spin part of the M1 transition couples the central component of the interaction. For the

unnatural parity transition, e.g., M1 transition, the effective interaction by the calculation

shows that the central component increases but the spin-orbit and tensor components

decreases at the region of the small momentum transfer, as shown in Fig. 1.2. The

sensitivity ratio for the IS and IV transitions in the hadronic scattering at the region of

the inter mediated energy for incident proton is estimated to be |Vσ/Vστ | ∼ 0.1 as shown

in Fig. 1.3, while that in the electromagnetic interaction is
∣∣∣g IS

s /g IV
s

∣∣∣2 = 0.035. Thus,

the proton inelastic scattering at the region of small scattering angles is essential for the

observation of the IS and IV spin-M1 transitions.

The nucleon-nucleon (NN) interaction between an incident particle and a target nu-

cleon can be described as [5, 6]

V12 = V0 + Vσ( �σ1 · �σ2) + VLS(�L · �S) + VT S12

+�τ1 · �τ2

(
Vτ + Vστ ( �σ1 · �σ2) + VLSτ (�L · �S) + VT τS12

)
, (1.5)

where the suffixes ”1” and ”2” refer to the incident particle and the target nucleon,

respectively. The total spin operator and the relative angular momentum are defined as

�S ≡ �s1 + �s2 and �L ≡ (�r1 − �r2) × (�p1 − �p2). The two-body tensor operator is defined as

S12 ≡ 3( �σ1 ·�r)( �σ1 ·�r)/r2−( �σ1 · �σ2). In the direct nuclear reaction, the Vσ and Vστ terms are

responsible for the IS and IV spin-M1 excitations, respectively. The energy dependences

of the t-matrix amplitudes of terms, V0, Vσ, Vτ , and Vστ , are shown in Fig. 1.3. The V0

term contribution reaches a minimum at 300 MeV of the proton beam energy. Since,

therefore, the distortion effects in the (p, p′) reaction are expected to be minimum at

300 MeV, the reaction at 300 MeV proton beam would make the best probe for the study

of the spin-M1 transitions. The distorted wave Born approximation (DWBA) calculation

would provide a good description of nucleon-nucleus scattering owing to the dominance

of the one-step process in the intermediated energy region.

1.3.3 Pure IS spin-M1 transition

It is usually hard to experimentally extract the IS spin-M1 transition strength because the

IS transition is mixed with the IV one and the observed transition strength is exhausted

mainly by the IV transition because of the weakness of the IS excitation. However, there
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Figure 1.2: Nucleon-nucleon interaction
at Ep = 135 MeV for unnatural parity
transition, taken from Ref. [14]. The
decomposition of the complete interac-
tion is shown as a function of momen-
tum transfer. The symbols C, LS, and
T denote central, spin-orbit, and tensor,
respectively.

Figure 1.3: Energy dependence of the t-
matrix amplitudes in the central component
of the interaction, taken from Refs. [5, 6].

—————————

is the only one case where the IS spin-M1 transition are purely observed. Figure 1.4

schematically shows the T0 → T0 and T0 → T0 + 1 transitions in the T0 �= 0 nucleus (left)

and the T0 = 0 nucleus (right). The pure IS transition occurs only in the T0 = 0 nucleus

although the pure IV transition occurs in any nucleus. This leads to that only the N = Z

nucleus allows us to observe the pure IS transition. Furthermore, if we consider the proton

scattering on the Jπ=0+ target, the transitions leading to the 1+ final states are of pure

M1 character. Therefore, the N = Z and even-even nucleus is a good target for the study

of the M1 strengths with clean separation of the IS and IV characters. Only the target

nuclei of 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca allows us to observe the pure

IS and IV transitions separately.
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Figure 1.4: Schematic diagram of isospin structure in the T0 �= 0 nucleus and the T0 = 0
nucleus.

—————————

1.3.4 1+ and T assignment

In an excitation energy spectrum of the (p, p′) reaction, many kinds of transitions are

observed because the (p, p′) reaction does not have any selectivity to the nuclear exci-

tations leading to the states of different spin-parity (Jπ) and isospin (T ). Thus, it is

of considerable importance to make the Jπ and T assignments correctly for the excited

states.

There are typically three methods of the assignments i.e., a model independent method

[7] by the use of polarization transfer observables [8, 9], a method to estimate T by com-

paring the results of different reactions with different isospin selectivity and a method

based on the empirical dependence of the angular distribution shape of the reaction yield

on Jπ and T . In the present study, we adopted the last method for the simplicity of the

measurement.

It is to be noted that the DWBA calculation gives a good description of the (p, p′) re-

action at 300 MeV because of the dominance of one step process at this energy. Therefore,

the Jπ (especially 1+) and T assignments can be performed with the aid of DWBA, after

the careful preparation of the parameters involved and the examination for the repro-

ducibility of the angular distributions of the yields for the states of known Jπ (especially

1+) and T . The detailed procedure of the assignment will be presented in Sec. 6.3.

1.3.5 Optical model potential parameter

The optical model potential parameters are employed in the DWBA calculation to describe

the distortion effect in the nuclear reaction. It has been found that the parameters are

sensitive to the calculation [10]. Thus, the parameters are expected to be experimentally

determined. The optical potential parameters can be derived from the elastic scattering
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cross section and the analyzing power observed in elastic scattering measurement using

a polarized proton beam. For this reason, we also performed the elastic scattering mea-

surements on each nucleus and the optical model analysis. The detail of the analysis will

be given in Chapter. 5.

1.3.6 Derivation of spin-M1 strength

Similarly to the case of the GT transition, the reduced spin-M1 strength B(M1)spin

(”spin” denotes σ or στ ) can be derived from the measured yield of the (p, p) reaction in

the following way;

dσM1

dΩ
(0◦) = σ̂M1F (q, ω)B(M1)spin, (1.6)

where the left side is the experimental spin-M1 differential cross section. The F (q, ω) in

the right side is the kinematic factor for the momentum and energy transfers q and ω,

defined as the ratio of the cross section value at finite (q, ω) to that at (q = 0, ω = 0).

The factor σ̂M1 is a proportionality constant called ”unit cross section”. The kinematic

factor F (q, ω) becomes unity as q approaches zero, namely when the measurement is

made at very forward angles. The unit cross sections for the IS and IV transitions are to

be determined experimentally by using the measured yields for the transitions of known

isospin properties.

1.3.7 High energy-resolution (p, p′) measurement at 0◦

Summarizing the descriptions in the preceding sections, it is to be stressed that the (p, p′)

reactions at 300 MeV on even-even target nuclei would provide a key information to un-

tangle the mysterious problem on the M1 quenching phenomenon. The 0◦ measurements

are of especial importance in deriving the spin-M1 transition strengths.

In order to make such information available, the most important would be to realize

high energy-resolution as well as low-background measurements for the scattered protons.

The high energy resolution will considerably help the correct Jπ and T assignments by

resolving the mixed transitions with different multipole orders and will also remove the

difficulty of causing errors in the strength derivations as seen in 28Si(Sec. 1.4). For this

purpose, careful dispersion matching between the beam line and the proton spectrometer is

indispensable. For reducing the background, the careful handling of the beam is important

to prevent the beam halo from occurring. The halo, if any, will cause a huge amount of

background particles to mask the proton spectrum at 0◦, thereby making the measurement

impossible.
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1.4 Previous study on spin-M1 quenching

The spin-M1 transition rate has been systematically measured for the nuclei in the sd-

shell region by the (p, p′) reactions [11, 12]. The experiments have been performed using

a 201 MeV proton beam from the Orsay synchrocyclotron. The observed transition rates

have been compared with shell model predictions in the full sd-space [13] in the form of

quenching factor, which is defined as the ratio of the sum of the reduced spin-M1 transition

probabilities B(M1) observed in a nucleus to the sum of those predicted by the shell

model. In the shell model calculations, the free gs-factor values have been assumed. The

quenching factors reported are plotted in the left panel of Fig. 1.5 against mass number

A. From this figure, the authors of Ref. [12] have claimed that almost no quenching

is present in the sd-shell nuclei because the M1 quenching factors are scattered from

unity. However, there are two problems to be considered before reaching the conclusion

of the M1 quenching. Firstly, the IS and IV spin-M1 transition strengths have not been

decomposed except for the cases of 28Si and 32S. Because the transition operators for the

IS and the IV spin-M1 transitions are not identical, it is essential to observe the IS and IV

excitations separately for the study of the M1 quenching and the strength distribution.

Secondly, the IV quenching factors for 28Si and 32S have not been consistent with the

GT quenching factors observed in the (p, n) reaction at Ep = 135 MeV [15, 16], where

not the model independent sum rule but the shell model prediction in the full sd-shell

has been applied for the GT quenching factor. The observed GT quenching factors with

the shell model calculation have been systematically 0.6 for 20Ne, 24Mg, 28Si, and 32S as

shown in the right panel of Fig. 1.5. This does not imply that the relationship in terms

of isospin symmetry is present between the IV spin-M1 and the GT transitions. Since

the quenching phenomena have been observed in the static magnetic moments mainly

based on the IV spin part, it may be natural that the IV spin-M1 transition strength has

also quenching phenomena. Therefore, the IS and IV spin-M1 transition strengths are

considerably required to be systematically measured for the M1 quenching factors.

1.5 Outline of this thesis

In this thesis, the IS and IV spin-M1 excitations were precisely and systematically mea-

sured for 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca. This is the first systematic

measurement of the IS and IV spin-M1 transition strengths at 0◦. The (p, p′) measure-

ments at 0◦ and at small scattering angles with high energy resolution were performed

using a 300 MeV proton beam from the RCNP RING cyclotron. The unit cross section

were reliably determined by using the known data of the β-decay, the γ-decay, and the

(3He,t) experiments.
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Figure 1.5: The M1 (left) and GT (rigth) quenching factors observed in the (p, p′) reac-
tion at Ep=201 MeV [12] and the (p, n) reaction at Ep=135 MeV [15, 16], respectively.
The quenching factor is defined as the total strength ratio of the observed transitions
in a nucleus to the full sd-shell model prediction with the free gs-factors. The model
independent sum rule is not employed for the GT quenching factor.

—————————

The experimental setup and conditions are given in Chapter 2. The preparation and

the development of the targets are described in Chapter 3. The analysis for the proton

inelastic scattering data taken by using unpolarized proton beam together with proton

elastic scattering data taken by using polarized proton beam are presented in Chapter 4

and Chapter 5, respectively. The 1+ and T assignment and the conversion to B(M1)σ and

B(M1)στ values using unit cross sections are described in Chapter 6. The comparison of

the experimental spin-M1 transition strengths with theoretical calculations is discussed

in Chapter 7. Finally, the summary of this thesis is presented in Chapter 8.

The formalisms of M1 transition operator and IS- and IV-spin-M1 transition strengths

are given in Appendix A. The experimental excitation energy spectra are shown in Ap-

pendix B. The observed angular distributions of differential cross section for the final

discrete states in each target are presented in Appendix C. The experimental numeri-

cal data of elastic scattering are summarized in Appendix D. The spin-M1 transition

strengths of B(M1)σ and B(M1)στ are tabulated and compared with the previous results

in Appendix E. The performance of the analyzer target is reported in Appendix F.
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Chapter 2

Experimental setup

For the high energy resolution experiment at 0◦, the following conditions must be satisfied

as

• halo-free beam

• dispersive beam

• thin and large target.

It is hard to perform inelastic scattering measurements at 0◦ because particles to be

detected in the measurement are scattered to the identical direction to the primary beam.

Their separation in terms of momentum must be performed certainly for the measurement.

If the beam has a halo-component, a huge number of extra scattering originated from

the beam line or at the target folder is produced. Since the momentum of those extra

scattering is supposed to be uniform, they make the measurement impossible because of

their tremendous number noise events. Thus, high quality beam without halo-component

is required for the inelastic scattering measurement at 0◦. The (p, p′) experiments at 0◦

have been realized by employing finely tuned beam [8, 9, 19]. For high energy resolution,

careful dispersion matching [21, 22] between the beam line [23] and the spectrometer

is required. The combination of the two noble techniques for the measurement at 0◦

with high energy resolution have been realized recently [20]. The requirement for targets

to be used in the experiment is described in Chap. 3. Thus, the measurement for the

sophisticated study of the M1 quenching by the (p, p′) reaction at 0◦ is feasible at the at

the Research Center for Nuclear Physics (RCNP), Osaka University, Japan.

The high energy-resolution (p, p′) measurements at small scattering angles including

0◦ were performed at the Research Center for Nuclear Physics (RCNP), Osaka Univer-

sity, Japan. The layout of the RCNP facility is illustrated in Fig. 2.1. The coupled

cyclotrons, the K = 140 MeV Azimuthally Varying Field (AVF) cyclotron and the K =

400 MeV RING cyclotron, were used to accelerate protons up to 295 MeV. The beam was

transported onto the target placed in the scattering chamber of a magnetic spectrometer
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Grand Raiden (GR) [24] through the WS beam line [23]. Large Acceptance Spectrometer

(LAS) was simultaneously used to monitor the beam height at the target position, which

provided essential information for the reconstruction of scattering angles (see Secs. 4.3

and 4.4).

ws 

BLP 2 BLP 2 

BLP 1 
RING Cyclotron

AVF Cyclotron 

SOL2

SOL1

Grand Raiden

LAS

Figure 2.1: The layout of the RCNP cyclotron facility.

—————————
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2.1 Experimental setup

2.1.1 Ion source

Unpolarized and polarized proton beams were provided by the Electron Cyclotron Reso-

nance (ECR) ion source NEOMAFIOS [25], and the High Intensity Polarized Ion Source

HIPIS [26], respectively. The unpolarized proton beam was employed for the inelastic

scattering measurement and the polarized proton beam was employed for the elastic scat-

tering measurement. For the HIPIS, the proton polarization state was toggled between

the normal and the reverse states in every second to cancel out the geometrical asymme-

tries of the experimental apparatus. A typical beam intensity was 2−10 nA on the target

position.

2.1.2 Beam Line Polarimeter (BLP)

The Beam Line Polarimeters (BLP1 and BLP2 in Fig. 2.1) were used to monitor the

beam polarization of polarized protons in the elastic scattering measurement. The two

BLP’s were placed in the WS beam line. Each BLP consisted of four plastic scintillation

detectors arranged to form two pairs as shown in Fig. 2.2 in the horizontal plane to

measure the asymmetry of the pp elastic scattering. Each pair of the detectors (R−R’

or L−L’) counted scattered protons and the recoiled protons from an analyzer target in

coincidence. For this purpose, the scintillation counters were placed at 17.0◦ and 70.5◦ in

laboratory frame.

During the elastic scattering measurement, the BLP’s monitored the asymmetry of pp

scattering in the horizontal plane. A polyethylene (CH2) sheet with an areal density of

8.4 mg/cm2 and an aramid film (C14O2N2H3, made by Asahi-kasei Co. Ltd.) with an

areal density of 5.0 mg/cm2 (50 μm-thick) were used for the analyzer targets. Since the

analyzing power of the polyethylene target for 295 MeV protons has been known [27],

that of the aramid was determined by comparing the experimental asymmetries for the

two targets as described in App. F. The analyzer targets were continuously placed in the

beam line during the experiment.

The BLP’s were also used to monitor the beam transmission (beam loss) in the beam

line and the charge collection in a Faraday cup during the inelastic scattering measure-

ments employing the unpolarized proton beams. The targets were periodically inserted

in for 1 s and removed out of the beam for 10 s. Data by the detector system of the

GR and the LAS were taken only when the analyzer targets were moved out of the beam

position. The aramid film with an areal density of 5 mg/cm2 was used as a target. The

polyethylene film was not adequate to be used as the BLP target for this purpose because

the thickness was found to change during the irradiation. The stability of the target
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thickness is discussed in App. F.
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Figure 2.2: Configuration of the BLP.

—————————

2.1.3 Configuration for 0 degrees measurement

Figure 2.3 shows the experimental setup of the spectrometers in the 0◦ measurement. The

two spectrometers, the Grand Raiden (GR) spectrometer [24] and the Large Acceptance

Spectrometer (LAS) [30], were employed. The GR spectrometer was placed at 0◦ for

the proton inelastic scattering measurement. The LAS measured quasi-free scattering

protons to monitor the beam position at the target in the vertical direction. The LAS

was placed at θlab = 60◦, the most forward angle when the GR spectrometer was placed

at 0◦, throughout the experiment.

The experimental setup of the downstream of the GR spectrometer in the 0◦measurement

is shown in Fig. 2.4. The beam ducts were connected to the 0◦ Faraday Cup (0◦ FC) from

the exit of the GR spectrometer. This setup was used only in the 0◦ measurement. The 0◦

FC was placed at 12 m downstream of the focal plane detectors of the GR spectrometer.

Lead, iron, and concrete blocks were piled to surround the 0◦ FC, shielding γ-ray and

neutrons from flying to the detectors. The distance of 12 m and the shield for the 0◦

FC were indispensable to suppress background events originated from the FC in the 0◦

measurement. For precise charge collection of the beam by the 0◦ FC, an electron sweeper

to bend away electrons which come from the upstream side by a magnetic field was placed

at the entrance, inside the concrete block.
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Figure 2.3: The arrangement of the GR spectrometer and the LAS for the inelastic
scattering measurement at 0◦.
—————————

15



MWDC1

MWDC2
PS1

Primary beam

Beam viewer-1

Focal plane detectors
of the GR

0 deg. Faraday cup 

PS2

Electron Sweeper

Beam viewer-3

Q-magnets 

Beam viewer-2

12 m

Al-plate

Shield block

Figure 2.4: The experimental setup of the downstream of the GR in the 0◦measurement.
The primary beam was stopped in the 0◦ Faraday cup placed 12 m downstream from the
detector system to reduce background events.

—————————
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2.1.4 Grand Raiden spectrometer (GR)

The spectrometer GR has been designed for high resolution measurement. Its config-

uration is abbreviated to QSQDMDD; three Dipole magnets (D1, D2 and DSR), two

Quadrupole magnets (Q1 and Q2), a Sextupole magnet (SX) and a Multipole magnet

(MP) as shown in Fig. 2.5. The specifications of the GR spectrometer are summarized

in Table 2.1. One of the remarkable characteristic is in its high momentum resolution of

p/Δp = 3.7× 104. The GR was placed at 0, 2.5, 4.5, 6, 8, 10, 12, and 14◦ in the inelastic

scattering measurement to observe angular distribution of the differential cross section for

the Jπ and T assignments. In the elastic scattering measurement, the GR spectrometer

was placed at 6, 9, 12, 15, 18, 21, 24, 27, and 30◦.

Q1 

Q2 
SX

D1 

D2 

MP 

DSR 

Focal Plane 
Detectors 

Target Scattering   
Chamber 

Beam 

0 1 2 3 m 

S. C.  Faraday cup 

Q1 - Faraday cup

Figure 2.5: The high resolution spectrometer Grand Raiden (GR) spectrometer. The
locations of the Faraday cup (FC) in the scattering chamber (SCFC) and that at the exit
of Q1 magnet (Q1FC) are indicated by the arrows.

—————————

The focal plane detector system [28] of the GR is shown in Fig. 2.6. The system

consisted of two multi-wire drift chambers (MWDC1 and MWDC2) and two plastic scin-

tillation counters (PS1 and PS2).

The MWDC’s were used to determine positions and angles of the momentum analyzed

particle. The specifications of the MWDC are summarized in Table 2.2. Each MWDC

had two anode wire planes (X and U). The tilting angle of the U plane wires was 48.19◦

17



Table 2.1: The specifications of the GR spectrometer and the LAS at the RCNP.

Grand Raiden Large Acceptance Spectrometer
(GR) (LAS)

Configuration QSQDMDD QD
Mean orbit radius 3m 1.75m
Total deflection angle 162◦ 70◦

Tilting angle of focal line 45◦ 57◦

Maximum magnetic rigidity 5.4 T·m 3.2 T·m
Vertical magnification 5.98 -7.3
Horizontal magnification -0.417 -0.4
Momentum range 5 % 30 %
Momentum resolution 37076 4980
Acceptance of horizontal angle ±20 mr ±60 mr
Acceptance of vertical angle ±70 mr ±100 mr

relative to the vertical X plane wires. A high voltage of −5.6 kV was applied to the

cathode planes of the MWDC’s. A voltage of −0.3 kV was applied to the potential wires.

A gas mixture of argon (70%), iso-butane (30%), and iso-propyl-alcohol (vapor pressure at

2℃) was used. Signals from the anode wire were pre-amplified and discriminated by the

LeCroy 2735DC cards. Time information was obtained by using the LeCroy 3377 Time

to Digital Converters (TDC’s). See Sec. 4.2 for reconstruction of particle trajectory.

The PS’s gave information on energy loss for particle identification and trigger signals

for the data acquisition system. The scintillation light was detected by the photomultiplier

tubes (PMT’s) on both sides of each PS. Signals from the PMT’s were digitized by the

LeCroy FERA and FERET system. See Secs. 4.1 and 2.2 for the particle identification

and the trigger system, respectively. An aluminium plate with a thickness of 10 mm (or

5 mm) was placed between the PS1 and the PS2 to reduce background due to Compton

scattered electrons by background γ-rays. The aluminium plate, however, decreases the

trigger efficiency because a few percent of true events of protons may be scattered out.

To save them, the trigger efficiency using the aluminium plate has been calibrated by

using the triplet scintillation counters employing the 295 MeV proton beams [29]. The

trigger efficiency is summarized in Table 2.3, and they were used to deduce absolute cross

sections as τ in Eq. 4.14 (Sec. 4.7).

2.1.5 Large Acceptance Spectrometer (LAS)

The LAS [30] is a QD type spectrometer with a large acceptance in terms of momentum

of δp/p = 30% and a solid angle of 20 msr. The configuration of the LAS is illustrated in

Fig. 2.7. The specifications of the LAS are summarized in Table 2.1. The LAS was placed

at 60◦ throughout the experiment to monitor the beam position in the vertical direction
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Table 2.2: The specifications of the MWDC of the GR spectrometer.

Wire configuration X(0◦=vertical), U(48.2◦)
Active area 1150w × 120H mm
Number of sense wires 192 (X), 208 (U)
Cathode-anode gap 10 mm
Anode wire spacing 2 mm
Sense wire spacing 6 mm (X),4 mm (U)
Sense wires 20μmφ gold-plated tungsten wire
Potential wires 50μmφ beryllium-copper wire
Cathode 10μm carbon-aramid film
Cathode voltage −5.6 kV
Potential-wire voltage −0.3 kV
Gas mixture Argon(70%) + Iso-butane(30%)

+ Iso-propyl-alcohol(vapor pressure at 2℃)
Gas seal 12.5 μm aramid film
Pre-amplifier LeCroy 2735DC
TDC LeCroy 3377

Table 2.3: The trigger efficiency in using the aluminium plate [29]. The efficiency is used
as τ in Eq. 4.14 to deduce an absolute cross section.

Aluminiumu τ
5 mm 0.984(1)
10 mm 0.978(1)

MWDC1

MWDC2
PS1 

GR spectrometer

Aramid film
(50μm)

PS2 

Al (5 or 10 mm)

Figure 2.6: The focal plane detector system of the GR.

—————————
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at the target by mainly measuring the quasi-free scattered protons from the target. The

angle of 60◦ was the most forward angle when the GR was placed at 0◦.

The focal plane detector system of the LAS [31] consisted of two MWDC’s and two

planes of plastic scintillator counters (PS1 and PS2) as shown in Fig. 2.8. The speci-

fications of the MWDC’s of the LAS are summarized in Table 2.4. Each MWDC had

three anode wire planes (X, U, and V). The tilting angle of the U (V) plane wires was

31◦ (−31◦) relative to the vertical X plane ones. Voltages of −5.3 kV and −0.3 kV were

applied to the cathode plane of the MWDC ’s and to the potential wires in the U and

V planes, respectively. The X plane was not used. The same gas mixture with the GR

MWPC’s was employed.

Each of PS1 and PS2 consisted of three scintillation counters of 196 × 15 × 0.6 cm3

to cover the whole area of the focal plane of the LAS. Only the middle counters of the

PS1 and the PS2, however, were used for the present experiment since scattered protons

from the target were collimated in ±69 mrad (horizontal) and ±6.9 mrad (vertical) by

the slit (Sec. 2.1.6) and a large acceptance of the LAS was not required. The signals from

the PS1 and the PS2 were used to trigger the circuit of the LAS detector (see Sec. 2.2).

Scatterinmg
Chamber

Beam

Q

D

Focal Plane
Detectors

0 1 2 m

Figure 2.7: The configuration of the LAS.

—————————
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MWDC 1

0m 1m 

MWDC2
PS1 

PS2 
Al plate (3mm) 

Sideview of the  PS1 and PS2.
              (Only shaded counters were used.)

Figure 2.8: The focal plane detector system of the LAS. The PS1 (PS2) consisted of three
scintillation counters. Only the middle ones were used because particles scattered from
the target were collimated in ±69 mrad (horizontal) and ±6.9 mrad (vertical).

—————————

Table 2.4: The specifications of the MWDC’s of the LAS.

Wire configuration X(0◦=vertical), U(−31◦) , V(+31◦)
Active area 1700w × 350H mm
Number of sense wires 272 (X), 256 (U, V)
Cathode-anode gap 10 mm
Anode wire spacing 2 mm (X), 2.33 mm (U,V)
Sense wire spacing 6 mm (X), 7 mm (U,V)
Sense wires 20μmφ gold-plated tungsten wire
Potential wires 50μmφ beryllium-copper wire
Cathode 10μm carbon-aramid film
Cathode voltage −5.3 kV
Potential-wire voltage −0.3 kV
Gas mixture argon(70%) + iso-butane(30%)

+ iso-propyl-alcohol(vapor pressure at 2℃)
Gas seal 25 μm aramid film
Pre-amplifier LeCroy 2735DC
TDC LeCroy 3377
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2.1.6 Faraday cups and slits

Faraday cups

The primary beam after passing the target was stopped by a Faraday cup (FC). Three

kinds of FC’s were used depending on the angle of the GR. Their positions are shown in

Figs. 2.3 and 2.5. The 0◦ FC was used in the measurement at 0◦. The Q1FC [32] placed

at the exit of the first Q1 magnet was used for the measurements at 2.5◦ and 4.5◦. For

the inelastic scattering measurement at 6−14◦ and the elastic scattering measurement at

6−30◦, the primary beam was stopped by the SCFC in the scattering chamber.

The charge collection due to the beam transmission to the 0◦ and the Q1 FC’s was

compared to that of the SCFC because the absolute efficiency for the charge collection by

the SCFC has been calibrated [29]. The efficiency of the SCFC has been 0.986(8) × Q,

where Q is the beam charges read by the SCFC. The efficiency value 0.986(8) is expressed

as ε in Eq. 4.14. The ratio of the total events counted by the BLP to the charges collected

was measured for each FC. The ratio of the 0◦ FC (Q1FC) becomes larger than that of

the SCFC if a charge collection is not perfect due to an incomplete beam transmission

to 0◦ FC (Q1FC). The measurement for the ratio was performed in two different ways.

Method 1: with placing a BLP target in the beam, the ratio was periodically measured

for the 0◦ FC (Q1FC) and the SCFC. Method 2: with periodically moving a BLP target

in and out of beam, the ratio was measured during the inelastic scattering measurement

for 10 s in every 99 s. In the first 10 s, the ratio was measured inserting the BLP target,

and the inelastic scattering was measured with removing the BLP target in the left time.

The ratio of each FC was averaged through the experiment in the Method 2. In each

method, an aramid film was used as the BLP target (see Sec. 2.1.2 and Chap. F) and a

target was set in the scattering chamber. The deviations of the ratio of the 0◦ FC (Q1FC)

from that of the SCFC in each experiment are shown in the Fig. 2.9. The experiments

were held five times in total. In the last one, the measurement at 0◦ was not carried out.

The method 2 was performed in the third and the fourth experiments. The result of the

two methods was consistent within error bars. It was found that the charge collection in

the 0◦ FC and the Q1FC should be corrected. because their deviations were not zero.

The fact that the deviation value was not zero indicated the beam loss in the beam line.

As summarized in Table 2.5, the relative efficiency due to the charge collection and

the beam loss in the experiment measured by the 0◦FC and the Q1FC was 1.032(3) and

1.008(4), respectively. These values were used as crel in Eq. 4.14 for the correction between

the FC’s. The standard deviation was taken as the errors. Only for the 0◦ measurement in

the third experiment, the efficiency of 1.061(8) was used because the deviation originated

mainly from not the charge collection of the FC but the beam loss depending on the beam

transportation.
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The method 2 was intended also to monitor a change of the beam transmission (the

beam loss in the beam line) to each FC during the experiment. The trend of the beam

transmission is shown in Fig. 2.10 by normalizing the vertical axis. The difference of the

event rates between the BLP1 and the BLP2 is due to an areal density of the BLP target.

It is clear that the beam transmission to each FC was stable throughout the experiment.

The correction between the FC’s, however, was found to be applied because the averaged

values for the 0◦FC and the Q1FC were slightly higher than that for the SCFC. The

correction for the FC’s is summarized in Table 2.5.
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Figure 2.9: The deviation of the charge collection and the beam loss measured by the
0◦FC (Q1FC) from that of the SCFC in each experiment.
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Table 2.5: The relative efficiency of the charge collection and the beam transmission
compared to that of the SCFC. See the text for the method 1 and 2.

FC crel

0◦FC 1.032(3)
1.061(8)1

Q1FC 1.008(4)

1For the third experiment.

Slits

For the inelastic scattering measurement at small angles (0◦, 2.5◦, and 4.5◦), no slit was

placed at the entrance of the GR in order to reduce extra scattering in the beam line. For
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Figure 2.10: The trend of the beam transmission measured in the method 2. Event rates
taken by the BLP per beam charge measured each FC are plotted. The vertical axis
is normalized. The transmission was stable throughout the experiment. The averaged
values in the 0◦ FC and the Q1FC are shown in Fig. 2.9 with the normalization by that
of the SCFC.
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the inelastic and elastic scattering measurement at more than 6◦, a slit with an acceptance

of ±20 mrad (horizontal) and ±30 mrad (vertical) was used.

A slit with a taper [33] was set at the entrance of the LAS, where was 580 mm

downstream of the target. The slit determined the opening angle of the LAS to be ±69

mrad (horizontal) and ±6.9 mrad (vertical).

2.2 Trigger and data acquisition system

The schematic diagram of the trigger circuits for the GR and the LAS detector systems

is shown in Fig. 2.11. Charge signals generated in the PS’s were obtained from the left

(-L) and the right (-R) PMT’s. A PMT output was divided into two signals; one was sent

to a FERA (Fast Encoding and Readout ADC (analog-to-digital converter)) module for

pulse height measurement and the other was discriminated by a CFD (Constant Fraction

Discriminator). A CFD output was further divided into two signals. One was transmitted

to a FERET (Fast Encoding and Readout TDC system consisting of TFC’s (time to FERA

converter) and FERA’s for time-of-flight information. The other signal was sent to a Mean

Timer circuit, to generate a coincidence signal of the two PMT-outputs at the both ends of

the same scintillator. The trigger system was constructed by using LeCroy 2366 Universal

Logic Module (ULM) of the field programmable gate-array (FPGA) chips [34]. The trigger
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system received signals from the output of the Mean Timer and then internally generated

the trigger signal for the GR (LAS) data acquisition system. A typical trigger rate of the

GR detectors was 3 kHz in the 0◦ measurement.

Mean
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FE
RA
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PS1-L

PS1-R

PS2-L

PS2-R

CFD

CFD

CFD

delay

delay

Trigger
(GR or LAS)

LeCroy 2366
Universal Logic
Module

Figure 2.11: Schematic diagram of the trigger circuit of the GR (LAS) detector system.

—————————

The block diagram of the data acquisition (DAQ) system [35] for the focal plane

detectors in the GR spectrometer or the LAS is illustrated in Fig. 2.12. Data taken in

the present experiment consisted of electron drift time from the MWDC’s and charge and

timing signals from the PS’s. For the consistency of data flow, an event header, an event

number, and input register words were added to every event by the Flow Controlling Event

Tagger (FCET) [36]. The digitized data from each detector were transferred in parallel

via an ECL bus to a high speed memory module (HSM) in the VME crate (Lecroy 1191

Dual Port Memory) without any management by a software. To reduce dead time to

be caused by the data transfer, a pair of the HSM’s were used as a double buffer. The

typical live time fraction of the DAQ system was 90% for the GR detectors in the 0◦

measurement. The data stored in the HSM’s were moved via a gigabit Ethernet to an

IBM RS/6000SP (later replaced to an IBM eServer p5 595) work station. The data were

finally stored in the 480 GByte local hard disk of the work station. The event building

and online data analysis were also performed on this computer.

2.3 Beam tuning

A single turn extraction from the accelerators is indispensable for the (p, p′) experiment at

0◦ with high energy-resolution [20]. In this section, a beam tuning after the beam entering

in the WS hall is described. The following procedure required 1−1.5 days typically in
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Figure 2.12: Schematic view of the data acquisition system.

—————————
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total.

Achromatic beam tuning

First, a beam tuning in the achromatic transportation mode was performed by using the

GR. The proton elastic scattering on the 197Au foil target with an areal density of 1.68

mg/cm2 at 8◦was measured to study the momentum dispersion of the beam. A gold target

is ideal to examine beam quality because of the availability of thin foils and the small

kinematical effect to change the proton energy depending on the scattering angle. The

beam transportation till the RING cyclotron was tuned to achieve an energy resolution

of 35−40 keV (FWHM) typically. Figure 2.13 shows the best energy resolution of 31 keV

(FWHM) with online analysis.
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Figure 2.13: The best energy resolution of 31 keV (FWHM) obtained by the online
analysis in the achromatic beam transportation. The energy resolution corresponds to
the momentum dispersion of the beam. The reaction was 197Au(p, p0) at 8◦. The areal
density of the target was 1.68 mg/cm2.

—————————

Halo-free tuning

Second, a tuning to reduce a halo component of the beam was performed. The GR was

set at 0◦ and a beam duct to the 0◦ FC was connected. The high voltages to the cathode

of the MWDC’s were turned off for safety. A blank target i.e., a target holder without a

target foil, was placed in the scattering chamber. A primary beam was led to the 0◦ FC by

finely tuning the magnetic fields of the D1, D2, and DSR of the GR monitoring the beam

position on the three beam viewers drawn in Fig. 2.4. After the beam transmission to the

0◦ FC, a halo-component of the beam was studied by a count rate of the trigger scintillator

of the GR. The count rate was mainly due to background originated from scattering of a

halo of the beam on the target holder. Starting from the trigger rate at the GR counter

of more than 1 kHz/nA, the rate was reduced below 100 Hz/nA by adjusting parameters
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of the beam line, mainly beam collimators and quadrupole magnets, between the AVF

and the RING.

Dispersion matching

Finally, the beam line operation was switched to the dispersive mode [23] for dispersion

matching with the GR spectrometer [21, 22]. A faint beam with an intensity of ∼103

particles/s was transported to the central at the GR focal plane so that the beam width

was directly profiled by the focal plane detector. A blank target was used. The lateral

and angular dispersion matching conditions were realized by adjusting quadrupole fields

in the WS beam line to minimize the size of both the lateral and the angular spreads of

the beam at the focal plane [22]. An energy resolution of 12 keV (FWHM) was typically

achieved by the dispersion matching for a faint beam of an energy spread of 35 keV. Figure

2.14 shows a typical result with a foil target after the dispersion matching. Excitation

energies and spin-parities were taken from the data base of Ref. [37].

After establishing the matching condition, all the magnetic fields of the WS beam line,

except for the dipole fields, were fixed during the experiment.
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Figure 2.14: A typical result of energy resolution of 14 keV (FWHM) was achieved in
the 197Au(p, p0) reaction using 295 MeV proton beams at 8◦ by employing dispersion
matching. The same energy spectra are scaled in linear and logarithms in the right and
left panel, respectively. Excitation energies and spin-parities were taken from the data
base of Ref. [37]
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2.4 ”Under focus” mode

Purpose of under focus mode

The GR spectrometer was operated in the under focus mode, decreasing the magnetic

field of the first quadrupole Q1 magnet by 5% relative to the standard setting, for the two

purposes i.e., a software-cut of the data in terms of scattering angles at the target position

and an improvement of the scattering angle measurement. Since a slit to determine the

solid angle of GR spectrometer was not used in the measurement at 0◦, a software-cut is

expected to be applied for the data analysis. In the measurement at 0◦, both the scattering

angular resolution in the horizontal and the vertical planes at the target position equally

affects the total scattering angle resolution. In the standard magnetic filed setting, the

particle trajectories in both the plane are focused at the focal plane. Although the vertical

scattering angle is determined from the vertical incidence angle at the focal plane in the

standard setting, the vertical scattering angle at the target position is evaluated to be

worse than 1◦ owing to the small vertical angular magnification of 1/5.98. Since the

horizontal scattering angle resolution at the target position is evaluated to be better than

0.1−0.2◦ from the horizontal scattering angle at the focal plane, the improvement of the

measurement for the vertical scattering at the target position is desired for a better level

accuracy of the scattering angle. Thus, the vertical position was measured at an off-focus

plane for the vertical scattering angle at the target position under the setting of the under

focus mode [38].

With the under focus mode, the angle resolution in the vertical direction was improved

to be 0.5−0.6◦from 1◦. See Sec. 4.3 for the reconstruction from the vertical position to

the vertical scattering angle.

Sieve-slit measurement

An ion optics of the under focus mode should be known to reconstruct the scattering

angles at the target position from the particle information measured by the focal plane

detector. For this purpose, the sieve-slit measurement was performed as described in

the followings. The sieve-slit had several through holes on a brass plate as shown in

Fig. 2.15. The diameter of the holes was 2 mm except for the one at the center. The

central hole was 3 mm in diameter. The slit was placed at the entrance of the GR, 638

mm downstream of the target position. Particles scattered on the target passed through

the holes of the slit, and were measured by the focal plane detector. Thus, the vertical

position and angle of the particle measured by the focal plane detector can be connected

to scattering angle at the target position based on the distance between the target and the

holes. The 58Ni(p, p0) reaction at 15◦ was employed as the sieve-slit measurement. The

areal density of the target was 100 mg/cm2. The D1 and D2 magnetic fields of the GR
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spectrometer was increased by 1.0%, 1.8%, 2.6%, 3.4%, and 4.2% relative to the standard

setting for the optics study in terms of the horizontal position dependence. Those position

corresponded to the excitation energies of 6, 10, 14, 18, and 22 MeV, respectively, in the

(p, p′) measurement at 0◦. The beam spot position at the target was artificially shifted

to ±1 mm in the vertical direction for the study of the beam position dependence. In

total, 15 sets of the sieve-slit data were taken. The reconstruction of the scattering angle

is described in Sec. 4.3.

3 mm

2 mm

4.5 mm (7.1 mrad)

 12 mm 

(19 mrad)

Material : Brass
Thickness : 5 mm

Figure 2.15: The design of the sieve-slit used for the study of an ion optics in the under
focus mode.

—————————
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Chapter 3

Targets

Eight nuclei of 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca were employed for the

proton inelastic scattering measurement at 0◦ with high energy-resolution. Some nuclei

of them have to be arranged to be employed as a target for the experiment.

3.1 Requirement for target

A target with a size of ∼2 × 2 cm2 is required for use in measurements using a dispersed

beam at 0◦ at the Grand Raiden spectrometer. As shown in Fig. 3.1, a target width of

2 cm is required in one direction to account for the dispersed beam, and a target height

of 2 cm is required in the other direction with a target frame having a window height

of 14 mm. The beam spot of a dispersed beam at the position of the target in the WS

beam line of the RCNP is broad in the horizontal (dispersive) direction and narrow in the

vertical direction. The horizontal size of the beam is evaluated to be approximately 7 mm

if the 300 MeV proton beam with the typical momentum dispersion of 40 keV (FWHM)

is employed. In order for the matching condition to be satisfied, a target must be larger

than the beam spot. Therefore, the minimum target width should be 10 mm. In addition,

for measurements at 0◦, sufficient space is required for the beam to pass through without

any scattering in the target frame. Even if a halo component of the beam would cause an

unacceptably large number of events in the frame, a huge number of background events

hides the true events. The typical target frame used at the RCNP has a window size of 44

mm in the horizontal (dispersive) direction and 14 mm in the vertical direction, as shown

in Fig. 3.1. Because the target frame is required to hold a target, the length of the target

must preferably be ∼20 mm.

Furthermore, since it is desirable to have a minimum number of impurities in a target,

a self-supporting target made of the isotopically pure element is most suited for scattering

experiments. If a target contains backing material or is formed from a chemical compound,

contaminant peaks must be identified in a scattering energy spectrum. In medium energy-
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resolution measurements, physical background events attributed to contaminant materials

can be subtracted by measuring the corresponding excitation energy spectra of the backing

material. In contrast, for high energy-resolution measurement, such subtraction is not

practical because of the following reason. Even if the thickness of the backing material

used for the background measurement is adjusted to be equal to that of the main target,

conditions such as angular spread and energy loss in the target would never be identical.

No other background target would have the same density distribution of nuclei as that

of the backing of the original target. Therefore, the energy resolution and scattering

angle resolution would not be reproduced precisely, causing difficulty in a background

subtraction. This difficulty increases with an increase in the energy resolution.

14 mm

44 mm

~7 mm beam spot

target target frame

Figure 3.1: Schematic view of target and target frame used at the RCNP together with
the spot of a dispersed beam. The target size must be ∼2 × 2 cm2 for it to be employed
with the frame. In addition, an aluminium foil is used to mount an ice target (Sec. 3.2.2)
and a sulfur target.

—————————

3.2 Targets preparation

Table 3.1 summarizes the targets used in the experiment. The error of an areal density

is assumed to be 1% if it is unknown. Three kinds of new developments for targets to be

used in the (p, p′) experiment at 0◦ with high energy-resolution were performed for the

self-supporting target of 16O and 32S, and for the gas target of 20Ne and 36Ar. In the

following, the target preparation and the usage in each target are briefly described.

3.2.1 Carbon, magnesium, silicon, and calcium

A metallic foil of 12C, 24Mg, 28Si, and 40Ca were simply prepared and used with the target

frame as a self-supporting target. The thicker ones of 12C, 24Mg, and 28Si were mainly used
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Table 3.1: The targets used in the experiment. The error of an areal density for 20Ne and
36Ar originates from the uncertainties of the cell length.

Nucleus State Areal density Enrichment Comment
(mg/cm2) (%)

12C foil 30.0(3) 98.93
foil 1.02(1) 98.93

16O ice sheet 10.0(7) 99.76 on the cooled ladder [39]
SiO2 glass 6.2(1)
20Ne gas 1.06(3) 100 with aramid
24Mg foil 2.50(3) 100

foil 50.0(5) 100
28Si foil 2.29(2) 92.23

foil 58.5(6) 92.23
32S sheet 23.5(5) 95.02 on the cooled ladder [39]

sheet 59.9(6) 95.02 on the cooled ladder [39]
powder 3.38(3) 100 packed with gold

36Ar gas 1.04(3) 100 with aramid
40Ca foil 2.98(3) 100

foil 3.55(2) 96.94

in the elastic scattering measurement for high statistics with sacrificing energy resolution.

The 24Mg and 40Ca targets were installed to the target ladder in an atmosphere of argon

and carefully employed in the scattering chamber because they were easily oxidized in air.

3.2.2 Oxygen

An ice sheet of a self-supporting type was used as an 16O target by using the cooling

target system [39]. The hydrogen atoms in the ice target did not provided any physi-

cal background because the difference of the kinematics between hydrogen and oxygen

prevented for hydrogen from contaminating into an energy spectrum of 16O at small scat-

tering angles within 5◦. The preparation of an 16O target will be described in Sec. 3.2.3.

The cooling target system was described in detail in Ref. [39], and its structure was shown

in Fig. 3.2. Liquid nitrogen (LN2) was periodically introduced into the system, and then

the target ladder was kept at the temperature of LN2 to cool the ice target on it. A pho-

tograph of an ice target on the cooled ladder is shown in the left panel of Fig. 3.3. The

areal density of the ice target was determined to be 10.0 ± 0.7 mg/2from from the cross

section value obtained by the SiO2 target. The error was taken from the mean square

error of the cross section. In the right panel of Fig. 3.3, the count rate per the beam

charge collection, corresponding to an areal density of the target, in each run is plotted

to show the stability of the target. The irradiation was for 10 h. The mean value of the

count rate was normalized to unity.
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Figure 3.2: The cooing target system developed for the 16O(p,p’) experiment at 0◦ [39].

—————————
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Figure 3.3: (Left): Photograph of the 16O target on the cooled ladder. (Right): The
stability of the areal density of the ice target during the measurement. The mean square
error of the count rates was ±7% from the mean value, drawn as the shaded area. The
mean value was normalized to unity. The time was for 10 h.

—————————

3.2.3 Rapid preparation of ice target

The preparation of an ice sheet for an 16O target has been reported in Ref. [39]; a few

drops of pure water is poured into a space between polyester films, and then they are

cooled in a freezer box of a refrigerator to be frozen. An ice sheet made by this method,

however, is often cracked when it is placed on the cooled ladder of the cooling target

system since the crystal structure of ice at a temperature in a refrigerator (−18◦C) is

different from that at a temperature of LN2 (−196◦C).

A new method to freeze an ice sheet in a second by LN2 was developed to reduce a

hazard of cracking on the sheet. The process of a rapid preparation of an ice sheet is

shown in Fig. 3.4. A few drops of water were poured into a space of polyester film with

a size of ∼ 2 × 2 cm2. The thickness of the polyester film of 0.1 mm was selected to

determine an areal density of an 16O target to be 10 mg/cm2. The water was poured on

an aluminium foil with a window of 25 × 8 mm2. The thickness of the aluminium was

12 μm. See Ref. [39] for the role of the aluminium. The water and the aluminium foil

were sandwiched by two polyester films to pack the water inside. Then, they were further

sandwiched by two copper plates. The two copper plates including the water were placed

on a copper block that was cooled at a temperature of LN2. The two copper plates were

cooled and then the water inside was frozen in a second through them from the both

sides uniformly. LN2 was stored in a bawl and the copper block was dipped into it (the

left panel of Fig. 3.5). After the frozen, the two polyester sheets were carefully opened.

A frozen ice sheet often stuck on the aluminium foil in a successful case. The ice sheet

on the aluminium foil was pasted on a copper frame that was cooled (the right panel of
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Fig. 3.5). The window of the copper frame was the same to that of a standard target frame

(Fig. 3.1), 44 × 14 mm2. Ethyl alcohol was used as an adhesive to fix the aluminium foil

on the copper frame because the melting point of ethyl alcohol was −114◦C, being lower

than that of water and higher than that of LN2.

Copper plate

Polyester film

Aluminium foil

Water drop

Polyester film 

(0.1 mm thickness)

Polyester film

Copper plate

Copper frame

Frozen in a second

Ethyl alcohol

Figure 3.4: Process for preparing a thin ice target with freezing in a second. Two copper
plates were used to freeze the whole area from both sides uniformly. Ethyl alcohol was
pasted on the copper frame to fix the aluminium foil.

—————————

Figure 3.5: Photograph in preparing an ice target by the rapid preparation technique.
(Left): A copper block in a bawl is cooled by LN2. (Right): An ice sheet on the aluminium
foil and the copper frame.

—————————

3.2.4 Sulfur

A self-supporting and elemental sulfur target was successfully used for the first time.

Elemental sulfur sublimates in vacuum due to the heat by the energy loss in the target

with an irradiation of charged particles. In order to reduce the sublimation process, the
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sulfur target was placed on the ladder that was cooled by LN2 using the cooling target

system [39] (or see Fig. 3.2). Areal densities of the target used for the inelastic and the

elastic scattering measurements were 23.5 ± 0.5 and 58.5 ± 0.6 mg/cm2, respectively.

The photograph of the targets are shown in Fig. 3.6. The areal densities were determined

from the cross section value obtained by using the sulfur target that was packed with thin

gold layers to prevent the sublimation. The thinner sulfur target was stable for 10 h with

an energy deposition in it by a proton beam of 0.2 mW, while the sublimation process

was significant with that of 0.6 mW (Fig. 3.7). See Ref. [40] for details.

Figure 3.6: Photograph of the sulfur targets on a copper frame. Enamel used to fix the
sheet to the aluminium foil is seen in right blue. The areal density is 23.5(5) and 58.5(6)
mg/cm2 from the left, respectively. The number in the photo was found to be incorrect.

—————————

3.2.5 Preparation of sulfur targets

Sulfur powders of natural sulfur (32S: 95.02%, 33S: 0.75%, and 34S: 4.21%) and isotropi-

cally enriched 32S (>99.86%) are prepared and made molten. No special treatment was

required when using the enriched isotope in the procedure described below. Two poly-

tetrafluoroethylene1 (PTFE) sheets without scratches were used to sandwich and press

the molten sulfur. The thickness of the PTFE sheets was 10 mm. This was sufficient

for flattening the sulfur sheets. Thinner PTFE sheets tend to bend during heating and

cooling. Details are as follows.

First, sulfur powder was placed in a mortar and a pair of PTFE sheets are placed on

a hot plate heated to temperature of up to 200−230◦C (melting point of sulfur ∼110◦C).

The sulfur powder melted in the mortar when placed on a hot plate. Sulfur melted to

a temperature that is slightly higher than the melting point still appeared yellow (λ-

sulfur, shown in the left panel of Fig. 3.8). At 160◦C, the colour of the sulfur goes to

dark red, indicating a change in the molecular structure and the formation of μ-sulfur

1Teflon r© (E. I. du Pont de Nemours and Company) is a product of polytetrafluoroethylene.
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Figure 3.7: Stability of target thickness indicated by the event count per unit beam charge
at Ex = 11.14 and 8.13 MeV with a beam energy deposition in the sulfur target of 0.2
mW (left) and 0.6 mW (right). Statistical errors are smaller than the sizes of the symbols.
To guide the eye, the mean values of the event rate at θlab = 0◦ are indicated by dashed
lines. Solid lines fitted to the data at θlab = 6◦ show the effect of sublimation of the sulfur
target.

—————————

(shown in the right panel of Fig. 3.8). Since μ-sulfur is sticky and highly viscous, molten

sulfur with an intermediate orange colour was poured onto the heated PTFE sheet before

the completion of the transformation. A sheet made of molten sulfur that is orange in

colour is sturdier than a sheet made of λ-sulfur. It should be noted that sulfur dioxide gas,

which is poisonous and flammable, was produced when sulfur was heated, thus requiring a

well ventilated room for the process. Feeler gauges (thickness gauges) with an appropriate

thickness was used to control the areal density of the sulfur target. Gauges with a thickness

between 30−300 μm were set on the PTFE to prepare a sulfur target with areal densities

of 6−60 mg/cm2, respectively. The thinnest successfully prepared target had an areal

density of 5.9 mg/cm2. Molten sulfur was then poured onto an area surrounded by the

gauges on the PTFE sheet placed on the hot plate, as shown in Fig. 3.9(a).

The poured molten sulfur was rapidly sandwiched by another PTFE sheet; a brass

block used as a weight was placed on top of this sheet to apply a pressure of 12 × 103 Pa.

The volume of the block was 500 cm3. To ensure that the sulfur sheet is sturdy, the

molten sulfur must be cooled rapidly. The hot plate was switched off and water was

poured rapidly onto it until room temperature was reached. Before use, the brass block

should be at room temperature. After cooling by water, the PTFE sheets were carefully

separated. The solidified sulfur sheet often sticks to one PTFE sheet without cracking.

In such a case, the sheet should be peeled off by bending the PTFE sheet or by using a

thin knife. A feeler gauge with a thickness of 10 μm was also useful for peeling. After
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drying the sulfur sheet in air, its mass and area were measured to determine the areal

density. Drying the sheet in air was important for removing water absorbed during the

cooling process.

Finally, the sulfur sheet was mounted on a target frame. The target frame was made

of copper because of its high thermal conductivity. As shown in Fig. 3.1, the copper

frame has a large window with a size of 44 × 14 mm2 in order to prevent the scattering

of the halo component of the dispersed beam. Sulfur has a low conductivity. To ensure

effective cooling of the sulfur sheet, a thin aluminium foil with a smaller window size of

25 × 8 mm2 was firstly pasted onto the copper frame as shown in Fig. 3.9(b) to increase

the thermal contact. The thickness of the aluminium foil was 3.2 mg/cm2. Enamel was

then used to fix the sulfur sheet to the aluminium foil. Because the sulfur sheet is cooled

in vacuum just through the contact points between the sheet and the foil, it was essential

to paste as large an area as possible of the sulfur sheet onto the aluminium foil.

The foil played another crucial role: since its softness would cause a reduction in the

stress in the foil caused by the difference between thermal expansion of the sulfur sheet

and the copper frame, the hazard of formation of cracks in the sulfur sheet would be

prevented. In contrast to the copper frame, the aluminium is relatively soft and helps

to prevent cracking of the sulfur foil due to differences between the thermal expansion

of the sulfur foil and the copper frame. Figure 3.6 shows the sulfur targets used in the

experiment. The left one was used for the inelastic measurement at small scattering angles

including 0◦. Therefore, the aluminium foil had the window with the size of 25 × 8 mm2.

The right one in the figure was used for the elastic measurement. Thus, the aluminium foil

had a small window of 12 mm in diameter because the measurement was not performed

at 0◦ and an achromatic beam, not broad at the target position, was employed.

The preparation process of the sulfur target is summarized below. It should be noted

that in order to prepare a sturdy sheet of sulfur, it is important to perform steps (3) to

(5) as rapidly as possible.

1. Heat the sulfur powder in a mortar and a pair of PTFE sheets on a hot plate at

200−230◦C.

2. Set feeler gauges on one of the PTFE sheets to control the thickness of the sulfur

target.

3. Pour molten sulfur onto the PTFE sheet with the feeler gauges when the sulfur

powder melts and its colour has changed from yellow to orange.

4. Sandwich the molten sulfur using the other PTFE sheet, and press it uniformly.

5. Turn off the hot plate and pour water onto it to rapidly cool the molten sulfur.

39



6. Peel the sulfur sheet off the PTFE sheets.

7. After drying the sulfur sheet in air, measure the mass and area of the sheet to

determine its thickness.

8. Paste an aluminium foil onto a copper frame.

9. Use enamel to fix the sulfur sheet to the aluminium foil.

Figure 3.8: Photographs of λ-sulfur (left) and μ-sulfur (right).

—————————

brass block

PTFE sheets

feeler gauges
molten sulfur

sulfur sheet

(b)(a)

copper frame (1.0 mm thick)

Al foil (3.2 mg/cm  )2

press

Figure 3.9: Process for preparing elemental sulfur target. (a) Melted sulfur is sandwiched
by PTFE sheets and pressed by a brass block. The thickness of the sulfur sheet is
determined by the use of the feeler gauges. (b) Sulfur sheet peeled off the PTFE and
subsequent mounting using enamel on the aluminium foil attached to copper frame.

—————————
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3.2.6 Neon and argon

20Ne and 36Ar were used a gas target with the gas target system that was newly developed

(Figs. 3.10 and 3.11). The target system consists of the three parts i.e., the target cell, the

gas handling, and the cooling parts. The structure of the pipe was illustrated in Fig. 3.12;

it is the quadruplet structure for the cooling by using LN2. The target gas was packed

into a cell and was isolated from vacuum by windows of an aramid film (Toray CO.,

Ltd., Mictron). The aramid film had a compositional formula of C14O2N2Cl2H8, and its

thickness was 6 μm. It is to be noted that the compositional formula of the aramid made

by Toray CO., Ltd. is different from that by Asahi-kase CO. Ltd that was used as the BLP

target (Sec. 2.1.2 and Appendix F). The cell length along the beam direction was adjusted

to be 8 mm including an expansion of the aramid windows owing to an inner pressure by

using the cover plates made of Al as drawn in Fig. 3.13. A cell length was required to

be short for high energy resolution measurement at finite angles. A realistic cell length

including an expansion of the windows was determined from the cross section of 12C in

CO2 gas in the cell. The energy resolution achieved with employing the gas target cell

is shown in Fig. 3.14. The energy resolution better than 20 keV (FWHM) was achieved

at the small scattering angles within 4◦. The energy resolution deteriorated at the larger

scattering angles because of the finite cell length. An areal density of the 20Ne and 36Ar

target was obtained as 1.06 ± 0.03 and 1.04 ± 0.03 mg/cm2, respectively, following the

ideal gas low by using the realistic cell length and by using the data of temperature and

pressure electronically monitored in the target cell. The error was attributed mainly from

the uncertainty of the cell length. The gas target system had a cooling system by using

LN2 to increase an areal density three times larger. An areal density of 2.08 ± 0.08

mg/cm2 was obtained for 20Ne with the cooling as shown in Fig. 3.15.
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Figure 3.10: A schematic view of the gas target system on the scattering chamber.

—————————
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Figure 3.11: A schematic view of the target container and the pipe that passes target gas,
LN2 for cooling, and its vaporized gas.
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Target gas

Liquid nitrogen
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Figure 3.12: A schematic view of cross section of the pipe in the target container. Target
gas, liquid nitrogen, and vaporized nitrogen gas are passed through the spaces of each pipe
from the central, respectively. The outside pipe is connected to the scattering chamber
and is pumped in vacuum to isolate the heat.
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Side view
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Figure 3.13: A schematic figure of the target cell. The cell body made of copper has a
window with the size of 58W ×28H mm2. The thickness of the cell body is 6 mm. Aramid
films with the thickness of 6 μm are used as cell windows to contain target gas. The cover
plates made of aluminium with the thickness of 2 mm are used to adjust the cell length
to 8 mm including an expansion of the films. Polytetrafluoroethy (Teflon r©) sheets with
the thickness of 0.1 mm are inserted into the space between the aramid film and the cover
plate in order to reduce a hazard of the leackage from the flim. Target gas is transferred
into the cell from the top through the central pipe that is shown in Fig. 3.12.

—————————
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Chapter 4

Analysis on inelastic scattering data

The data analysis were performed by using a program code, FRED (Tamii analyzer) [43],

that was developed for processing of the data taken by the GR and the LAS. Data

visualization in the online and the offline analyses were realized using the HBOOK and

the PAW program packages from the CERN library.

4.1 Particle selection

The particle selection for proton events was performed by using time-of-fight (TOF) in-

formation and the energy loss in the PS1 of the GR. In the proton inelastic experiment

at small scattering angles, the most of the particles detected by the focal plane counter

were protons. Particles of γ-rays and neutrons were excluded in the tracking process

of the MDWC’s (see Sec. 4.2) since they do not have charge. Thus, background par-

ticles measured by the detector were mainly deuterons, and they were excluded as the

followings.

The time information was measured as the difference between the trigger timing and

the RF signal from the AVF cyclotron. For an effective exclusion of deuterons, the time

information (RF ) was corrected to　 be independence on xdt and θdt as

RFC = RF − 0.120 × xdt + 20.0× θdt, (4.1)

where RFC was the corrected time information in channel, and xdt and θdt were the

horizontal position in mm and the scattering angle in the horizontal direction measured

at the focal plane detector in degree, respectively. The coordinate system is given in

Sec. 4.2. A typical result of the correction on the time information is shown in Fig. 4.1.

The time difference between the two bunches in the figure corresponded to a beam pulse

period of 61.6 ns (the RF frequency of 16.244 MHz ) from the AVF cyclotron.

An energy loss of a charged particle in the PS1 depends on its charge and velocity as

described by the Bethe-Bloch formula [44]. An intensity of a light emission in the PS1

was proportional to an energy loss. The intensity, however, was attenuated along the
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top figures are without the correction, and the bottom ones are with the correction. The
time difference between the two bunches corresponds to a beam pulse period of 61.6 ns.
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passage in the PS1 to the PMT. An intensity emitted at a position x that was detected

by a PMT was given by

I(x) = I0 exp
(
− x

l

)
, (4.2)

where I0 was the emitted light intensity, and l was the attenuation length of the PS1. The

mean intensity of the light outputs Imean from the PMT’s of the both sides was expressed

as

Imean =
√

I(x)I(L− x) = I0 exp
(
− L

2l

)
∝ ΔE, (4.3)

where L was the length of the scintillator of the PS1.

Figure 4.2 shows a typical scatter plot of the time difference with the correction RFC

versus the energy loss in the PS1. The areas enclosed by a square in red, indicating

deuterons, were rejected. The energy loss of proton showed a continuous tail to the top

in the figure (2000 channel). Thus, by the rejection to deuterons, all protons were saved

and the background particles were almost excluded.

Figure 4.2: A typical scatter plot of the particle selection for protons. Deuterons enclosed
by a square in red were rejected and all protons were saved.

—————————

4.2 Track reconstruction

Ray tracking

The trajectories of charged particles into the focal plane were determined with the MWDC’s.

The structure of the wire plane in the MDWC is illustrated in Fig. 4.3. When a charged
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particle passed through the MWDC, electron-ion pairs were created along the trajectory

by ionizing argon gas inside the MWDC. Since the cross section for the ionization is much

small for particles without charge, such γ-rays and neutrons, they can not be detected

by the MWDC’s. The electrons produced by the ionization moved to an anode wire by

the electric field due to the high voltages on the cathode planes. They were multiplied at

the place close to the anode wire and then generated a negative signal. Usually particles

passed through the MDWC’s in the 45◦ direction and the electrons usually hit more than

three sense wires. A group of wires that induced a signal was called a cluster. The ver-

tical drift length of di−1, di, ... (Fig. 4.3) was determined from the drift time and gave

a particle position at the anode wire plane. The drift velocity is almost constant but it

considerably deviates near the wires due to the irregular electric fields. The drift length

histogram should have a flat distribution in a range of 0−10 mm. The conversion tables

from the drift time to the drift length have been created from the data of continuum

excitation so that the drift length histogram has a flat distribution (Fig. 4.4).

The intercept position of a trajectory at the wire plane was calculated by a least square

fitting from the drift length of hit wires. By combining the deduced position at the four

wire planes, a trajectory was uniquely determined. The following rules were applied for

the determination of the trajectory.

• A cluster had two hit wires at least and ten hit wires at most. A single hit wire was

not considered as a cluster and was ignored.

• The distribution of drift lengths in a cluster had only one local minimum.

• A number of clusters in each plane was one. (A multi cluster event was rejected.)

The position resolution of the MWDC’s was about 0.29 mm (FWHM), corresponding

to an energy resolution of 6.7 keV in the present experiment. The angular resolution

was tan−1(0.29/250) = 0.066◦, where 250 mm is the distance between the MWDC1 and

the MWDC2 of the GR (Fig. 2.6). That corresponds to a horizontal scattering angle

resolution of 0.028◦ at the target.

Coordinate definition

The coordinates system at the focal plane detector of the GR is shown in Fig. 4.5. The

z-axis was taken to be perpendicular to the MWDC’s from the upstream. The x-axis

was taken to indicate the low momentum side in the horizontal plane at the X1-plane.

The center point of the X1-plane in the horizontal position was taken as the origin of the

x-axis, and the intersection of the x-axis with the central orbit of the GR was x = -200

mm. The y-axis was taken to indicate upward in the vertical plane, and the intersection
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Figure 4.3: The structure of an X-plane of the MWDC.
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of the y-axis with the central orbit of the GR was taken to be the origin of the x-axis.

Figure 4.5 (B) shows the definition of the horizontal incident angle θ and that of the

vertical incident angle φ of a particle ray.

z

X1-plane
U1-plane

y

X2-plane
U2-plane

MWDC2

Upstream

x

θ
φ

x

y

z

Particle ray

(A) (B)

MWDC1

Figure 4.5: Coordinate system for the particle trajectory at the focal plane of the GR.
The definition of the x, y, and z axes (A), and the definition of the horizontal incident
angle θ and the vertical incident angle φ of a particle ray (B).

—————————

Detection efficiency of MWDC’s

The detection efficiency for the X1 wire plane was roughly estimated as

ηX1 =
NU1∩X2∩U2

NX1∩U1∩X2∩U2
, (4.4)

where NX1∩U1∩X2∩U2 denoted the number of events successfully determined for all of the

four wire planes, and NU1∩X2∩U2 denoted the number of events successfully determined

for the other wire planes of the X1 plane. The efficiency of other planes was calculated

in the same manner. Typical efficiencies of each wire plane and the total efficiency (η =

ηX1 × ηU1 × ηX2 × ηU2) were 98% and 90%, respectively. The η was used in Eq. 4.14

to deduce cross sections. A position dependence of the efficiency was not taken into

consideration.

4.3 Calibration of scattering angle

Horizontal and vertical scattering angles in the solid angle of the GR were calibrated by

using the sieve-slit data (Sec. 2.4). The horizontal scattering angle (Atgt) at the target

position was determined mainly from the horizontal incident angle (θdt) of the particle

at the focal plane detector. The vertical scattering angle (Btgt) at the target position

was determined mainly from the vertical position (ydt) of the particle at the focal plane

detector, instead of the vertical incident angle (φdt). Since the Btgt value is sensitive
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to the beam position in the vertical direction, it was monitored by the LAS during the

measurement.

From a two-dimensional image of θdt versus ydt as shown in the top panel of Fig. 4.7,

the (θdt,ydt) coordinate sets of the hole positions in the image were obtained by projection

the two-dimensional plot to each axis and fitting to them. The (θdt,ydt) coordinate sets

for the all holes in the slit were obtained from the data in employing the beam at the

standard position (0 mm), and those of only the central hole were obtained from the data

in employing the beam artificially shifted to ±1 mm from the standard position.

The vertical position of the central hole of the sieve-slit was not usually measured at

ydt = 0 mm because the positions of the beam and the central hole of the sieve-slit were

not coincided. The disagreement is expected to be corrected to obtain the reconstructing

coefficients for the angle calibration. As shown in Fig. 4.6, there was the relation between

the beam position at the target and the ydt position of the central hole image at the focal

plane against for xdt-dependence. The relative beam positions at the target position in

the vertical direction were measured by the LAS (yLAS). The xdt-dependence was taken

by changing the magnetic field of the GR since elastic scattering events were selected for

the sieve-slit data. When the beam position at the target position is 0 mm (±1 mm),

the position of the central hole of the sieve-slit image should be measured at ydt = 0

(±5.98 mm, respectively) because of the vertical magnification of the GR as summarized

in Table 2.1. In the figure, the dotted lines denote the ydt position for the central hole

of the sieve-slit image to be measured. Thus, the ydt values of the sieve-slit data were

corrected by the equation using xdt and yLAS as

y0 = ydt −
1∑

i=0

1∑
j=0

αijxdt
iyLAS

j, (4.5)

where y0 was the corrected vertical position, and the parameters αij were determined in

each experiment by a multi-dimensional least square fitting. Typical αij parameters are

summarized in Table 4.2. The equation corrects the relation between the beam position

at the target and the position of the sieve-slit. With this correction, we can search and

use a standard coefficients to reconstruct the scattering angle, which is described in the

followings.

From the sieve slit data with the correction of Eq. 4.5, Atgt and Btgt were calibrated

as a function of xdt, θdt, y0 and yLAS by the equations

Atgt =
2∑

i=0

2∑
j=0

2∑
k=0

aijkxdt
iθdt

jy0
k (4.6)

Btgt =
2∑

i=0

2∑
j=0

2∑
k=0

bijkxdt
iθdt

jy0
k +

2∑
l=0

1∑
m=0

clmxdt
lyLAS

m, (4.7)

where the parameters aijk and bijk were determined by a multi-dimensional least squares
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fitting. The fitting was performed for the hole positions in the (θdt,ydt) coordinate to be

the (Atgt, Btgt) position based on the actual hole positions of the sieve-slit. The parameters

aijk and bijk are listed in Table 4.1. The numbers in the table are generally applicable to

every experiment of the (p, p′) reaction using 295 MeV protons employing the under focus

mode of −5%. The parameters clm were determined by a fitting on the sieve-slit data for

the beam at ±1 mm after the parameters aijk and bijk were obtained. Typical number of

the parameters clm and αij in Eq. 4.5 are listed in Table 4.2. They should be determined

in each experiment. In summary, the terms including yLAS should be determined in each

experiment because they are highly sensitive to the beam spot position at the target and

the Btgt value.

The bottom panel in Fig. 4.7 shows the two dimensional plots of the sieve-slit data

after the angle calibration. A typical result of the three different excitation energy regions

at 10, 14, 18 MeV (xdt = −300, −150, 0 mm, respectively) are shown. The horizontal

angular resolution was 0.15◦ (FWHM), and the vertical angular resolution was 0.5−0.6◦

(FWHM).

Central position of the sieve-slit

x    [mm]dt

y 
  [

m
m

]
dt

beam +1 mm
(LAS  35.5 mm)

beam ±0 mm
(LAS  42.8 mm)

beam 1 mm
(LAS  49.8 mm)

Figure 4.6: The horizontal position dependence between the beam height at the target
position and at the focal plane detector. The correlation between the beam position at
the target and the ydt position of the central hole of the sieve-slit image at the focal plane
against for xdt-dependence. The dotted lines denote an ideal position for the ydt to be
measured.

—————————

4.4 Background subtraction

Although we succeeded to reduce the background due to scattering in the target frame by

using the halo-free condition beam and the wide target frame, background events owing
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Figure 4.7: The reconstruction of the scattering angle. The two dimensional plots of θdt

and ydt in the top panel have been calibrated to those of Atgt and Btgt in the bottom panel
by Eq. (4.6) and (4.7). The intersection of the lines in the bottom panel corresponds to
the position of the holes of the sieve-slit, and the hole images are calibrated to be seen
there. The results are shown for three different excitation energy regions.

—————————
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Table 4.1: Table of the standard coefficients aijk and bijk determined in Eqs. (4.6) and
(4.7) in order to reconstruct Atgt and Btgt, respectively, in radian. The coefficients are
written in mm and radian. These parameters can be used in every experiment for the
(p, p’) reaction using 295 MeV beams employing the under focus mode of −5% with the
correction of Eq. (4.5).

ijk aijk ijk bijk

000 1.869e-02 000 −1.161e-03
010 −4.146e-01 001 6.146e-03
020 −4.540e-02 002 −3.326e-06
001 −1.791e-05 010 1.027e-02
011 8.781e-04 011 −2.816e-02
021 −6.985e-03 012 4.630e-04
002 1.616e-05 020 3.014e-01
012 −3.451e-04 021 2.877e-01
022 2.620e-03 022 −5.883e-03
100 2.573e-05 100 −7.318e-06
110 −2.718e-05 101 5.552e-06
120 1.337e-04 102 −2.669e-08
101 −6.798e-08 110 1.485e-04
111 1.975e-06 111 −1.055e-06
121 −9.804e-06 112 2.158e-06
102 4.276e-08 120 −9.175e-04
112 −3.063e-07 121 3.110e-04
122 −8.660e-07 122 −2.603e-05
200 2.904e-09 200 −1.564e-08
210 −2.763e-08 201 1.239e-09
220 1.210e-07 202 −2.719e-11
201 −1.099e-10 210 5.319e-07
211 3.793e-09 211 1.214e-08
221 −3.359e-08 212 2.446e-09
202 3.064e-11 220 −4.043e-06
212 5.854e-10 221 4.841e-07
222 −9.120e-09 222 −3.666e-08

Table 4.2: Typical coefficients αij and clm in Eqs. 4.5 and 4.6, respectively. The coefficients
are expressed in mm. These parameters should be determined in each experiment.

ij αij lm clm

00 −1.287e-00 00 −1.815e-00
01 −4.848e-02 01 −4.228e-03
10 −1.794e-02 10 −1.896e-04
11 −3.995e-04 11 −4.448e-06

20 −1.055e-07
21 −2.626e-09
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to multiple scattering in the target still remained in the 0◦ data. In fact, the trigger rate

with and without a target foil were >1000 Hz/nA and <100 Hz/nA, respectively. In this

section, the determination and the subtraction of the background events originating from

the multiple scattering in the target are described.

Correction for subtraction

The background events due to multiple scattering in the target are expected to have a

flat distribution in the y direction at the focal plane of the GR spectrometer because

they re-scatter in the spectrometer. In the standard magnetic field setting for the GR

spectrometer, the true events are focused in the y position at the focal plane, while

the background events are scattered to be flat in the y histogram. Thus, it is easy to

distinguish the true events from background event in the y spectrum because a peak in

the y spectrum denotes the true events. Such focusing for the true events, however, is

not realized at the focal plane when the under focus mode is employed. Therefore, the ydt

values were corrected to be focused in the y spectrum for the effective separation of the

true events from the background events. The correction, the true events to be along yc=0

in the two dimensional plot of ydt versus φdt or to stand in the one dimensional histogram

of yc, was performed by the equation

yc =
(
ydt +

3∑
i=0

1∑
j=0

dijxdt
iφdt

j
)

+
2∑

k=0

1∑
l=0

eklxdt
kyLAS

l, (4.8)

where yc was the corrected y coordinate, and φdt was the vertical incident angle of the

particle at the focal plane detector. The parameters dij were determined by using multi-

dimensional fitting to one shot data, as shown in Fig. 4.8. The coefficients dij are listed

in Table 4.3, and they can be used in every experiment for the (p, p’) reaction using 295

MeV beams employing the under focus mode of −5% to stand the true events in the one

dimensional histogram of yc. The parameters dij, however, do not always concentrate

the true event at yc = 0 mm depending on the beam height. The parameters eij, thus,

were obtained by a fitting on the result of the parameters dij using yLAS . The coefficients

eij are listed in Table 4.3. They should be determined in each experiment because the

correction is sensitive to the beam height.

Subtraction method

The subtraction method for the background due to multiple scattering at the target makes

use of the vertical focusing property of the GR. Figure 4.9 shows the conventional method

for the background subtraction; the region of the true events in the y spectrum is selected,

and the gates with the same size are applied to select the background. The background

events are averaged to subtract them from an excitation energy spectrum. This method,
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Figure 4.8: The correction on the y coordinate for the background subtraction. The left
panels show the two dimensional plot of ydt and φdt and the ydt histogram of the 0◦ data
without the correction. The right panels show the similar data but with the correction
for yc. The parameters for the correction have been determined so that the true events
in the two dimensional plot to be on the yc=0 line.

—————————

58



Table 4.3: Table of the coefficients of dij and ekl in Eq. 4.8. xdt, yLAS , and yc are used
and expressed in mm. φdt is in radian unit. The coefficients dij can be used in every
experiment for the (p, p’) reaction using 295 MeV beams employing the under focus mode
of −5%, while the coefficients eij should be determined in each experiment.

ij dij kl ekl

00 −2.309E-00 00 −2.950E+01
01 9.525E+02 10 1.523E-02
10 −6.549E-04 20 −1.570E-05
11 −1.493E-00 01 −8.034E-01
20 −5.226E-07 11 4.94E-04
21 1.528E-03 21 −6.122E-07
30 1.007E-06
31 −1.962E-06

however, can be applied only to the case of handling the data with full acceptance because

the vertical position cannot be simultaneously determined to estimate the background re-

gion and to reconstruct Btgt used for software cut. Therefore, an extended method was

developed for the background subtraction in handling the data with software cut in terms

of the scattering angle. Figure 4.10 shows the extended method for the background sub-

traction; all events are artificially moved along to the background in the two-dimensional

plot of yc versus φdt, and then the central region in each yc histogram is selected in an

excitation energy spectrum (Fig. 4.11). A width to be selected for an energy spectrum

has an x-dependence as shown in the bottom panels of Fig. 4.10. A size of the width to

be selected and a distance to be shifted were determined in manual for each experiment.

The two background parts were averaged for the subtraction.

4.5 Correction for high energy resotlution

Low lying discrete states in two-dimensional plot of xdt versus θdt are curved as shown in

the top panel of Fig. 4.12. The curve deteriorates an energy resolution because a position

resolution of the discrete peak in the x histogram, indicating momentum spread, becomes

worse. The curve in the plot originates from two factors i.e., the kinematical effect of the

particle and the aberration of the GR spectrometer. The former can be corrected by a

calculation. A parameters set for the correction to the latter factor was obtained in each

experiment for high energy resolution. Once the aberration of the GR spectrometer is

experimentally known by using multi-dimensional fittings, the correction parameters for

high energy resolution can be applied to all nucleus because the kinematical correction is

computed.

Firstly, for the correction to cancel the ion optical property of the GR spectrometer,
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Figure 4.9: The conventional method of background subtraction. True events including
the background and background events are shown in red and green, respectively, in a
y spectrum (left) and an excitation energy spectrum (right). Since this method to de-
termine the background events is valid for the case of handling data of full acceptance,
this techinique is not used in the present analysis. The correction to improve the energy
resolution (Sec. 4.5) has been applied on the spectrum.

—————————

the kinematical effect was removed from the data by the equation

xk = xdt − (k1Θtgt
2 − k2Θtgt) × 10−3

0.0230
, (4.9)

where xk was the position in mm with the kinematical correction on xdt, 0.0230 MeV/mm

was the energy calibration value used in the present study which was roughly estimated

from the relationship between the excitation energy and the horizontal position at the

focal plane. The coefficients k1 and k2 were obtained from a relativistic kinematical

calculation, e.g., k1=3.30 MeV/deg2 and k2=0.162 MeV/deg for the case of 28Si. The

total scattering angle at the target position, Θtgt, was difined as
√

(θs + Atgt)
2 + Btgt

2

in degree, where the parameter θs is the angle which the spectrometer is placed at. As

shown in the middle panel of Fig. 4.12, the kinematical correction increased a curvature

but made the image of the curve sharpen. The curvature in the two dimensional plot of

xk versus θdt denotes the aberration of the GR spectrometer to be corrected.

Next, the (xk,θdt) coordinates of typical discrete states to denote the curvature were

obtained by the projection to each axis. This study to know the curvature of the discrete

states is called ”profiling”. After the profiling, the correction to straighten them in the

two-dimensional plot was realized by the equation

xck =
3∑

i=0

4∑
j=0

fijxk
iθdt

j, (4.10)
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Figure 4.10: The extended method for background subtraction. The top panels show
the two-dimensional plot of yc versus φdt. The plot (b) is artificially shifted along the
background to the both sides (a,c). The areas surrounded by the square in the top panels
are shown in red and green and selected for an excitation energy spectrum in Fig. 4.11.
The middle panels show one-dimensional histograms of yc (d,e,f). The x-dependence of
the width of the square to be selected is shown in the bottom panels (g,h,i). A typical
peak at xdt ∼ −300 mm is selected in the top and the middle panels.

—————————
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—————————

where xck was the corrected position in mm, and the parameters fij were determined by

using a multi-dimensional least squares fitting on the profiling data to make them straight.

Since fij are the correction parameters to cancel the aberration of the GR spectrometer,

the correction

xc =
3∑

i=0

4∑
j=0

fijxdt
iθdt

j (4.11)

will be used to form an excitation energy spectrum because the kinematical effect is ana-

lytically included (Sec. 4.6). The correction to straighten the curve in the two-dimensional

plot was performed for it to be fixed at the point where Atgt = Btgt = 0 was satisfied. The

profiling data were taken for the several nuclei and combined because the region which

discrete states well isolated from other states are limited. This is bad for a smooth fitting

in terms of x-dependence. Unfortunately, discrete states can be observed in the region

xdt < 0 mm of the GR spectrometer in the (p, p’) experiment using 295 MeV protons.

Therefore, the aberration at the lower momentum region (xdt > 0 mm) was profiled by in-

creasing all the magnetic fields of the GR spectrometer for discrete states to be measured

there. The profiling data taken in this setting were used for the fitting with a small weight

since the data do not reflect the same aberration but are enough for a rough correction.

A typical result of xc with the kinematical correction is shown in the bottom panel of

Fig. 4.12 as the two-dimensional plot of xck versus θdt.

The correction to improve the high energy resolution was performed only for the x

and θ correlation. The correction between the x and the y or the x and the φ was not
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performed because the kinematical correction and the parameters fij were essential to

straighten a discrete state in these two-dimensional plots.

4.6 Calibration of excitation energy

The excitation energy of the target nucleus was calculated by using the equation

Bρ =
p(xc)

qc
, (4.12)

where B was the magnetic field of the GR, ρ was the mean orbit radius, p and qc were the

momentum and the charge of the scattered particle. The momentum p was a function of

xc as obtained by Eq. 4.11. By solving the two-body scattering problem in relativistic,

the excitation energy of the target nucleus (Ex) was calculated from the p(xc).

The above calculation, however, sensitively depends on the condition of the beam

transportation owing to the high energy resolution. therefore, the Ex was further corrected

by the following conversion

Ex
′ = αEx + β, (4.13)

where Ex
′ was the corrected excitation energy, the parameters α and β were determined

in each experiment and run, respectively. The α was determined by the two levels at Ex =

7.654 and 15.110 MeV of 12C in each experiment, and β was determined by a typical peak

in each run using Ref. [37]. A typical result of the excitation energy calibration on 28Si by

α = 1.0096 is compared with that without the α correction (α = 1.0000) in Fig. 4.13. The

β was determined by the state at Ex = 11.446 MeV. The energy difference was calculated

by using Ref. [37]. The calibration with α = 1.0096 realized the uncertainty better than

±10 keV within the region at 8−14 MeV in excitation energy, where most 1+ states are

present. The energy difference of the state at Ex = 4.980 MeV, however, was −80 keV

for the α = 1.0096, where no 1+ states are present. In this thesis, Eq. 4.13 with the

α correction will be employed because the determination of excitation energy is not our

purpose and the uncertainty of excitation energy with the correction is better than that

without the correction at the region for most 1+ transition to be observed.

4.7 Excitation energy spectrum

Differential cross section

Double differential cross sections were deduced by the equation

d2σ

dΩdE
= αN

1

Ω

1

L

1

η

1

τ

e

Qεcrel

A

NAta
J, (4.14)
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Figure 4.12: The correction to improve the energy resolution. The discrete states in the
top panel (xdt versus θdt) are curved owing to the kinematical effect and the aberration
of the GR spectrometer. Firstly, the kinematical effect is removed by a calculation (the
middle panel). The correction to cancel the aberration (xc) is obtained by Eq. 4.10. The
result with the kinematical correction (xck) is shown in the bottom panel. The data taken
in the reaction of 28Si(p, p’) at 0◦ are shown.
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where the notation of the variables are summarized in Table 4.4. For the absolute cross

section, the corrections for the absolute efficiency on the SCFC (ε) and for the absolute

trigger efficiency on the scintillation counters with the aluminium plate (τ ) were employed

(see Ref. [29] and Sec. 2.1.4). For the SCFC, the relative correction crel = 1 was employed.

The statistical and systematic uncertainties were given by the equations

Δ
d2σ

dΩdE

∣∣∣∣
stat

=
1√
N

d2σ

dΩdE
(4.15)

Δ
d2σ

dΩdE

∣∣∣∣
sys

=

√(
Δτ

τ

)2

+
(

Δε

ε

)2

+
(

Δcrel

crel

)2

+
(

Δt

t

)2 d2σ

dΩdE
, (4.16)

respectively, where the systematic uncertainties are summarized in Table 4.5. The sys-

tematical uncertainty was mainly due to the uncertainly of the target.

The excitation energy spectra of the (p, p′) reaction at Ep = 295 MeV and at 0, 6,

12◦ on 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca are summarized in Appendix B.

Peaks originated from the aramid film, C14O2N2Cl2H8 made by To-re CO. Ltd.1, were

contaminated in the spectra of 20Ne and 36Ar. The (p, p′) spectra on the aramid film,

derived with the kinematical condition of 12C, are shown in Fig. B.9. The p − p elastic

scattering from the hydrogen in the ice target and the aramid film are seen as a broad

bump at Ex = 12−15 MeV in the energy spectra of 16O, 20Ne, 36Ar, and the aramid at

12◦. The background subtraction was imperfect and some of them remained at Ex =

1It is to be noted that the aramid film used as the BLP target was made by Asahi-kase CO. Ltd.,
C14O2N2H3.
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6−7 MeV in the spectra of 20Ne, 24Mg, 36Ar, and 40Ca. A typical energy resolution was

20 keV (FWHM).

Table 4.4: Notation of the variables used in the expression of the differential cross section
in Eqs. 4.14, 5.8 and 5.9. See Table 3.1 for t and a.

d2σ/dΩdE double differential cross section [mb/sr·MeV]
α unit conversion constant 1030 [mb/cm2·mg/g]
N yields between E and E + ΔE [counts/MeV]
Ω solid angle (lab.) [sr]
L live time ratio of DAQ [-]
η VDC efficiency [-]
τ trigger efficiency [-]
e elementary charge 1.60×10−19 [C]
Q integrated beam charge [C]
ε absolute correction on the SCFC 0.986 [-]
crel relative correction for FC [-]
A target atomic weight [g/mol]
NA Avogadro number 6.02×1024 [mol−1]
t target thickness [mg/cm2]
a target enrichment [%]
J Jacobian

Table 4.5: Typical systematic uncertainties for cross section.

Uncertainty (%)
trigger efficiency (Δτ/τ) 0.1 From Table 2.3
the SCFC (Δε/ε) 0.8 Ref. [29]
each FC (Δcrel/crel) 0.3 From Table 2.5
target (Δt/t) 1−7 From Table 3.1
total 1−7

Peak fitting

The differential cross sections to the discrete state were obtained by fitting to the excita-

tion energy spectra. A Gaussian function with a tail were used for the fitting procedure.

The Gaussian function was folded by a peak-shape taken from a typical discrete state

which was isolated well from other state. The peak fitting was performed by using the

function f(x) = g(x)t(x), where

g(x) = A exp

{
−(x− Ex)

2

2σ2

}
(4.17)

t(x) = 1 + a exp
{
b (x− Ex)

}
. (4.18)
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The parameters A and Ex are the peak height and the central energy position, respectively,

taken from Ref. [37]. The symbols a, b, and σ are peak-shape parameters. The peak-shape

parameters were determined in each spectrum, and used for the fitting to the spectrum.

The uncertainty of ΔA was taken as the fitting error.

The result of the obtained cross sections to the discrete state is summarized as the

angular distribution in Appendix C. A typical result of the peak fitting for the data of
28Si(p, p′) at 0−0.5◦ at Ex = 9−10 MeV is shown in Fig. 4.14.
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Figure 4.14: Typical result of peak fitting for the data of 28Si(p, p′) at 0−0.5◦ at Ex =
9−10 MeV.
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Chapter 5

Analysis on elastic scattering data
and result

The distorted wave Born approximation calculations, which are used for the extraction

of spin-flip strengths as described in Chapter 6 , are extremely sensitive to the distortion

effect in the inelastic scattering process [10]. The distortion effect can be calculated from

the optical model potential parameters which are derived from the elastic scattering data.

We took elastic scattering data at incident proton energy Ep = 295 MeV on 12C, 20Ne,
24Mg, 28Si, 32S, and 36Ar in the present experiment and 16O and 40Ca from Ref. [47]. In

the following sections, the optical model potential parameters are obtained from these

nuclei.

5.1 Deduction of differential cross sections and ana-

lyzing powers

Beam polarization

The beam polarization (p) was derived from the BLP’s data by the equation

p =
1

ABLP
y

L − R

L + R
, (5.1)

where ABLP
y was the analyzing power of the BLP target (see App. F), L and R were

yields detected by the L−L’ pair and the R−R’ pair of the BLP, respectively. The beam

polarization was cycled between spin-up (↑) and spin-down (↓) to cancel the asymmetry

of the experimental appartus. Being the yields of L and R as L↑, R↑ during the spin-up,

and L↓ and R↓ during the spin-down, the beam polarization for each spin direction can

be obtained by the equation

p↑ =
1

ABLP
y

L↑ − R↑
L↑ + R↑

=
1

ABLP
y

1 − R↑/L↑
1 + R↑/L↑

(5.2)

p↓ =
1

ABLP
y

L↓ −R↓
L↓ + R↓

=
1

ABLP
y

1 − R↓/L↓
1 + R↓/L↓

. (5.3)
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Assuming p↑ = −p↓, the equations can be rewritten as

p =
1

ABLP
y

1 − x

1 + x
, (5.4)

where

x ≡
√

R↑L↓
L↑R↓

(5.5)

using the relation

R↑
L↑

=
(R↓
L↓

)−1
=

L↓
R↓

. (5.6)

The uncertainty for the polarization can be written as

Δp =
1

ABLP
y

x

(x + 1)2

√√√√( 1

L↑
+

1

L↓
+

1

R↑
+

1

R↓

)
. (5.7)

The beam polarization was stable within during ±3% the measurement. A typical beam

polarization was 71%, 54%, and 52% depending on the condition of the HIPIS.

Differential cross sections and analyzing powers

The measured yields in each spin (N↑ and N↓) can be derived as

N↑ =
( dσ

dΩ

)
lab

(1 + pAy)τΩTη↑L↑Q′
↑ (5.8)

N↓ =
( dσ

dΩ

)
lab

(1 + pAy)τΩTη↓L↓Q′
↓, (5.9)

where (dσ/dΩ)lab and Ay were the differential cross section and the analyzing power of

the ground state, respectively, p was the beam polarization as derived in Eq. 5.4, T was

defined as T = NAta/A, and Q′ was defined as Q′ = Qε/e (see Table 4.4 for the notation).

Thus, the differential cross section in the center of mass flame and the analyzing power

can be derived as

dσ

dΩ
=

1

2

(
αN↑ + βN↓

) J

τΩT
(5.10)

Ay =
1

p

αN↑ − βN↓
αN↑ + βN↓

, (5.11)

where

α =
1

η↑L↑Q′
↑

(5.12)

β =
1

η↓L↓Q′
↓
. (5.13)
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The uncertainties of the cross section and the analyzing power can be written as

Δ
dσ

dΩ
=

dσ

dΩ

√√√√ 1

N↑ + N↓
+
(

Δτ

τ

)2

+
(

ΔT

T

)2

+
(

Δε

ε

)2

(5.14)

ΔAy = Ay
2αβN↑N↓

(αN↑)2 − (βN↓)2

×
√√√√( 1

N↑
+

1

N↓

)
+
(

Δτ

τ

)2

+
(

ΔT

T

)2

+
(

Δε

ε

)2

+
(

Δp

p

)2

, (5.15)

where (ΔT/T ) was taken from (Δt/t), and the uncertainty of the polarization was included

as systematic error of ΔAy. The numerical data of the measured cross sections and

analyzing powers of 12C, 20Ne, 24Mg, 28Si, 32S, and 36Ar are summarized in the tables in

Appendix D.

5.2 Optical model potential

The differential cross sections and the analyzing powers of the ground state obtained

in Sec. 5.1 were used to derive the optical model parameters by using ECIS88 program

code [45]. The derived parameters of the optical potential was input to the distorted wave

Born approximation calculation (see Sec. 6.2). The optical potential was assumed to be

Woods-Saxon form as

V (r) = VCoul(r) − VrFr(r) − iViFi(r)

+4VsurasurGsur(r) + 4iVsuiasuiGsui(r)

+
(

h̄

mπc

)2{
VsorGsor(r) + iVsoiGsoi(r)

}
L · σ, (5.16)

where

VCoul(r) =
Ze2

2Rc

(
3 − r2

Rc
2

)
(r < Rc)

=
Ze2

r
(r > Rc) (5.17)

Fk(r) =
{
1 + exp

(
r − rkA

1/3

ak

)}−1

(5.18)

Gk(r) =
1

r

d

dr
Fk(r)

= − 1

rak
exp

(
r − rkA

1/3

ak

){
1 + exp

(
r − rkA

1/3

ak

)}−2

(5.19)

and k = r, i, sur, sui, sor, soi for Fk(r) and Gk(r). Depth parameter, reduced radius

parameter, and diffuseness parameter were expressed as Vk, rk, and ak, respectively, in

each term, where k = r, i, sur, sui, sor, soi. The factor (h̄/mπc) is the pion mass, and its
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square was taken to be 2. The vectors L and σ were the orbital angular momentum and

the Pauli spin operator, respectively. The factor VCoul represented the Coulomb potential

with spherical uniform charges with the radius Rc. The second line in Eq. 5.16 represents

the surface term for the central potential. The potential parameters (Vk, rk, and ak,

where k = r, i, sur, sor, soi) were determined by fitting to the experimental data for the

minimum chi-square value per number of data N using the equation

χ2 =
N∑

i=1

(
Oexp(θi) − Ocalc(θi)

ΔOexp(θi)

)2

, (5.20)

where Oexp was the experimental differential cross section and the analyzing power as

obtained in Eqs. 5.10 and 5.11, and Ocalc was the ones obtained in the calculation. ΔOexp

was the uncertainty for Oexp as obtained in Eqs. 5.14 and 5.15. The initial parameters for

the fitting was taken from one of the global Dirac optical model potentials (EDAD Fit1−3

[46]), that were converted to the Schrödinger equivalent form. The initial parameters

were obtained by a manual search. The imaginary part of the surface term for the central

potential (Vsui, rsui, asui) was not included in the fitting because the term was not required

to reproduce the potential predicted by EDAD’s. In the fitting procedure for the optical

potential, the Coulomb radius Rc was fixed at 1.25 fm. The data of 16O and 40Ca that

were not measured in the experiment were taken from Ref. [47]. Typical results of the

optical potential and the fitting to the data are shown in Figs. 5.1 and 5.2 and the best-fit

parameters are listed in Table 5.1. The functions Ur(r), Ui(r), Usor(r), and Usoi(r) were

used in the figures to denote the real part of the central potential, the imaginary part of

the central potential, the real part of the spin-orbit potential, and the imaginary part of

the spin-orbit potential, respectively, as defined

Ur(r) = −VrFr(r) + 4VsurasurGsur(r) (5.21)

Ui(r) = −ViFi(r) (5.22)

Usor(r) = 2VrGsor(r) (5.23)

Usoi(r) = 2VrGsoi(r), (5.24)

where the factor 2 for Usor(r), and Usoi(r) comes from square of the pion mass. The

surface term of the imaginary part for the central potential was not used as described

above. In the figures, the global optical potentials parameterized in the proton energy

range of 20−1040 MeV for 12C−208Pb [46] and 4He−208Pb [48] are compared with the

fitting results as EDAD and new2009, respectively. The obtained optical model potential

parameters, listed in Table 5.1, were used to represent the distortion effect in the distorted

wave Born approximation calculations (Sec. 6.2).
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Figure 5.1: The optical model potentials for 12C, 16O, 20Ne, and 24Mg obtained by the
code ECIS88 [45] and the fitting results for the cross section and the analyzing power. The
derived parameters are listed in Table 5.1. The global optical potentials parameterized
in the proton energy range of 20−1040 MeV for 12C−208Pb [46] and 4He−208Pb [48]
are shown as EDAD (dotted curves) and new2009 (dashed curves), respectively. The
initial parameters for the fitting were taken from one of EDAD by a manual search. The
experimental data for 16O were taken from Ref. [47], and others are from the present
thesis.
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Table 5.1: Table of the optical potential parameters used in the form of Eq. 5.16 obtained
by the fitting using ECIS88 [45] code. The parameter Vk is expressed in MeV, and the
parameters rk and ak are expressed in fm, where k = r, i, sur, sui, sor, soi. In the fitting
procedure, the Coulomb radius rc has been fixed at 1.25 fm. The imaginary part of the
surface term for the central potential (Vsui, rsui, asui) is not included in the present fitting.
The potentials and the fitting results are shown in Figs. 5.1 and 5.2. The parameters are
used in the distoted wave Born approximation calculation (Sec. 6.2).

Vr rr ar Vi ri ai Vsur rsur asur
12C -11.7271 0.8936 0.2303 30.0244 0.9642 0.5577 2.7002 1.3567 0.4629
16O -9.2196 0.8844 0.3124 27.8003 1.0427 0.5952 3.1033 1.2854 0.5506
20Ne -9.0559 1.2356 0.5682 30.0252 0.9767 0.7715 7.6628 1.0521 0.7694
24Mg -8.1733 1.1501 0.4131 25.7177 1.0488 0.6667 5.7071 1.1450 0.6483
28Si -11.4276 1.1644 0.5242 25.3639 1.0403 0.6459 8.0902 1.0763 0.6237
32S -10.5791 1.2274 1.0902 24.4626 1.0499 0.5791 8.5048 1.1749 0.7241

36Ar -6.0904 0.9061 1.1335 25.5578 1.0967 0.6460 4.9719 1.3000 0.5213
40Ca -7.7000 0.8650 0.5000 28.2000 1.0700 0.6800 4.2000 1.2500 0.6200

Vsui rsui asui Vsor rsor asor Vsoi rsoi asoi
12C 0.0000 - - 2.8993 0.9321 0.6052 -0.7199 0.9979 0.5886
16O 0.0000 - - 2.8573 0.9646 0.5280 -1.2961 0.9941 0.5404
20Ne 0.0000 - - 2.8102 0.9438 0.6401 -1.1475 0.9063 0.6809
24Mg 0.0000 - - 2.8919 0.9579 0.6261 -1.0860 0.9144 0.7114
28Si 0.0000 - - 2.7536 0.9827 0.6903 -0.5101 0.9735 0.6323
32S 0.0000 - - 2.5435 0.9546 0.8018 -0.8784 0.8910 0.7090

36Ar 0.0000 - - 2.7672 0.9900 0.6838 -0.8140 1.0200 0.6644
40Ca 0.0000 - - 2.8000 0.9900 0.6400 -1.0000 0.9800 0.6300
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Chapter 6

Extraction of B(M1)σ and B(M1)στ

The first step of the present work was the extraction of spin-M1 transition strengths to

the low-lying discrete states. For this purpose and the detection of the M1 transition, a

shell model and a DWBA calculation codes were employed to obtain the 1+ state wave

function and the angular distribution of the inelastic scattering.

6.1 Shell-model calculation

For the calculation of one-body transition densities (OBTDs) of nucleon-nucleus scattering

and theoretical spin-M1 transition strengths, the shell-model calculations were performed

by using the code Nushell@MSU [49]. The calculations gave realistic wavefunctions of the

nuclear states in question with the effective interaction in a truncated shell model space.

The effective interactions of CKPOT and CKII were used for the calculation of the p-shell

nuclei within 0h̄ω. The CKPOT and CKII interactions are identical to the (8-16)POT

and the (8-16)2BME, respectively, in Ref. [51]. For the calculation of the sd-shell nuclei,

the effective interactions of USD [13, 52], USDA and USDB [53] were employed within

the shell model space of 0h̄ω excitation. The USD interaction has been derived from

the fit of 63 two-body matrix elements and three single-particle-energies to reproduce the

experimental values of 380 energy levels in the sd-shell nuclei within the root-mean-square

(rms) deviation of 150 keV in 1980s. Recently, the new interactions of USDA and USDB

have become available, based on the updated set of energies of 608 levels in 77 nuclei.

The USDA and USDB have been obtained with resulting rms deviations of 170 keV and

130 keV, respectively.

The OBTDs obtained from the shell-model calculation were used for the input data

to the code DWBA07 [54] to calculate differential cross sections.
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6.2 Distorted wave Born approximation

In this thesis, distorted wave Born approximation (DWBA) calculations were used to eval-

uate differential cross section of the inelastic scattering. The calculations were performed

by using the computer code DWBA07 [54].

6.2.1 Differential cross section and distorted approximation

In the direct reaction process where the one-step reaction is dominant, the microscopic

description of nucleon-nucleus scattering is made available by the Born approximation [55].

The differential cross section of inelastic scattering in this approximation takes the form

dσ

dΩ
=

M2

(2πh̄)2

kf

kf
|Tfi|2, (6.1)

where M is the reduced mass of the system, ki and kf are the wavenumbers of the incoming

and the outgoing particles, respectively, and Tfi is the transition matrix element from the

initial state i to a definite final state f . The transition matrix element can be written as

Tfi =
∫

χ−∗
f (kf , r)〈φf |V |φi〉χ+

i (ki, r)dr, (6.2)

where χ± are the distorted wavefunctions for the projectile and the ejectile, and V is

the potential of the nuclear reaction, and φi and φf are the wavefunctions of the ground

and the excited states of the target nucleus, respectively. The distortion effect of the

wavefunctions is represented by the optical model potential parameters that are modified

to reproduce the elastic scattering data.

6.2.2 Parameters used in DWBA07 code

Optical model potential parameters

The optical model potential parameters were taken from Table 5.1, which were determined

by the fitting to the data of elastic scattering taken by the present experiment and from

Ref. [47]. The differential cross section of inelastic scattering is sensitive, compared with

the case of elastic scattering, to the distortion effect described by the optical model poten-

tial parameters [10]. Thus, the optical potential parameters derived by the same manner

for all the nuclei in question were adopted, in order to reduce systematic uncertainties.

The optical model potential parameters were taken from Table 5.1. See Chapter 5 for the

deriving procedure of the parameters.

One-body transition densities

One-body transition densities (OBTDs) of the transitions to the Jπ = 0+, 1+, and 2+

states were obtained from the shell-model calculations. The effective interactions of USD,
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USDA, USDB were used for 20Ne, 24Mg, 28Si, 32S, and 36Ar and those of CKPOT and

CKII were used for the p-shell nuclei (11B and 12C). The OBTD’s obtained for 20Ne

and 36Ar were used to produce the angular distribution of the inelastic scattering cross

section in 16O and 40Ca, respectively, since the shell-model calculation for the double-

closed nucleus can not be performed within 0h̄ω excitation in the sd-shell. The OBTDs

obtained from the shell model calculation were input to the DWBA07 with a factor of

1/
√

2. For a transition to the Jπ = 1− state, a simple 1p1h configuration caused by 1h̄ω

particle jump e.g., a (2p3/2, 1d
−1
5/2) configuration for 28Si, was considered as the OBTDs of

the non-normal-parity transition. The other Jπ transitions (ΔL ≥ 2) were not considered

for the present study since they are hindered in the region of small momentum transfer.

Oscillator parameter

The single-particle radial wavefunctions, used for the calculation of the transition matrix

element, were assumed to take a form of the harmonic-oscillator potential type. The global

harmonic-oscillator parameter b with a mass dependence given in Ref. [56] was used in

the present study, although in some cases b parameter can be obtained from literature.

The formulae of the global b parameters for the protons (bπ) and for the neutrons (bν) in

Ref. [56] are

b 2
π = 0.983(4)A1/3 + 0.373(23) fm2 (6.3)

b 2
ν = 0.859(5)A1/3 + 0.699(24) fm2, (6.4)

where A is mass number. The formula for bπ has been determined from experimental root

mean square charge radii of nuclei with a correction for the internal charge distributions

of the proton and neutron. The formula for bν has been estimated by the use of empirical

relations between the neutron skin thickness and the relative neutron excess. The b

parameters for protons and neutrons used in the DWBA calculation are listed in Table 6.1.

Effective nucleon-nucleon interaction

The effective nucleon-nucleon (NN) interaction was taken from the t-matrix of the free

NN interaction parameterized at 325 MeV by Franey and Love (FL325) [5].

We have examined three different sets of NN interactions, FL325, FL270, and Paris, to

determine the most suitable interaction for the extraction of the strengths. The interaction

FL270 is the free NN t-matrix parameterized at 270 MeV. The Paris interaction [57] has

been generated from the G-matrix type interactions that include medium effects in the

description of NN scattering [58].

Figure 6.1 shows the results of the 28Si(p, p′) inelastic scattering cross sections obtained

in the present experiment and the DWBA calculations using the effective interactions
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Table 6.1: The oscillation parameters for protons (bπ) and neutrons (bν) calculated from
the formulae for the global harmonic-oscillator parameters of Eqs. (6.3) and (6.4), respec-
tively. They have been determined in Ref. [56].

nuclei bπ (fm) bν (fm)
12C 1.620(25) 1.633(24)
16O 1.688(25) 1.692(24)
20Ne 1.744(25) 1.741(24)
24Mg 1.791(26) 1.782(24)
28Si 1.832(26) 1.819(24)
32S 1.869(26) 1.851(24)
36Ar 1.902(27) 1.880(24)
40Ca 1.932(27) 1.907(24)

mentioned above. The left and right panels show the angular distributions of the IS and

IV 1+ transitions, respectively, for the strongest excitation in 28Si at 0◦ to the states at Ex

= 9.495 and 11.447 MeV, respectively. The DWBA calculation results were normalized

to the experimental results at 0.74◦ in the laboratory frame. The reproducibility for the

eight experimental points at forward scattering angles, 0−7◦ in center of mass frame, was

evaluated by calculating the reduced chi-squares as

χ2 =
8∑

i=1

(
Oexp(θi) − ODWBA(θi)

ΔOexp(θi)

)2

, (6.5)

where Oexp and ΔOexp are the experimental differential cross section and its uncertainty,

and ODWBA is the cross section obtained by the DWBA calculation with the normaliza-

tion. Because the shape of the angular distribution of the 1+ transitions does not depend

on wavefunctions at forward scattering angles (see Sec. 6.3), the data points at only small

scattering angles were considered. The result of the chi-square values are summarized

in Table 6.2. The FL325 interaction was found to achieve the best reproducibility from

the total chi-square value. The FL270 interaction seemed to show slightly worse repro-

ducibility. The Paris interaction underestimated the IS cross sections at finite scattering

angles in the range of 5−15◦, although good agreement was achieved for the IV cross

section. We determined to use the FL325 interaction in the present analysis. The ob-

servation mentioned above is consistent with the study of NN interaction [19] from the

energy dependence of the IS and IV 1+ transition cross section ratio.
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—————————

Table 6.2: The calculated chi-square values following Eq. (6.5) for the IS and the IV 1+

transitions in 28Si and the sum of the chi-square values. The FL325 interaction shows the
best reproducibility in the angular distribution.

isoscalar isovector total
FL325 12.5 41.4 53.8
FL270 12.8 53.4 66.3
Pairs 143 20.1 164
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6.3 Jπ and isospin assignment

6.3.1 Shape of typical angular distribution of 1+ transition

Typical shape of 1+ transition

The cross section of a ΔL = 0 nuclear excitation shows a typical angular distribution

of forward peaking character, being a maximum at 0◦. In figure 6.2, the angular dis-

tributions of the 1+ transitions in 28Si based on the wavefunctions for the USD, USDA,

and USDB interactions are drawn with the normalizations to unity at 0◦. The IS and

the IV 1+ transitions are shown in red and blue, respectively. The bold curves in black

were artificially produced by averaging the respective distribution curves of the IS and IV

transitions with weights of the strengths, i.e., B(M1)σ for IS and B(M1)στ for IV. The

artificial curves were treated as the shape standards for the IS and IV 1+ transitions and

were used for the Jπ as well as T assignments.

There are two points to be noted in Fig. 6.2. One is that there is a marked difference

in shape of the angular distribution of the 1+ transitions between the IS and the IV

transitions. The distribution of the IS transition changes with angle more slowly than the

IV one. The exchange effect in the nuclear reaction seems to cause such difference in the

angular distribution between the IS and the IV excitations, as seen in Fig. 6.3 obtained for

different assumptions on the reaction mechanism by changing the logical controls in the

code DWBA07. The artificial curves in Fig 6.2 are also drawn in Fig. 6.3 for comparison.

The other point is that the angular distributions in the range of scattering angles at 0−7◦

in center of mass frame are nearly independent of the wavefunction for each transition.

These angular distributions based on different wave functions are almost identical within

this region, while they differ considerably at the scattering angles of >7◦. Therefore, the

IS/IV assignment may be made by fitting the artificial curves to the experimental angular

distribution at the small scattering angles.

Typical angular distributions of different Jπ excitations

Not only the 1+ transitions but also 0+ and other ΔL ≥ 1 transitions (for example 1−

and 2+ ones) are observed at 0◦. Figure 6.4 shows the typical angular distributions of

different Jπ excitations for 28Si. They were normalized to unity at 0◦. The shape of

angular distribution of the 1− and 2+ transitions are clearly different from those of the IS

and IV 1+ transitions, while those of 0+ transitions are not simply distinguishable from

are the 1+ transitions. Various wavefunctions of the 0+ transitions obtained by the shell-

model calculation are drawn in the figure in order to study the wavefunction dependence

of the 0+ transitions on the angular distribution. The angular distributions of the 0+

transitions are similar to that of the IV 1+ transition and one of them is similar to the
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Figure 6.2: Angular distributions of the IS (red) and IV (blue) transitions in 28Si calcu-
lated by DWBA07. The distributions have been normalized to unity at 0◦. Several 1+

angular distributions based on the USD, USDA, and USDB interactions were drawn to
show the ambiguity of the wavefunctions. The bold curves in black have been artificially
produced by averaging the distributions of each isospin with a weight of strength obtained
from shell model calculation.

—————————

IS 1+ transition at the angular range of 0◦ to 7◦. However, the difference of the angular

distributions between the 1+ and 0+ transitions becomes large at ∼15◦; the cross section

of the 1+ transition almost monotonously decreases with scattering angle, while that of

the 0+ transitions increases in the range of >10◦. Thus, we may take the following criteria

in assigning the IS and IV 1+ transitions;

• The angular distribution shows the maximum at 0◦.

• The cross section decreases with scattering angle in the range of <10◦.

• A local maximum at a finite angle is to be much (10 times or more) smaller than at

0◦.

6.3.2 Assignment procedure

The Jπ and T assignments were performed by comparing the experimental angular dis-

tributions of the proton inelastic scattering with the artificial curves of the IS and the

IV 1+ transitions and the typical distributions of the 0+, 1−, and 2+ transitions obtained

by the DWBA calculation. The experimental data taken by the GR placed at 0◦ was

divided into three spectra at 0.40◦, 1.00◦, and 1.74◦ in laboratory frame (0.42◦, 1.05◦,

and 1.82◦, respectively, in center of mass frame in the case of 28Si). The artificial curves

of the 1+ transitions and the typical curves of the other Jπ transitions by the DWBA
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Figure 6.3: Angular distributions of the IS and the IV 1+ transitions in 28Si calculated by
the DWBA07 with different assumptions on reaction mechanisms. The angular distribu-
tions of the IS and IV transitions are shown in red and blue, respectively. The artificial
curves presented in Fig. 6.2 are also in black drawn for the comparison. The amplitudes
are normalized to unity at 0◦. The figure for the full calculations denoted as (Direct +
Exchange + Tensor) is the same with Fig. 6.2.

—————————
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—————————

calculation were normalized to the average of the experimental cross sections at 0.40◦ and

1.0◦. Then, the assignments of 0+, IS-1+, IV-1+, 1−, or ΔL ≥ 1 transitions to the dis-

crete states were made by a ”search-by-eye” (pattern recognition) considering especially

the criteria mentioned in the previous sub-section for the IS and the IV 1+ transitions.

The reason why assignments based on chi-squares value as presented by Eq. (6.5) was

not used, since the calculated angular distribution at finite scattering angles (>7◦) signif-

icantly depends on the wavefunction used, making it hard to rely on the chi-squares in

the practical assignment.

Typical results of the assignment by the ”search-by-eye” for the IS and the IV 1+

transitions in 28Si are shown in Fig. 6.5. The experimental angular distributions clearly

disagree with the 0+, 1−, and 2+ transitions, and well agree with the artificial curves

of the IS and IV 1+ transitions within the range of scattering angles 0−10◦. Figure 6.6

shows typical examples of the cases where definite assignments to the IS and the IV

1+ transitions were not made in 28Si. The experimental angular distributions are seen

to be close to the shape standards of the IS and the IV 1+ transitions at the region

of small scattering angles. They, however, deviate from the standards at >10◦. Such

transitions were treated as those of indefinite assignment. The ambiguous assignment of

the IS 1+ transition was considered to be caused by the mixing of the 0+ transition in the

experimental yields. (see Sec. 6.3.4)

All the results of the assignment and the experimental angular distributions of inelastic
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scattering cross section for the discrete state are summarized in Appendix C. The DWBA

calculations are not presented for some discrete states when yields of the state were not

extracted from the energy spectra at 0.40◦ and 1.0◦.
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Figure 6.5: Typical assignments to the IS and IV 1+ transitions in 28Si. The typical
angular distributions of the 0+, 1−, and 2+ transitions and the artificial curves of the IS
and IV 1+ transitions are compared with the experimental data.
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Figure 6.6: Typical examples of the uncertainly assignments to the IS and IV 1+ transi-
tions in 28Si.

—————————

6.3.3 Cross check from polarization transfer observables on 28Si

Since the Jπ and T assignments of the excited states form a basis for deriving the M1

strengths, the examination of the validity of the present method of assignment was of

utmost importance. Fortunately, there has been available a set of detailed experimental

data on the polarization transfers (PT) of the proton inelastic scattering in the case of
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28Si [59]. The PT observables also give the information on ΔS and ΔT of the scattering,

independent from the angular distributions of the cross sections [7]

Following the convention in Ref. [8], the total spin transfer (Σ) at scattering angle 0◦

is expressed as

Σ =
3 − (2DSS + DLL)

4
, (6.6)

where DSS and DLL denote the PT observables (see Ref. [8]). The quantity Σ takes 1 and

0 for spin-flip and non-spin-flip transitions, respectively. If the quantity TPT is defined as

TPT = SLL − SSS =
1

2
(DSS − DLL), (6.7)

TPT takes negative and positive values for the IS and the IV transitions, respectively.

Therefore, the product of these two quantities at 0◦ takes

Σ · TPT

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 (IS 1+ transition)

< 0 (IV 1+ transition)

= 0 (0+ or other natural parity ΔL ≥ 1 transition).

(6.8)

It is to be noted that above assignments are only valid at 0◦. The magnitude of the

product of Σ · TPT does not have any sense in the present discussion.

Figure 6.7 shows the result of the products of Σ·TPT for 28Si using the PT observables,

taken from Ref. [59] and tabulated in Table 6.3. The present assignments from the angular

distributions are written in the figure for comparison. The three transitions may be seen

to be assigned as the 0+ or other natural parity ΔL ≥ 1 (other than 1+) ones from the

products of Σ · TPT are consistent with zero within errors. These assignments from the

PT observables agree with the assignments from the angular distributions in the present

work, as shown in Fig. 6.8. Thus, the present Jπ and T assignments, based on the angular

distributions of the cross sections, were found to be reliable enough for both the IS and

the IV 1+ transitions. It is also of interest that the 0+ assignment from the angular

distribution seems to be reliable as well.

6.3.4 Possible cause for indefinite 1+ assignment

The transition to the Ex = 14.571 MeV state in 28Si was indefinitely assigned to be the

IS 1+ transition; the experimental angular distribution was observed close to the IS 1+

transition in the angular range of 0−10◦, but somewhat deviate to become close to the

0+ transition in the range of 10−15◦ (left panel of Fig. 6.6). Since, unfortunately, the

PT observables in Ref. [59] were not available for this transition, the 28Si(p, p′) data at

160 MeV measured at 0◦ and at the Indiana University Cyclotron Facility (IUCF) [60]
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—————————

Table 6.3: Polarization transfer observables measured in the 28Si(�p, �p′) experiment at 0◦

using a 392 MeV proton beam at the RCNP [59].

Ex [MeV] DSS DNN

9.50 0.707 ± 0.133 -0.085 ± 0.124
9.72 0.600 ± 0.298 0.294 ± 0.276

10.59 -0.638 ± 0.138 -0.143 ± 0.125
10.91 0.040 ± 0.165 0.444 ± 0.151
11.16 0.562 ± 0.310 0.700 ± 0.292
11.45 -0.453 ± 0.047 -0.175 ± 0.042
12.33 -0.255 ± 0.102 0.112 ± 0.093
12.74 0.686 ± 0.215 0.906 ± 0.203
13.33 -0.280 ± 0.188 -0.050 ± 0.108
14.03 -0.437 ± 0.072 -0.237 ± 0.063
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—————————

were used for the examination of the assignment, based on the different energy dependence

of the cross section for different Jπ and T .

The energy spectrum around the Ex = 14.571 MeV transition from the 28Si(p, p′) at

160 MeV taken at the IUCF is shown in the middle panel of Fig. 6.9 after the back-

ground subtraction. The yields of the lines were calculated relative to the most intensive

IS 1+ transition to the 9.495 MeV state, and the results were compared between the

measurements with different beam energies (e.g. 160 and 295 MeV) by introducing the

ratio

R295/160 =
σ(Ex)295/σ(9.495)295

σ(Ex)160/σ(9.495)160
, (6.9)

where σ(Ex)Ep denotes the yield of the transition to the state at Ex MeV for the proton

beam energy of Ep (Ep = 160 and 295 MeV). The ratio R295/160 is to be dependent on the

Jπ and T character of the transition and is expected to take unity for the IS 1+ transition

to the state at Ex.

In the energy range shown in Fig. 6.9, there are four 0+ states definitely assigned at

9.709, 10.807, 11.142, and 12.971 MeV. The R values for these 0+ states are plotted in the

bottom panel against Ex together with that for the 14.571 MeV transition in question.

The values for the 0+ states are seen to be constant around the average of 0.43(2), while

the value for the 14.571 MeV state is 0.74(10) lying midway between unity and 0.43. Since

the yield seen at 0◦ is supposed to be mainly due to the ΔL = 0 transition, the situation

with the 14.571 MeV transition suggests that there may be a mixture of unresolved 0+

component in the transition. The 0+ mixing was estimated to be 54(7)% from the R

value.

The present work found eight similar indefinitely assigned IS 1+ transition; to the

states at 12.398 MeV in 20Ne, at 13.767, 13.933, and 14.009 MeV in 24Mg, at 13.188, and
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13.231, and 14.571 MeV in 28Si, and 14.482 MeV in 36Ar. The 0+ mixing ratio of 54(7)%

was assumed for these indefinitely assigned IS 1+ transition in deriving the B(M1)σ values

from the cross section at 0◦.

Figure 6.9: The energy dependence of the yields in 28Si(p, p′) spectra for the Jπ and T
assignment. The excitation energy spectra at Ep = 295 and 160 MeV, performed at the
RCNP the IUCF [60], respectively, are shown in the top and middle panels. The yield
ratio R295/160’s for the 0+ (opened circles) transitions and the indefinitely assigned IS 1+

(closed square) transition to the 14.571 MeV state in 28Si are shown in the bottom panel.
The ratio R295/160 is expected to take unity and 0.43(2) for the IS 1+ and 0+ transitions,
respectively.

—————————

6.4 Unit cross section

As mentioned in Ref. [61], at incident beam energies above 100 MeV/u, a ΔL = 0 transi-

tion becomes relatively enhanced as the one step direct reaction becomes dominant. Thus,

the cross section of ΔL = 0 transition of charge exchange reaction at the small momentum

transfer becomes proportional to Gamow-Teller (GT) strength, B(GT). The unit cross

section is defined as a proportionality constant between the cross section and the reduced
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transition strength. This proportionality was used in the present thesis to obtain the

IS and the IV spin-M1 transition strengths of B(M1)σ and B(M1)στ , respectively, from

the cross sections at 0◦. It should be noted that the isospin symmetry was assumed in

the followings. More complicated problems e.g., isospin mixing and the effect of meson

exchange current (MEC) which violates the proportionality between the B(GT) and the

B(M1)στ due to relativistic effect, were not considered in the present thesis because their

effect are expected to be small as discussed in Secs. 7.2.1 and 7.3.3.

The definitions of the unit cross section used in this thesis are given in Sec. 6.4.1. The

deduction of unit cross section values from experiments is presented in Sec. 6.4.3. Using

these experimental unit cross section values, the mass dependent formulae of the IV and

the IS unit cross sections are determined in Secs. 6.4.4 and 6.4.5, respectively.

6.4.1 Definition of unit cross section

The unit cross sections σ̂IS and σ̂IS for the IS and the IV spin-M1 transitions, respectively,

were defined as

dσ

dΩ

∣∣∣∣∣
IS

(0◦) = σ̂ISFIS(q, ω)B(M1)σ (6.10)

dσ

dΩ

∣∣∣∣∣
IV

(0◦) = σ̂IV FIV (q, ω)B(M1)στ , (6.11)

where dσ/dΩ|T (0◦) (T = IS, IV ) is the differential cross section at 0◦, and B(M1)σ and

B(M1)στ are the IS and the IV spin-M1 transition strengths, respectively. The cross

section value at 0◦ was obtained from the experimental cross section value measured at

0.40◦ in laboratory frame by the extrapolation using the artificial curve by the DWBA

calculation (see Sec. 6.3.2 for the artificial curve). The factor FT (q, ω) (T = IS, IV ) is

the kinematical factor, which gives the dependence on momentum transfer (q) and energy

transfer (ω), defined as

FT (q, ω) =
σ(q, ω)

σ(0, 0)
(T = IS, IV ), (6.12)

where σ(q, ω) is the differential cross section at 0◦ of the 1+ transition obtained by the

DWBA calculation. The dependence of F (q, ω) on the energy transfer for 28Si is shown

in Fig. 6.10.

There are little dependence due to the wavefunctions in the F (q, ω)IV function. Al-

though simple 1p1h configurations of (1d3/2, 2s−1
1/2) and (2s1/2, 1d−1

3/2) transitions have

different distribution curve of F (q, ω)IV from the realistic ones, their cross section values

at 0◦ are 102 smaller than those of realistic ones because they are not ΔL=0 transi-

tion. Thus, the realistic distribution of the F (q, ω)IV function has to be considered. The
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—————————

FIV (q, ω) function was assumed to be express with the mass number (A) and excitation

energy (Ex) dependence as

FIV (q, ω) = FIV (A, Ex) =
1∑

i=0

2∑
j=0

αijA
iEx

j, (6.13)

where αij, which is summarized in Table 6.4, is the parameter obtained by fitting to

FIV (q, ω) functions calculated for each nucleus. The obtained FIV (A, Ex) function is

valid for A = 11−58 and Ex = 0−20 MeV. The uncertainty in FIV (A, Ex) was smaller

than 1%.

Problem lies on the FIS(q, ω) function. The energy transfer distribution is not unity as

seen in the left panel of Fig. 6.10. This indicates that the FIS(q, ω) function depends on

the wavefunction. Because the energy transfer distributions of the realistic wavefunction

predicted by the USD interaction are flat within ±5% in this energy transfer region as

indicated by the arrow, the FIS(q, ω) function was assumed to be

FIS(q, ω) = FIS(A, Ex) = 1.00 ± 0.05. (6.14)
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Table 6.4: Coefficients determined by the fitting for the FIV (A, Ex) function of Eq. (6.13)
to the calculations using the wave function based on the USD interaction. The symbol A
denotes the mass number, and Ex is the excitation energy in MeV.

ij αij

12 −2.68e-06
02 −2.02e-04
11 −2.07e-05
01 −3.10e-03
10 +1.54e-05
00 +1.00e-00

6.4.2 Theoretical study of unit cross section

The relationship between the cross section and the spin-M1 transition strength was the-

oretically examined by using the DWBA calculation in order to study the validity of the

proportionality. The decomposition of the nucleon-nucleus interaction into the central,

the spin-orbit, and the tensor interactions at Ep = 295 MeV in the case of 28Si is shown

in the top panel of Fig. 6.11. Since the central component was found to be dominant in

the IV transition, the transition strength is expected to be given from the observed cross

section at 0◦ by using the unit cross section. The total cross section at 0◦ in the IS 1+

transition, however, is mainly due to not the central interaction but the tensor interaction.

We will study the proportionality between the cross section by tensor interaction and the

spin-flip cross section later.

In order to know the contribution of the ”σ” and the ”στ” operators in the cross section

to the IS and the IV 1+ transitions, respectively, the central interaction was decomposed

into the spin-isospin components V0, Vσ, Vτ , and Vστ by usign the equations

⎛
⎜⎜⎜⎝

V0

Vσ

Vτ

Vστ

⎞
⎟⎟⎟⎠ =

1

4

⎛
⎜⎜⎜⎝

−1 −1 1 1
3 −1 −3 1

−1 3 −3 1
3 3 9 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

tSE

tTE

tSO

tTO

⎞
⎟⎟⎟⎠ , (6.15)

where tSE, tTE, tSO, and tTO denote the singlet-even, the triplet-even, the singlet-odd,

and the triplet-odd components of the free nucleon-nucleon t-matrix [6], respectively. The

results of the decomposition of the central interactions in the case of 28Si are shown in

the bottom panel of Fig. 6.11. It is obvious that the Vσ and the Vστ components are

dominant in the IS and the IV transitions at 0◦, while the total central interaction in the

IS transition is hindered owing to the destructive interference of the pieces of the central

components.

Next, the proportionality between the cross section by tensor interaction and the spin-

flip cross section in the IS 1+ transition was considered. The two dimensional plot of the
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B(M1)σ versus the cross section ratio of the tensor interaction to the central interaction,

mainly due to the Vσ interaction, is drawn in Fig. 6.12. The USD interaction was used for

the B(M1)σ and to calculate the tensor and central cross sections. The result indicates

that the cross section ratio is constant within ±10% accuracy for the strong state which

is detectable (> 0.01 μ 2
N ). Thus, the equation for the IS unit cross section, Eq. (6.10),

was supposed to be valid within the uncertainty of 10%. This accuracy was taken as an

additional error in the IS unit cross section, being ΔcIS = 0.1 in Eq. (6.23).
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Figure 6.11: The decompositions of the nucleon-nucleus interaction at Ep = 295 MeV in
the case of 28Si. The results of the IS and the IV 1+ transition to the Ex = 9.399 and
11.519 MeV, respectively, predicted as the strongest states by the USD interaction, are
shown in the left and the right panels, respectively. In the top panel, the decomposition
into the central, the spin-orbit (LS), and the tensor interactions are shown. The central
interaction is decomposed into the spin-isospin components (V0, Vσ, Vτ , and Vστ ) in the
bottom panel. The full calculation is denoted as the bold curve in black.

—————————

6.4.3 Unit cross section from experiment

The IV unit cross section σ̂IV can be experimentally obtained by using the (p, p′) cross

section and the B(M1)στ value determined from the corresponding β-decay strength as-

suming the isospin symmetry. However, it is rare that the unit cross section can be directly

92



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.0001  0.001  0.01  0.1  1

Ne20
Mg24

S32
Si28

Ar36

σ 
   

   
   

/σ
ce

nt
ra

l
te

ns
or

B(M1)   [μ   ]N
2σ

±10%

Figure 6.12: Two dimensional plot of the B(M1)σ and the cross section due to the Vσ

interaction in the IS 1+ transition, based on the shell model and the DWBA calculations
using the USD interaction. The cross section ratio of the tensor interaction to the central
interaction mainly due to Vσ is constant within ±10% accuracy for the strong state which
is detectable (> 0.01 μ 2

N ).

—————————

obtained from experiments because the β-decay is to be the transition where inverse exci-

tation is measureable by the (p, n) and other reactions at 0◦ [62,63]. In the present thesis,

the IV unit cross sections for 12C, 26Mg, 58Ni, and 11B were determined experimentally as

summarized in Table 6.5. Then, they were used for deriving the A-dependence of σ̂IV (A)

(Sec. 6.4.4). For the case of 11B, the situation was special since both the unit cross sec-

tions of σ̂IS and σ̂IV were determined. Those of 24Mg and 32S were not obtained because

their corresponding β-decays from the first 1+ excited state to the ground state are the

forbidden transition. That is why those transitions were not considered in Ref. [62].

In the following subsections, the deduction of each experimental unit cross section is

described.

Table 6.5: The unit cross sections obtained from experiments assuming isospin symmetry
in unit of mb/sr/μ 2

N . Effects of isospin mixing and meson exchange current are not taken
into account.

σ̂IS σ̂IV
11B 2.1 ± 0.4 1.4 ± 0.1
12C - 1.60 ± 0.10a

26Mg - 1.45 ± 0.09
58Ni - 0.713 ± 0.082

a Average of ft-values of 12B and 12N.
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Relationship between B(M1)στ and B(GT)β

The reduced transition strength of a β-decay, B(GT)β , can be obtained from the experi-

mental ft-value as

B(GT)β =
C

(gA/gV )2ft
, (6.16)

where C = 2×(3071.4±0.8) s [64] (see Ref. [64] for the detail) and gA/gV = 1.2695±0.0029

[65] is the ratio of axial-vector to vector coupling constants of the neutron β-decay. Thus,

the relationship between the β-decay strength B(GT)β and the corresponding ”excitation”

GT strength B(GT)↑ can be expressed as

B(GT)↑= 2Jf + 1

2Ji + 1
B(GT)β, (6.17)

where the suffixes were taken for the ”excitation” transition. Thus, we can obtain an

experimental B(M1)στ value by using Eqs. (6.16), (6.17), and (A.25).

Case of 12C

Figure 6.13 shows the isospin symmetry structure in A = 12 isobars. The ft-values

experimentally determined from the β-decays from 12B and 12N have been reported to

be (1.167 ± 0.004)×104 s and (1.318 ± 0.008)×104 s [67], respectively. Although a small

asymmetry can be seen in the ft-values between the mirror nucleus, which is supposed to

originate from the G-parity irregular [68], we do not deal with this subject here. Applying

the average of the two ft-values, σ̂IV (12C) = 1.60 ± 0.10 mb/sr/μ 2
N was obtained from

the experimental cross section of 3.429 ± 0.076 mb/sr at 0.40◦ in laboratory frame. The

error of σ̂IV (12C) was taken to cover the two data.
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Figure 6.13: Schematic diagram of isospin symmetry structure in A = 12 isobars.
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Case of 26Mg

Figure 6.14 shows the isospin symmetry structure in A = 26 isobars. The B(GT)↑ values

to the low lying discrete states in 26Al (Jπ = 1+) by the (3He,t) reaction from 26Mg were

obtained from the corresponding β-decay transitions from 26Si in Ref. [69, 70]. Applying

the proportionality between the yields and the B(GT)↑ value, B(GT)↑ values with T =

2 in 26Na and 26Mg were identified by using the (3He,t) and (t,3He) reactions [71]. The

strongest state with T = 2 observed at Ex = 13.302 MeV in the 26Mg(p, p′) spectrum was

found to be double to the state at 13.324 MeV. The cross sections by the (p, p′) reaction

at 0.40◦ in laboratory frame were obtained to be 0.607 ± 0.011 and 0.372 ± 0.008 mb/sr

at 13.302 and 13.324 MeV, respectively. Hence, σ̂IV (26Mg) = 1.45 ± 0.09 mb/sr/μ 2
N was

obtained using the corresponding strength B(GT)↑ = 0.41 ± 0.02 [71]. We note that an

excitation of T = 1 → 1 can not be used for the present calculation because the transition

is mixed with the IS and IV components.
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Figure 6.14: Schematic diagram of isospin symmetry structure in A = 26 isobars.

—————————

Case of 58Ni

Figure 6.15 shows the isospin symmetry structure in A = 58 isobars. The ft value of the

β-decay to the ground state of 58Ni from 58Cu has been reported to be 4.870 ± 0.003 s [72].

As done for 26Mg, the B(M1)στ strength in the transition of T = 1 → 2 was determined

from the corresponding B(GT)↑ by using the proportionality between the yields in the

(3He,t) reaction [73, 74] and the B(GT)β . Here, we note that there is a disproportionate
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relationship for the yields by the (3He,t) probe between the excitations to the ground

state and other states in 58Cu from 58Ni [75]. Therefore, the correction factor was applied

for the B(GT) values, which has been deduced from the ratio of the yields by the (3He,t)

reaction to those by the (p, n) reaction [75] as

R((3He, t)/(p, n)) =
2.74± 0.05

1.71
. (6.18)

The strongest state with T = 2 reported in Ref. [74] was observed at Ex = 10.655 MeV

in the (p, p′) spectrum with the cross section of 0.981 ± 0.012 mb/sr. Thus, σ̂IV (58Ni) =

0.713 ± 0.082 mb/sr/μ 2
N was obtained.
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Figure 6.15: Schematic diagram of isospin symmetry structure in A = 58 isobars. We note
that there is a disproportionate relationship for the yields by the (3He,t) probe between
the excitations to the ground state and other states in 58Cu from 58Ni [75]

—————————

Case of 11B

— Derivation of B(M1)σ and B(M1)στ in 11B

The case of 11B is different from the above. An excited transition in 11B is always mixed

with the IS and IV components because the ground state of 11B is not T = 0 but T =

1/2. Figure 6.16 shows the level scheme for the ground and the first excited states in
11B and 11C. In Refs. [76, 77], the decomposition of the B(M1)IS , B(M1)IV , B(M1)σ,

and B(M1)στ in the transition between the ground and the first states of 11B has been

performed by using experimental results as the following.

Applying the β-decay measurement [78] and Fermi transition strength, the B(GT)↑
values from 11B to 11C have been determined by the (p, n) [79] and the (3He,t) [77]
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measurements. Thus, the B(M1)στ has been derived. The B(M1)IS and the B(M1)IS

values for the transition to the first excited state from the ground state in 11B have been

decomposed [76] from the γ-decay widths of the mirror states, which have been obtained

from the experimental half life of 3.8(3) and 7.1(5) fs for 11B and 11C [37,80], respectively.

The B(M1)IS value has been decomposed into the IS orbital and the IS spin parts, B(M1)l

and B(M1)σ, by applying the following restriction

〈
f

∣∣∣∣∣
A∑
k

(
lk +

1

2
σk

)∣∣∣∣∣ g.s.

〉
= 0, (6.19)

where A is a mass number, |g.s.〉 and |f〉 represent the ground state and an excited state,

respectively, and
∑

(lk + 1
2
σk) corresponds to the total angular momentum spin operator.

Since the total angular momentum spin operator gives a good quantum number for the

eigenvector of the wavefunctions, the equation (6.19) stands up as long as |f〉 is an excited

state from |g.s.〉. Therefore, from Ref. [77], the B(M1)σ and the B(M1)στ values were

taken as 0.029(5) and 0.57(4) μ 2
N , respectively.1
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Figure 6.16: Level scheme for the ground and the first excited states in 11B and 11C.
Energies are given in MeV.

—————————

— Derivation of cross section in 11B

Since, unfortunately, the cross section of the corresponding transition measured by 11B(p, p′)

reaction at Ep = 295 MeV was unknown, we made use of the data of 11B(p, p′) reaction at
1We note that the unit used in the reference [77] is different from that in this thesis owing to the

definition. The units can be connected as

B(M1)σ =
(
gIS

s

)2
μ 2

N B(σ)Ref (6.20)

B(M1)στ =
(
gIV

s

)2
μ 2

N B(στz)Ref (6.21)

where B(M1)σ and B(M1)στ are IS and IV strengths with the unit used in this thesis, and B(σ)Ref ,
and B(στz)Ref are those in the reference.
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Ep = 392 MeV in literature [77] for the derivations of σ̂IS(11B) and σ̂IV (11B). The angular

distribution of the 11B(p, p′) reaction at Ep = 392 MeV to the state at Ex=2.12 MeV is

shown in Fig. 6.17. Firstly, the contribution of the IS 1+, the IV 1+, and the 2+ transitions

to the cross section at 0◦ was estimated by using the DWBA calculation since the transi-

tion to the state at Ex = 2.12 MeV includes the M1 and E2 (2+) transitions. The optical

model potential parameters were taken from Ref. [48]. The effective nucleon-nucleon in-

teraction derived at 425 MeV [5] was used. The oscillator parameters were taken from

Eqs. (6.3) and (6.4) as 1.600 and 1.615 fm for protons and neutrons, respectively. In the

DWBA calculation, the (p, p′) cross sections were given by an incoherent sum of the 1+

and 2+ transition. The cross section for each Jπ transition was described by a coherent

sum of the IS and the IV contributions. The OBTD based on the CKPOT interaction

was normalized to reproduce the experimental transition strengths, applying the factor of

0.827, 0.716, 1.00 for the IS 1+, the IV 1+, and the 2+ transitions, respectively. The exper-

imental B(E2) has been reported to be 2.6(4) e2fm4 [80]. Since the normalized OBTD did

not reproduce the experimental angular distribution, an additional normalization factors

of 1.1 and 1.3 were applied to the OBTD’s of the 1+ and the 2+ transitions, respectively,

by the ”search-by-eye” method. As shown in Fig. 6.17, the DWBA calculation with the

additional normalization denotes that the cross sections at 0◦ of the total, the IS 1+,

the IV 1+, and the 2+ transitions are 0.829, 0.064, 0.827, and 0.052 mb/sr, respectively.

Assuming this angle between the IS and the IV 1+ transitions, the contribution to the

cross section at 0◦ for the IS and the IV was estimated to be 7.7% and 99.7% in the total

cross section, respectively. Because the total cross section at 0◦ in the 11B(p, p′) reaction

at Ep=392 MeV was 0.82 mb/sr [77], the IS and the IV 1+ cross section at 0◦ at 392 MeV

was derived as 0.063 and 0.82 mb/sr.

Secondly, the obtained cross sections at Ep=392 MeV were converted to the (p, p′) cross

sections Ep=295 MeV by making use of the cross section ratio of the 12C(p, p′) reaction

to the states Ex=12.71 and 15.11 MeV since 12C was expected to be a good reference for

the energy dependence of the cross section of the IS and the IV 1+ transitions. The cross

sections of the 12C(p, p′) reaction at Ep=295 and 392 MeV were taken from the present

work and Ref. [8]. The cross section ratios at 0◦ (q �= 0, ω �= 0) of 295 MeV to 392 MeV

were obtained to be 0.97(8) and 0.94(5) for the IS and the IV 1+ transitions, respectively.

Thus, the unit cross sections at Ep=295 MeV were derived as σ̂IS(11B)=2.1 ± 0.4 and

σ̂IV (11B)=1.4 ± 0.1 mb/sr/μ 2
N .

— Comments for unit cross sections of 11B

In deriving the unit cross sections of 11B, we took the following experimental results in

literature,
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• B(M1)στ = 0.57(4)μ 2
N (β-decay measurement [78]).

• B(M1)σ = 0.029(5) μ 2
N (γ-decay measurement [37,80]).

• The cross section of 11B(p, p′) to the 2.12 MeV state was 0.82 mb/sr (11B(p, p′) at

Ep=392 MeV [77]).

• The cross section ratio of 12C(p, p′) to the states at Ex=12.71 and 15.11 MeV of

Ep=295 to 392 MeV were 0.97(8) and 0.94(5) for the IS and the IV transitions,

respectively (this work and Ref. [8]).

Furthermore, we applied these assumptions

1. The cross section angle between the IS and the IV 1+ transitions followed the DWBA

calculation.

2. Relative transition strength between the IS and the IV 1+ transitions followed the

experimental results.

3. Relative transition strength between the 1+ and the 2+ transitions was modified to

reproduce the experimental angular distribution.

4. The energy dependence of the cross sections to the IS and the IV 1+ transitions in
11B followed that in 12C.

As for the second assumption, if the relative strength of B(M1)σ/B(M1)στ changes ±10%,

the IS unit cross section also changes ±10%. The IV unit cross section, however, hardly

changes within 1%. As for the third assumption, if the additional normalizations are not

applied, the IS and the IV unit cross sections do not change within 2%.

6.4.4 Unit cross section for IV

The IV unit cross sections listed in Table 6.5 are shown in Fig. 6.18. Following Refs. [61,

63], a smooth function against for mass number A can be defined for σ̂IS(A) and σ̂IV (A)

as

σ̂T (A) = NT exp(−xTA1/3) (6.22)

Δσ̂T (A) = σ̂T (A)

√√√√(ΔNT

NT

)2

+ (ΔxTA1/3)
2
+ (ΔcT )2, (6.23)

where T = IS and IV, respectively, NT represents the unit cross section at A = 0, xT

denotes an A-dependence, and ΔcT denotes an additional error to be determined inde-

pendently from the fitting. The value of ΔcIV was zero. The parameters NT and xT were

searched by the fitting to the experimental data, and they are summarized in Table 6.6.
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In the figure, the GT unit cross section, which has been determined in the mass region

of A = 58−120 at Ep = 297 MeV by the (p, n) reaction [63], was extrapolated to the

region at A = 5−60 and shown in the figure in dashed green with the conversion factors

of 2×2.644 arising from the CG coefficient for cross section and the gs-factor as obtained

in Eq. (A.24). The IV and the GT unit cross sections were consistent within error bar.
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Figure 6.18: The mass dependence for σ̂IV (A) at Ep = 295 MeV. The result (solid) and
the error band (dotted) have been obtained in th fitting procedure of Eq. (6.22) to the
experimental data. The mass dependence of the GT unit cross section for the (p, n)
reaction at Ep = 297 MeV [63] is also drawn as Sasano (dashed) applying the conversion
factors (2 × 2.644) to allow the direct comparison. The error bar for the dashed curve is
not shown.

—————————

Table 6.6: Parameters for the A-dependence of σ̂IS and σ̂IV at Ep = 295 MeV, expressed
in Eq. (6.22). The symbol ΔcT denotes an additional error for the unit cross section.

NT (mb/sr/μ 2
N ) xT ΔcT

T = IS 4.89 ± 0.93 0.38 ± 0.06 0.1
T = IV 3.67 ± 0.62 0.38 ± 0.06 0

6.4.5 Unit cross section for IS

The IS unit cross section listed in Table 6.5 is drawn in Fig. 6.19. The value of ΔcIS was

taken to be 0.1 (see Sec. 6.4.2). The same manner to the IV case, unfortunately, can not

be applied for the IS case because there was only one experimental value; the parameter

search for the equation (6.22) requires two data points at the least. Thus, we assumed

the same A-dependence parameter to the IS unit cross section, xIS = xIV = 38(6). This

assumption was found to be supported by the prediction using the DWBA and the shell

model calculations as shown in 6.20. The error bar for the data points originated from the
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standard deviation owing to a number of transitions predicted by the USD interaction.

The calculation shows that the mass dependences for the IS and IV unit cross sections

are identical within 2%. The magnitude of the ratio of IS to IV does not relate to the

present discussion.

The obtained parameter of NIS is written in 6.6. The uncertainty of σ̂IS was as much

as 26%, which originated from the experimental value of σ̂IS(11B) and the uncertainty of

the spin-flip component in the IS spin-M1 cross section (see Sec. 6.4.2).
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Figure 6.19: The mass dependence for σ̂IS(A) at Ep = 295 MeV. The result (solid) and
error band (dotted) are determined from the σ̂IS(11B) assuming the same xT parameter
to that of IV.
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6.5 Extrapolation to 0◦

As mentioned in Sec. 6.3.2, the cross section was measured at 0.40◦, 1.00◦, and 1.74◦ in

laboratory frame. Since the cross section at 0◦was to be used to derive the 1+ transition

strengths as described in Eqs. (6.10) and (6.11), the observed cross section was extrapo-

lated into the point at 0.00◦ by using the artificial curves that were obtained in Sec. 6.3.

The normalization factor (NDWBA) for the artificial curve was obtained as

NDWBA =
σ1e2 + σ2e1

e1 + e2
(6.24)

where the cross sections measured at 0.40◦, 1.00◦ in labratory frame are expressed as

σ1 ± σ1e1 and σ2 ± σ2e2, respectively. The aritificial curve was normalized to reproduce

the factor NDWBA at point of 0.70◦ in laboratory frame. Applying the normalization, the

magnitude of the artificial curve at 0.00◦ was taken as dσ/dΩ|IS(0◦) and dσ/dΩ|IV (0◦) in

Eqs. (6.10) and (6.11).

6.6 Results of B(M1)σ and B(M1)στ

The excitation energies, differential cross sections at 0.40◦ in laboratory flame for the

0+ and 1+ transitions measured at Ep = 295 MeV are tabulated in Appendix E. The

uncertainties in the excitation energies were ±10 keV in the excitation energy region of

7−15 MeV. The error of the cross section arises from the quadratic sum of the statistical,

the systematical, and the fitting errors. They were 1−10%, 1−30%, and 1−7%, respec-

tively, depending on the target and the state. The errors of B(M1)σ and B(M1)στ were

taken as the quadratic sum of the uncertainties of the cross section and the unit cross

section. They were 1−30%, and 24−32%, respectively.

The comparison with the shell-model calculations is given in Sec. 6.6.1, and that with

the previous experimental data is given in Sec. 6.6.2.

6.6.1 Comparison with theoretical prediction

The strength distributions of B(M1)σ and B(M1)στ in the sd-shell region are compared

with the shell-model calculations based on the USDA and USDB interactions with free

gs-factors as shown in Figs. 6.21 and 6.22 for B(M1)σ and B(M1)στ , respectively. The

experimental symbol with a circle represents a state that was indefinitely assigned as

the IS and the IV 1+ transitions. The horizontal lines in red in Fig. 6.21 represent the

experimental detection limit, which was determined from the lower limit of the detectable

cross section as summarized in Table 6.7. The B(M1)σ value obtained in the shell model

calculation but below the detection limit were excluded from the figures. The excitation

energy as well as the strength were well reproduced for the strongest IS states in each
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target except for 20Ne. The IS transition in 36Ar to the state at Ex = 8.985 MeV was

experimentally observed for the first time, which is reasonably predicted at 8.461 and

8.551 MeV by the calculations besed on the USDA and USDB interactions, respectively.

Unfortunately, no IS state was confirmed in 20Ne.

The magnitudes of the strongest IV states were well reproduced by the calculation

for the individual targets, while those for the other states were overestimated. Serious

problem lies on 32S. Even for the strongest and the second strongest states in 32S, the

calculation overestimated the experimental B(M1)στ values twice.

Table 6.7: The lower limit of detectable cross section in the present study at 0◦.

dσ/dΩ(mb/sr)
12C 0.01
16O 0.02

20Ne 0.02
24Mg 0.01

28Si 0.01
32S 0.01

36Ar 0.05
40Ca 0.02

6.6.2 Comparison with previous experimental data

The B(M1)σ and B(M1)στ values from the previous (p, p′) experiments [12, 83, 84] are

presented in the tables in Appendix E for comparison with the present results in the

cases of 16O, 20Ne, 24Mg, 28Si, and 32S. The B(M1) values from the (e, e′) experiments

[81,82,85,86] are also shown in the tables for reference in the cases of 12C, 36Ar, and 40Ca

since the previous B(M1)σ and B(M1)στvalues are not available from literature. In the

following, some comments on the B(M1)σ and B(M1)στ are presented;

• The strongest IS state in 28Si at 9.495 MeV was successfully decomposed from the 2+

transition at 9.479 MeV in the present study. The angular distributions, successfully

decomposed into the two states, are shown in Fig. 6.23. The yields at 0◦ in the IS

1+ transition was definitely derived for the first time.

• The IS state in 28Si at 9.495 MeV was 2.5 times larger than that of the previous

one, whereas although other strong IS states, in 24Mg (9.828 MeV ) and in 32S

(9.965 MeV), were consistent. The IS unit cross section for 28Si used in the previous

study might have been incorrect since we derived it by using the experimental

values from literature, while the previous study used it derived by the theoretical

calculation.
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• No IS state was observed in 20Ne.

• The IS state in 36Ar was observed at 8.985 MeV for the first time in reasonable

agreement with predictions by the shell model calculations based on the USDA and

USDB interactions.

• For IV states, the excitation energies and the B(M1)στvalues of relatively strong

states were almost consistent with the previous results, except for those of 32S.

• The cross section for the 32S states in the previous study [12] might have been

incorrect, possibly due to the calibration of the target thickness. The ratio of the

(p, p) [12] to the (p, n) [15] cross sections in 32S has been inconsistent with those for
20Ne, 24Mg, and 28Si [16]. If the (p, p′) cross section of 32S is modified to reproduce

the ratio, the previous B(M1)στ values for 32S become consistent with the present

results.

• Some transition, which have been assigned to be of the IV 1+ nature in the previous

study, were omitted in the present study because they were assigned to be of 0+ or

other natural parity transition of ΔL ≥ 1.

• The strongest IV state in 32S was found to consist of two peaks at 11.123 and

11.144 MeV.

• Similarly, the strongest IV state in 36Ar was found to consist of two peaks at 9.960

and 9.987 MeV.
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Figure 6.23: The angular distributions to the two excited states at Ex = 9.479 and
9.495 MeV in 28Si. The IS 1+ transition to the state at 9.495 MeV and the 2+ transition
to the state at 9.479 MeV have been successfully decomposed for the first time.
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Chapter 7

Discussion

7.1 Quenching phenomena

7.1.1 Quenching factors for B(M1)σ and B(M1)στ

The cumulative sum of the experimental B(M1)σ and B(M1)στ values up to Ex = 16 MeV

are shown against mass number A in Fig. 7.1. The gray bands in the figures denote the

uncertainties arising from the ambiguities in the 1+ and T assignments of the states. The

error bars for the experimental results originate from the statistical and the systematic

error and the uncertainty due to the unit cross section. Because the cross sections and

the transition strengths for the IS transitions are much smaller than those for the IV

transitions, the magnitude of the vertical axis for the ΣB(M1)σ is expanded in the figure.

Thus, the width of the error band and the size of the error bars for ΣB(M1)σ are seen to

be relatively larger than those for ΣB(M1)στ .

For comparison, the results of the shell-model calculation based on the USDA and the

USDB interactions with the free gs-factor were summed within the region of the excitation

energies observed in the experiment, as also shown in the same figures. The error bars for

the calculation represent the difference between the sum over all the predicted states and

the sum of only the strengths that are larger than the experimental detection limit. Since

there are no transition strengths predicted for 16O and 40Ca within 0h̄ω calculation, the

calculated sums were assumed to be zero. On the whole, there is no difference between

the results obtained by the USDA and the USDB interactions.

The experimental ΣB(M1)στ values are smaller than the theoretical ones. This is

called the quenching phenomenon of the spin-isospin M1 transition. The quenching phe-

nomena observed in the IV transition is considered to be analogous to that in the GT

transition. The quenching of the IS transition, however, is not seen in the ΣB(M1)σ

although the uncertainties of the experimental values are somewhat large. For quantita-

tive discussion on the difference of the quenching between ΣB(M1)σ and ΣB(M1)στ , the
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Figure 7.1: The mass dependence of the cumulative sum of the experimental B(M1)σ and
B(M1)στ values. The upper and the lower bands of the experimental values, arising from
the ambiguities in the Jπ assignments of the states, are connected by the solid lines, and
the regions between them are shown in gray. The shell-model calculations using the USDA
and the USDB interactions (the CKPOT and the CKII interactions for 12C, respectively)
are shown in blue circles and red squares, respectively, with the free gs-factors.

—————————

quenching factors for the IS and IV transitions are introduced as

QIS =

∑
B(M1) Exp

σ∑
B(M1) SM

σ

(7.1)

QIV =

∑
B(M1) Exp

στ∑
B(M1) SM

στ

, (7.2)

respectively, where the summation was taken in the range of Ex = 0−16 MeV. The suffixes

”Exp” and ”SM” denote the spin-M1 strengths obtained from the experiment and the

shell-model calculation, respectively. In the followings, the quenching factors calculated

with using free gs-factor in the shell-model calculation are denoted as Q free
IS and Q free

IV ,

in order to distinguish from the quenching factors of Q emp
IS and Q emp

IV derived with

the empirical gs-factor [50]. The empirical gs-factors have been obtained as the effective

M1 operator by the least-squares fit to experimental values of the magnetic moments

and the decay strengths of the M1 transition for the nucleus A=17−39 assuming a mass

dependence of A0.35 [50]. The empirical gs-factors used in the present study are listed in

Table 7.1.

The results of the quenching factors of the Q free
IS and Q free

IV (Q emp
IS and Q emp

IV ) in

the sd-shell region are shown in the top (bottom) panel of Fig. 7.2, in blue and red, re-

spectively. The quenching factors for the nucleus in the p-shell and the double closed shell

nuclei are excluded to be shown since the effective gs-factors for them were unavailable

from Ref. [50]. The gray colored and red shaded bands represent the uncertainties due to
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the Jπ assignment.

Although the IV quenching factors slightly depended on nucleus, the quenching phe-

nomena were systematically observed for the first time and their quenching factors were

roughly estimated to be Q free
IV ∼ 0.6. The result of Q free

IV was found to be analogous

to the GT shell-model quenching factors, the ratio of the total sum of the experiment

to that of the shell model calculation with the free gs-factors, of 65±10% obtained from

the experimental GT strengths observed in (p, n) reactions on 20Ne, 24Mg, 28Si [16] and
32S [15]. In applying the empirical gs-factors, the quenching factors became Q emp

IV ∼ 0.9.

The effective gs-factors deduced from the quenching of the matrix elements based on the

theoretical considerations [17,87] have been found to reasonably agree with the empirical

gs-factors [18,50]. Because the theoretical modification on the free gs-factors mainly arises

from the second-order configuration mixings (core polarization effect), the quenching re-

sults observed in the IV spin-M1 transition is expected to be explained by the coupling of

2p2h configuration mixings to the 1p1h state, as analogous to the GT quenching phenom-

ena. Therefore, it may be concluded that the quenching phenomena in the IV spin-M1

transition were generally observed in the nuclei across the sd-shell region mainly due to

the 2p2h excitations.

Next, the IS quenching factors are discussed. The Q free
IS values were scattered around

unity, and the situation of the quenching in the IS transition completely differed from that

in the IV transition. Although the error bars for the Q free
IS are somewhat large, the result

suggests that the IS spin-M1 transition have no quenching. It is noticed that the error

band of the Q free
IS in 20Ne almost ranges from zero to unity because no IS transitions were

confirmed in 20Ne. Thus, the results of QIS in 20Ne may not have any sense. In applying

the empirical gs-factors, the Q emp
IS values were overestimated from unity. Thus, it was

found that the quenching degree in the IS spin-M1 transition was little and the empirical

factor failed to reproduce the experimental result. It is interesting that the result of the

IS transition was found to disagree with the expectation based on the quenching observed

in the GT and IV spin-M1 transitions.

The 2p2h excitations which are believed to be a main source of the spin-M1 quenching

phenomena have been supposed to be independent on the isospin. Thus, a similar amount

of the quenching owing to the 2p2h excitations has been expected to be observed in the IS

spin-M1 transitions. The quenching phenomena in the IS spin-M1 transitions, however,

have been unobserved as seen in the quenching factors Q free
IS ∼ 1. It is to be noted that

the result of the Q free
IS ∼ 1 does not support the presence of the Δ-hole admixture to

the 1p1h state in the IV M1 transitions, since the Δ-hole excitations have been found to

play a minor role in the GT quenching phenomena from both the experimental and the

theoretical sides [3].

Thus, it was found that the quenching phenomena observed in the spin-M1 transitions
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have the difference between the IS and the IV transitions. This fact may suggest that

the coupling of 2p2h configuration mixings which is supposed to be a main source of the

spin-M1 quenching has the different transition mechanism. Such a significant difference

of the quenching factor has not been predicted so far by the shell model calculation.

Table 7.1: The empirical gs-factors in the sd-shell region determined as the effective M1
operator from experiments in Ref. [50]. The gs-factors for the free nucleons are also
written.

nuclei g IS
s g IV

s
20Ne 0.769 -4.083
24Mg 0.761 -4.042
28Si 0.754 -4.005
32S 0.749 -3.971
36Ar 0.743 -3.941
free 0.880 -4.706

7.1.2 Strength ratio of ΣB(M1)σ to ΣB(M1)στ

The quenching degree in the IS and the IV spin-M1 transitions are considered from other

side. A new parameter (RIS/IV ) to give the direct comparison between the total sums of

the reduced matrix element representing for the IS and the IV spin-M1 transitions was

introduced as

RIS/IV =

∑ |M(σ)|2∑ |M(στ )|2 (7.3)

=

∑
B(M1)σ/(gIS

s )2∑
B(M1)στ /(gIV

s )2
, (7.4)

where the sum is taken for all excited states observed up to Ex = 16 MeV, and the

transformation from Eq. (7.3) to Eq. (7.4) is followed to the definitions for B(M1)σ and

B(M1)στ as described in Eqs. (A.16) and (A.17). Thus, the RIS/IV value corresponds

to the strength ratio of the IS spin-M1 transitions to the IV ones in a nucleus with a

modification of the squared gs-factors. The RIS/IV values obtained from the experiment

and the shell-model calculation are expressed as R Exp
IS/IV and R SM

IS/IV , respectively, in the

followings.

The results of the R Exp
IS/IV are shown in black line against mass number in Fig. 7.3. The

gray band originates from the ambiguities in the Jπ assignments and the error bars denote

the statistical and systematic error and the uncertainties arising from unit cross sections

(the experimental error). The numerical values of the R Exp
IS/IV are listed in Table 7.2; the

R2 and the R3 denote the lowest and the highest points of the error bands, and the R1

and the R4 denote those of the error bars, respectively, as shown in Fig. 7.3. The R Exp
IS/IV
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Figure 7.2: The quenching factors observed in 20Ne, 24Mg, 28Si, 32S, and 36Ar, as defined in
Eqs. (7.1) and (7.2). The gray colored and red shaded bands represent the uncertainties
due to the Jπ assignment in calculating with the USDA and the USDB interactions,
respectively. The error bars originate from the statistical error, the systematic error and
the uncertainty due to unit cross section. The results with using free gs-factors are shown
in the top panel, while those with using empirical gs-factors listed in Table 7.1 are shown
in the bottom panel. The results of the p-shell and the double closed shell nuclei are not
shown since their empirical gs-factors are not available.
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Table 7.2: Data table of R Exp
IS/IV . The R2 and the R3 denote the lowest and the highest

points of the error bands, and the R1 and the R4 denote those of the error bars, respec-
tively, as shown in Fig. 7.3. The results of 16O, 20Ne, and 40Ca are unavailable because
no IS spin-M1 transitions have been confirmed in those nuclei.

nuclei R1 R2 R3 R4
12C 1.57 1.66 1.66 1.77
24Mg 1.34 1.45 1.72 1.85
28Si 1.03 1.15 1.66 1.83
32S 1.32 1.39 1.58 1.66
36Ar 1.18 1.27 1.66 1.77
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values for 16O, 20Ne, and 40Ca were unavailable since no IS spin-M1 transitions were

confirmed in those nuclei. Although the quenching factors were scattered depending on

nucleus as seen in Fig. 7.2, the R Exp
IS/IV values were surprisingly constant for the nucleus

in the sd-shell region including 12C. They were roughly averaged to be

R Exp
IS/IV = 1.5 ± 0.2 ± 0.1, (7.5)

where the errors originate from the ambiguities in the Jπ assignments and from the

experimental error, respectively. This result suggests that the total sum of the squared

matrix element for the IS spin-M1 transitions be approximately 1.5 times as much as that

for the IV ones, although the IS transition strength is smaller than the IV one because

of the gs-factors in the magnitude. If the spin-M1 transition strengths follow such a

proportionality of the R Exp
IS/IV value, the IS spin-M1 transition of B(M1)σ = 0.026 μ 2

N

(0.046 mb/sr) would be found in 20Ne in total according to the total sum of the B(M1)στ

observed in 20Ne.

For comparison, the results of the R SM
IS/IV using the USDA and the USDB interactions

are also shown in blue circle and red square, respectively, in Fig. 7.3. The difference

between the R SM
IS/IV values calculated with using the free and the effective gs-factors was

less than 1%. The average of the R SM
IS/IV values were roughly 0.9. The R SM

IS/IV values

were surprisingly constant including the case of 12C. It may be worth noting that there is

the following relation between the RIS/IV ’s and the quenching factors as

R Exp
IS/IV /R SM

IS/IV =

∑
B(M1) Exp

σ /(gIS
s )2∑

B(M1) Exp
στ /(gIV

s )2

/∑
B(M1) SM

σ /(gIS
s )2∑

B(M1) SM
στ /(gIV

s )2

=

∑
B(M1) Exp

σ∑
B(M1) SM

σ

/∑
B(M1) Exp

στ∑
B(M1) SM

στ

= QIS/QIV , (7.6)

where suffixes ”Exp” and ”SM” denote the strength values obtained from the experiment

and the shell-model calculation, respectively. It is shown that the ratio of the RIS/IV ’s

corresponds to that of the quenching factors. Thus, the difference of the quenching factors

between the isospin indicates that of the RIS/IV ’s between the experimental and the shell-

model calculation values. Because the present result clearly indicates

R Exp
IS/IV

R SM
IS/IV

> 1, (7.7)

it was obvious that the quenching factors have the difference between the isospins. The

R Exp
IS/IV value suggests that the total sum of the matrix element of the IS spin-M1 tran-

sitions be more than those of the IV ones, while the shell-model calculation predicts that

they are almost equal.
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The difference in the RIS/IV values between the experiment and the prediction may

be explained by sizes of the model space since the wavefunctions predicted in the shell-

model calculation were truncated in the sd-shell space. The shell-model calculations

extended to the (0+1)h̄ω model space, however, failed to reproduce the R Exp
IS/IV value since

their R SM
IS/IV values were again around unity. Two effective interactions used here were

PSDMK [49] and SDPFM [88] for the calculation in 12C and 20Ne within the model space of

the psd-shell and sdpf-shell, respectively. The calculations for other nucleus were not able

to be performed because of the limitation of a computer in terms of memory. The strength

distributions and the excitation energy dependence of the R SM
IS/IV values calculated in

20Ne are shown in Fig. 7.4. Although the strengths with the SDPFM interaction are

predicted to be smaller than those with the USD interaction, the strength ratio of the

IS to the IV transitions was found to be unchanged for the case of 20Ne. Therefore, the

R SM
IS/IV values in other nuclei were believed not to be improved by the extension of the

model space for the shell model calculation. Thus, it was found that the difference of the

quenching facotors between the IS and the IV spin-M1 transitions has been incorrectly

involved in the effective interactions or for the shell model calculation.

On the basis of the results of QIS, QIV , and RIS/IV observed in the nucleus at the

sd-shell region and in 12C, the results are summarized as the followings,

• The quenching phenomena were observed in the IV spin-M1 transitions but unob-

served in the IS transitions. The isospin dependence of the quenching phenomena

in the spin-M1 transitions were observed for the first time.

• The R Exp
IS/IV values were surprisingly constant. This implies that the effect of the

isospin dependence of the quenching phenomena is universal in the N = Z nucleus

and independent on the nuclear structure.

• It was found that an extension of the model space was not essential to describe the

isospin dependence of the quenching phenomena. The present result encourages an

improvement to theory.

7.1.3 Strengh distribution into high excitation energy region

The origin of the different quenching factor between the IS and the IV spin-M1 transitions

is considered in this section.

As described in Sec. 1.2.2, the GT quenching factor observed in the low excitation

energy range reflects an amount of the missing strength distributed into the high excitation

energy region. The GT strength distribution at the high excitation energy region has

been experimentally observed in the (p, n) and the (n, p) reactions [3]. The observed GT

strengths, accumulated in the low excitation energy region (0−16 MeV) [15, 16], have

114



 10  15  20  25  30  35  40

EXP.
USDA
USDB

A [mass number]

R 
   

   
  [

a.
u.

]
IS

/I
V

 0

 0.5

 1

 1.5

 2

 2.5

Figure 7.3: The total strength ratio of the IS transitions to the IV ones of RIS/IV , as
defined in Eq. (7.3). The experimental results are shown in black line, and the gray
band originates from the ambiguities in the Jπ assignments and the error bars denote
the experimental error. The experimental result of 20Ne is not shown because no IS-spin-
M1 transitions have been to be confirmed. The results of the shell-model calculations
using the USDA and the USDB interactions are shown in blue circle and red square,
respectively. The difference between the results for the shell model calculations using the
free and the effective gs-factors is better than 1%.
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corresponded to be ∼60% of the shell model calculation, as schematically drawn in the

top panel of Fig 7.5. Because the similar quenching factor of QIV ∼ 60% was observed

for the IV spin-M1 transitions within the low excitation energy region, the transition

strength may be expected to be shifted up into the high excitation energy region due to

the 2p2h configuration mixing, as seen in the GT strength distribution and drawn in the

middle panel of the figure. The IS quenching factor QIS ∼ 100%, however, suggests that

the most of the IS spin-M1 transition strength locate in the low excitation energy region

and little strength be shifted up into the high excitation energy region, as shown in the

bottom panel of the figure. Thus, the present result implies that the contribution of the

2p2h excitation differs in the transition operators ”σ” and ”στ”.

Such difference of the transition operators may be understood by introducing the one

meson exchange model for the nucleon-nucleon interaction [89]. The IS and the IV 1+

nuclear transitions are believed to occur by exchanging the pseudoscalar meson η and

π, respectively, between the nucleons. Since the mass and the coupling constant of η is

heavier and smaller than those of π as listed in Table 7.3, it may be natural that there

is little contribution of the 2p2h mixings into the high excitation energy region owing to

η-meson in the IS transition. On the other hand, the 2p2h configuration mixings in the IV

and GT transitions due to π-meson is significant because the mass of π-meson is lighter

and the coupling to the nucleons is strong.

Table 7.3: Mass and coupling constant of pseudoscalar mesons of π and η [89].

meson mass [MeV] g2
α/4π

π 138 13
η 549 0−0.4

7.1.4 Possible interpretation of spin-M1 quenching

Another possible physical interpretation based on one assumption to understand the dif-

ference observed in the IS and the IV spin-M1 quenching factors is introduced in this

subsection.

Cumulative sum and ground state wavefunction

Taking |g.s.〉 and |f〉 as the ground state and the f -th 1+ excited state, respectively, the

cumulative sums of the IS and IV spin-M1 transition strengths can be transformed as

∑
f

B(M1) f
spin ∝ ∑

f

∣∣∣〈f ∣∣∣Ô(M1)spin

∣∣∣ g.s.
〉∣∣∣2

=
∑
f

〈
g.s.

∣∣∣Ô(M1)spin

∣∣∣ f〉 〈f ∣∣∣Ô(M1)spin

∣∣∣ g.s.
〉
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Figure 7.5: The schematic figure of the strength distributions in the cases of the GT, the
IV and IS spin-M1 transition strengths, from the top, respectively. The GT quenching
factor of ∼60% within the low excitation energy region (0−16 MeV) observed in the (p, n)
reaction [15,16] has been derived by using the shell model calculation. The GT strength
distribution at the high excitation energy region has been observed in the (p, n) and the
(n, p) reactions [3]. On the basis of the quenching factors observed in the low excitation
energy region, the IV spin-M1 transition strengths may be expected to distribute in the
higher excitation energy region owing to the 2p2h configuration mixing, while all the IS
spin-M1 transition strengths may be located in the region 0−16 MeV.
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=
∑
F�f

〈
g.s.

∣∣∣Ô(M1)spin

∣∣∣F〉 〈F ∣∣∣Ô(M1)spin

∣∣∣ g.s.
〉

=
〈
g.s.

∣∣∣Ô(M1) 2
spin

∣∣∣ g.s.
〉

(7.8)

where the sufix ”spin” denotes σ and στ for the IS- and IV-spin-M1 transition strength,

respectively, and Ô(M1)spin represent the IS- or the IV-spin term in the M1 operator.

The wavefunction |F 〉 denotes all excited states in the nucleus including the 1+ states.

Thus, the ΣB(M1)σ and ΣB(M1)στ values are evaluated by the ground state and the

squared transition operator if the summation is taken for all 1+ transitions.

Total spin operator

Using the total spin operators of

Sp =
Z∑

k=1

sk, Sn =
A∑

k=Z+1

sk, (7.9)

for proton and neutron, respectively, the cumulative sum of the B(M1)σ can be expressed

as

∑
B(M1)σ =

1

2Ji + 1

3

4π

∑
f

∣∣∣∣∣
〈
1+

f

∣∣∣ gIS
s

2
(Sp + Sn)

∣∣∣0+
〉∣∣∣∣∣

2

μ 2
N

=
1

2Ji + 1

3

4π

∣∣∣∣∣
〈
0+
∣∣∣ gIS

s

2
(Sp + Sn)

∣∣∣0+
〉∣∣∣∣∣

2

μ 2
N

=
1

2Ji + 1

3

4π

(
gIS

s

2

)2 〈
0+
∣∣∣ (Sp + Sn)

2
∣∣∣0+
〉
μ 2

N , (7.10)

where the suffix f is taken for all excited states of 1+. Similarly, the ΣB(M1)στ can be

written as

∑
B(M1)στ =

1

2Ji + 1

3

4π

(
gIV

s

2

)2 〈
0+
∣∣∣ (Sp − Sn)2

∣∣∣0+
〉

μ 2
N . (7.11)

Thus, the RIS/IV can be rewritten in a simple form from Eqs. (7.4), (7.10) and (7.11) as

RIS/IV =

〈
0+
∣∣∣(Sp + Sn)

2
∣∣∣ 0+

〉
〈
0+
∣∣∣(Sp − Sn)2

∣∣∣ 0+
〉 . (7.12)

=

〈
0+
∣∣∣(S2

p + S2
n + 2Sp · Sn

)∣∣∣ 0+
〉

〈
0+
∣∣∣(S2

p + S2
n − 2Sp · Sn

)∣∣∣ 0+
〉 . (7.13)

Thus, Eq. (7.13) can be transformed as

RIS/IV − 1

RIS/IV + 1
=

2
〈
0+
∣∣∣(Sp · Sn

)∣∣∣ 0+
〉

〈
0+
∣∣∣(S 2

p + S 2
n

)∣∣∣ 0+
〉 , (7.14)
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where the term
〈
0+
∣∣∣(Sp · Sn

)∣∣∣ 0+
〉

denotes the ”two-nucleons spin correlation” between

proton and neutron in the ground state, and the term
〈
0+
∣∣∣(S 2

p + S 2
n

)∣∣∣ 0+
〉

denoted that

between the identical particles in the ground state.

Although the experimental result of R Exp
IS/IV ∼2 was obtained by the summation

up to Ex=16 MeV, the summation is assumed to be performed for all the strengths in

the followings. Thus, the R Exp
IS/IV value can be applied to Eq. (7.14). If RIS/IV =2 is

input to Eq. (7.14), the term
〈
0+
∣∣∣(Sp · Sn

)∣∣∣ 0+
〉

should be positive because the term〈
0+
∣∣∣(S 2

p + S 2
n

)∣∣∣ 0+
〉

is positive. The positive sign of the
(
Sp · Sn

)
value implies that a

pair of proton and neutron in the ground state tends to make a constructive interference

in terms of spin. It might be understood that the ”two-nucleons spin correlation” is

formed by a tensor force effect. Applying RIS/IV =1, being the case of the shell model

calculation, the term
〈
0+
∣∣∣(Sp · Sn

)∣∣∣ 0+
〉

is found to be zero. There is no ”two-nucleons

spin correlation” in the shell-model calculation. It might imply that a tensor force effect

is not described in the shell-model calculation. Thus, the RIS/IV value might imply the

core polarization effect in the nucleus.

The assumption used here can be justified by the observation of the excitation energy

dependence of the RIS/IV value as shown in Fig. 7.6 for the present result. If the trend

of the R Exp
IS/IV > 1 is seen up to ∼30 MeV, the above prediction on the core polarization

effect in the nucleus is supposed to be true.

7.2 Isospin mixing

7.2.1 Effect of isospin mixing in B(M1)σ by hadronic interaction

The isospin breaking occurs owing to the Coulomb interaction, which mixes wavefunctions

of IS and IV transitions. For this reason, the B(M1)σ value observed in experiments may

contain some contributions from the IV spin M1 transition strength B(M1)στ , while the

contribution of B(M1)σ to B(M1)στ is expected to be negligible because B(M1)στ is

much larger than B(M1)σ. Thus, the observed B(M1)σ value does not represent the

pure IS transition strength but gives the transition strengths of the mixed wavefunction

of the pure IS and IV transitions. Since we did not consider the effect of isospin mixing in

evaluating the B(M1)σ value in the present analysis, the estimation of the mixing effect

within the most simple two-state model was performed following the manner described in

Ref. [81].

Defining the IS and IV 1+-state wavefunctions as |IS〉 and |IV 〉, respectively, they are

assumed to be written in the sum of isospin-pure wavefunctions as

|IS〉 = α |ISpure〉 + β |IV pure〉 , (7.15)

|IV 〉 = β |ISpure〉 − α |IV pure〉 , (7.16)
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where α2 + β2 = 1, and α � β. The strength ratio of the two IS and IV transitions can

be expressed as

B(M1)σ

B(M1)στ
=

|αM pure
σ + βM pure

στ |2
|βM pure

σ − αM pure
στ |2 , (7.17)

where M pure
σ and M pure

στ stand for the IS and the IV matrix elements without isospin

mixing, respectively. With α � 1 and the predominance of IV over IS M1 transition

strength, one can neglect the term βM pure
σ and assume

B(M1)στ � |M pure
στ |2 . (7.18)

Inserting the retio

M pure
σ

M pure
στ

=

√√√√B(M1) pure
σ

B(M1)στ
(7.19)

into Eq. (7.17) leads to a relation quadratic in M pure
σ ,

(1 − β2)(M pure
σ )2 + 2αβ

√
B(M1)στ (M

pure
σ ) + β2B(M1)στ − B(M1)σ = 0. (7.20)

The coefficients αβ and β2 can be obtained from the Coulomb mixing matrix element

〈Hc〉 and energy difference between the two states ΔE as

〈Hc〉 = αβ|ΔE|, (7.21)

where the sign for αβ follows that for 〈Hc〉. The coefficient of β2 was assumed to be

(αβ)2 � β2 from α � 1. The Coulomb mixing matrix element 〈Hc〉 was taken from

the empirical equation, which has been determined from a comparison of α-capture cross

sections into the giant dipole resonance of self-conjugate and non-conjugate nuclei in

Refs. [93,94]. The 〈Hc〉 can be expressed by the equation

|〈Hc〉| = H0
c exp

{
−C

√
A(Ex − Δ)

}
, (7.22)

where the parameters of H0
c and C are 6.26 MeV and 0.36 MeV−1/2, and the parameters

have been searched by a fit to the experiment [94]. A is the mass number, Ex is the

excitation energy, and Δ is the pairing energy, where Δ = 12/A1/2 MeV [95] was assumed.

Applying the empirical 〈Hc〉 value to Eq. (7.21), M pure
σ can be obtained from Eq. (7.20).

Since, unfortunately, the empirical 〈Hc〉 value has the uncertainty in terms of sign, we

tried both cases.

The derived B(M1) pure
σ are compared with the observed B(M1)σ in Table 7.4. Be-

cause we got two solutions from Eq. (7.20), they were assumed to be the edge point of

the range of B(M1) pure
σ . For the most cases, except for the cases of 12C and 24Mg, the
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range of B(M1) pure
σ is smaller than the error of B(M1)σ. The fact indicates that the

uncertainties arising from the isospin mixing can be ignored because the experimental

uncertainties are significant.

For the case of 24Mg, the uncertainty owing to isospin mixing is dominant. This is

supposed to arise from the fact that the energy difference of the two states between the

IS and the IV spin-M1 transitions are small (ΔE = 140 keV) and thus the effect of the

mixing seems to be dominant. However, it was found that all the data are on the line

within the error bars. Therefore, the effect of the isospin mixing in the B(M1)σ values

can be ignored within the experimental error bars. It can be seen that most B(M1) pure
σ

values are consistent with the B(M1)σ value within the error bar, while there are two

special cases to be considered the contribution of isospin mixing, for 12C and 24Mg with

0.216(60) μ 2
N . For the most cases, there is no need to consider the effect of isospin mixing

to the IS states. For the special two cases, the assumptions of (αβ)2 � β2 may not

stand up because the IV transition strength of the mixing pair is ten times larger for
12C and the two states are very close (ΔE = 140 keV) for 24Mg. The empirical equation

of the Coulomb mixing matrix element may be invalid for these cases. However, further

discussion on the isospin mixing is beyond the present work.

The followings are the assumptions that were applied to the present two-state model

analysis

• Only one isovector state, which is the closest, was considered to mix to the isoscalar

state.

• The empirical equation [93, 94] was employed to estimate the Coulomb matrix ele-

ment, which gives the degree of isospin mixing between the two states.

• The approximations of (αβ)2 � β2 and B(M1)στ � |M pure
στ |2 were employed.

• The sign of 〈Hc〉 was determined to follow the empirical R Exp
IS/IV value (Sec. 7.1.2).

7.2.2 Estimation of isospin mixing degree in IS M1 state

It is to be noted that a B(M1)σ value is proportional to the B(M1)IS value observed in

the same IS M1 transition. Applying the restriction between the IS orbital and the IS

spin operators as written in Eq. (6.19), the proportionality can be obtained as

B(M1)IS =
1

2Ji + 1

3

4π
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〈
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Table 7.4: Experimental B(M1)σ and B(M1)pure
IS values, derived by the two-state model

analysis. All the IS 1+ states that were definitely assigned are compared with the calcu-
lation.

nuclei Ex (MeV) B(M1)σ (μ 2
N ) B(M1)pure

σ (μ 2
N )

12C 12.708 0.147 ± 0.039 0.084−0.228
24Mg 9.828 0.180 ± 0.051 0.064−0.453
28Si 9.495 0.237 ± 0.068 0.214−0.262
32S 7.187 0.018 ± 0.006 0.007−0.035

9.297 0.043 ± 0.013 0.036−0.051
9.956 0.111 ± 0.033 0.097−0.126

36Ar 8.985 0.114 ± 0.048 0.099−0.130

=
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� (5.36)−1 B(M1)σ, (7.23)

where the free g-factors are employed to obtain the proportional factor of 5.36. This pro-

portionality is supposed to result in that there is always destructive interference between

the spin and orbital operators, which has been reported in Ref. [90].

In Table 7.5, the B(M1)σ values experimentally observed by the (p, p′) reaction are

compared with the corresponding B(M1)IS value observed in (e, e′) reaction on 12C,
24Mg, and 32S, and (γ, γ′) reaction on 24Mg. Although the IS strength ratio of B(M1)σ

to B(M1)IS should be 5.36 with the free g-factors, the experimental ratios were scattered

from 0 to 5.36. This scattering for the IS strength ratio are of interest. Since the pro-

portional factor with the empirical g-factors [50] becomes 9.54 for the case of 24Mg using

gIS
s = 0.766 and gIS

l = 0.518, the scattering of the IS strength ratio can not be explained

by the empirical g-factors.

Such scattering of the IS strength ratio is supposed to originate from the isospin

mixing. It is to be noted that the sensitivity to the IV transition is 29 times larger

than that to the IS transition for the electro-magnetic interactions, while they are almost

equal for the hadronic interactions. For this reason, the influence for the B(M1)IS value

observed by electro-magnetic interactions is drastically changed even if the mixing degree

of the isospin is little. If the isospin mixing occurs in the IS transition, the B(M1)IS value
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Table 7.5: Experimental B(M1)σ and B(M1)IS values.

nuclei Ex (MeV) B(M1)σ (μ 2
N )a B(M1)IS (μ 2

N ) B(M1)σ/B(M1)IS
12C 12.708 0.147 ± 0.039 0.040 ± 0.003b 3.7 ± 1.0
24Mg 9.828 0.180 ± 0.051 0.28 ± 0.07c 0.64 ± 0.24

0.30 ± 0.11d 0.60 ± 0.28
28Si 9.495 0.237 ± 0.068 (≥ 0.04)e -
32S 7.187 0.018 ± 0.006 0.011 ± 0.005f 1.6 ± 0.9
36Ar 8.985 0.114 ± 0.048 (≥ 0.02)e -

aFrom the present work.
bFrom (e, e′) measurement [81, 82].
cFrom (e, e′) measurement [91].
dFrom (γ, γ′) measurement [92].
eExpected value following the assumption of B(M1)σ/B(M1)IS ≤ 5.36.
fFrom (e, e′) measurement [42].

becomes larger owing to the mixing of the wavefunction of the IV transition and, thus,

the IS strength ratio decreases from 5.36 as experimentally observed.

In the followings, the mixing degrees of isospin in 12C and 24Mg observed by electro-

magnetic interactions are estimated through the proportionality of Eq. (7.23) assuming

no isospin mixing in the B(M1)σ values by hadronic interactions. The mixing in 32S,

unfortunately, was unavailable since the errors in the transition strengths of B(M1)σ and

B(M1)IS were too much to obtain a certain result. Following the manner described in

Sec. 7.2.1, the ratio of the M1 transition strengths of Eq. (7.17) can be rewritten as

B(M1)IS

B(M1)IV
=

|αM pure
IS + βM pure

IV |2
|βM pure

IS − αM pure
IV |2 , (7.24)

where M pure
IS and M pure

IV stand for the IS and the IV transition matrix elements without

isospin mixing, respectively. The M pure
IS was assumed to be proportional to the observed

B(M1)σ value as

|M pure
IS |2 = B(M1) pure

IS � B(M1)σ

5.36
. (7.25)

Thus, a quadratic equation on β can be obtained from the analogy to Eq. (7.20) as,

(1 − β2)B(M1) pure
IS + 2αβ

√
B(M1)IV B(M1) pure

IS + β2B(M1)IV −B(M1)IS = 0.(7.26)

Applying the approximation αβ � β, the mixing degree of β2 was experimentally obtained

from Eq. (7.26). The results of αβ values experimentally obtained are compared with those

empirically evaluated from Eq. (7.21), as shown in Table 7.6. For 12C, the mixing degree

was evaluated less than 1%. It was found that the IS strength ratio changes from 5.36

even though only 1% mixing of the IV transition contributes to the IS one. The mixing
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degree in 24Mg was evaluated to be 10−15%, and the αβ values were found to be close

to the empirical one. The isospin mixing even at the 10% order drastically changes the

B(M1)IS value. Although the isospin effect by hadronic interactions is hard to be observed

in B(M1)σ value, that can be seen in the shape of the angular distribution of differential

cross section as shown in Fig. 7.7. The excitation to the state at Ex = 9.828 MeV in
24Mg was assigned as the IS-M1 transition in the present thesis. The observed slope

of the distribution, however, was slightly steeper than the calculated one of the IS-M1

transition as seen in Fig. 7.7. The angular distributions of 1+ transition obtained from the

DWBA calculation are drawn in the figure for comparison; pure IS and IV 1+ transitions

in red dashed and blue dotted curves, respectively, and 10 and 20% degree mixing of

the IV component to the IS transitions in thin and bold green solid curves, respectively.

The experimental distribution is well reproduced by the DWBA curve with 20% degree

mixing, and this mixing degree agrees with the evaluation based on the IS strength ratio

of B(M1)σ/B(M1)IS , as summarized in Table 7.6. Thus, it was found that the scattering

of the IS strength ratio B(M1)σ/B(M1)IS from 5.36 originates mainly from the isospin

mixing and that the ratio allows us to experimentally evaluate the mixing degree of the

isospin in the B(M1)IS value observed in electro-magnetic measurement.

The IS M1 transitions in 28Si and 36Ar have not been observed so far. The B(M1)IS

value to be observed in electro-magnetic interactions is expected to be estimated following

the IS strength ratio of B(M1)σ/B(M1)IS ≤ 5.36, where the sign of inequality originates

from the effect of the isospin mixing. On the basis of the B(M1)σ values in 28Si and 36Ar

by the (p, p′) reaction, their B(M1)IS values are evaluated to be ≥ 0.05 and ≥ 0.03 μ 2
N ,

respectively, as written in Table 7.5.

Table 7.6: Mixing degree observed in B(M1)IS. The αβExp has been experimentally
obtained from Eq. (7.26) assuming no isospin mixing in the hadronic interaction, while
the αβemp has been empirically evaluated from Eq. (7.21).

nuclei B(M1)σ/B(M1)IS mixing degree αβExp αβemp

12C 3.7 ± 1.0a <1% 0.02 ± 0.02 0.06
24Mg 0.64 ± 0.24b 7−14% 0.30 ± 0.05 0.37

0.60 ± 0.28c 8−24% 0.36 ± 0.06 0.37
aFrom (e, e′) measurement [81, 82].
bFrom (e, e′) measurement [91].
cFrom (γ, γ′) measurement [92].
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7.3 Related topic

7.3.1 Modification of effective interaction on s1/2 orbit

There is an interesting feature in the mass distribution of the cumulative sums in the

sd-shell region as shown in Fig. 7.1. The experimental result have a peak at 28Si, while

the shell-model calculations with using the USDA and USDB interactions predicts a peak

at 28Si and 32S. Their amounts of the prediction were comparable. We tried to change

the matrix elements of 2s1/2 orbit in the USD interaction to reproduce the experimental

strength distribution of the cumulative sums. The original matrix elements were changed

to ±20% from the original values, and the results are shown in Fig. 7.8. Although the peak

position of the sum distribution was moved at 28Si by reducing the matrix element to 80%,

no strength was predicted for 36Ar. The modification to 120% from the original values

overestimated the calculated strengths at 32S and 36Ar and underestimated those at 20Ne,
24Mg, and 28Si. Thus, this modification ended in failure to reproduce the experimental

result.
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Figure 7.8: The mass dependence of the cumulative sums of the experimental result and
the shell model calculations using the USD interaction. The matrix elements relating to
s1/2 orbit in the effective interaction is changed to 80% and 120% from the original value.
The gray bands originate from the uncertainties in the Jπ assignments.

—————————

7.3.2 Centroid energy

The centroid energy Ec is defined as

Ec =
∑

i

B(M1) i
T ×E i

x

B(M1) i
T

, (7.27)
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where T = σ and στ , and E i
x and B(M1) i

T denote the i-th excitation energy and the

spin-M1 transition strength, respectively. The distributions of the centroid energy of the

IS and IV excitations in the sd-shell region are compared with the shell-model calculations

with the USD interaction as shown in Fig. 7.9.

All the matrix elements of the interaction were modified to be 0, and the calculation

result with it is denoted as 0%. The result with the original interaction is presented as

100%. The residual interaction is expected to be studied from the difference between the

results of 0% and 100%. It is interesting that the calculations for the IV transition predict

the different trend to the experimental results. It was found that the reproducibility to

the experiment by the calculation for the IS transition was better than that for the IV.
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Figure 7.9: The centroid energies for the N = Z and even-even nuclei in the sd-shell. The
experimental results are compared with the shell-model calculations using the original
USD interaction (100%) and the interaction to be modified to 0 (0%).

—————————

7.3.3 Effect of meson exchange current

It is known that the MEC contributions which come mainly from one-pion exchange are

different for the M1 (vector) and GT (axial-vector) operators [18]. The MEC effect has

been discussed in a number of experiments of the (e, e′) and (3He,t) reactions [96–100]. As

defined in Eq. (A.23), the MEC effect changes the proportionality between the B(M1)στ

and B(GT) values. Therefore, the unit cross section for the B(M1)στ is changed by

introducing the MEC contribution, while that for the B(M1)σ is not changed because the

IS transition strength is not affected by it to the first order. The RMEC value has been

reported as 1.3−1.8 in the sd-shell, i.e., 1.85(29) in 24Mg [96] and 1.42(10) in 28Si [97].

The RMEC value in 32S, however, was estimated to be 0.79(8) from Ref. [42], and it

scattered from the empirical value. That was one of reason why we did not consider
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—————————

the MEC effect into the calculation for the unit cross section in the present study. If

the MEC contribution is taken to the present analysis as RMEC = 1.3, the IV unit cross

section decrease, and the obtained B(M1)στ increases. Thus, the quenching amount of

the IV transition shown in Fig. 7.2 is reduced and the IV quenching factor becomes close

to unity. It is to be noted that the IS transition strengths and the IS quenching factors

are not changed by the RMEC value.

7.4 Future perspective

The IS and the IV spin-M1 strength distribution into the high excitation energy region

owing to the 2p2h configuration mixing coupling to the 1p1h excitation were predicted on

the basis of the quenching factors. The errors for the quenching factors, however, were

significant, which were arising from the ambiguities of the Jπ assignments of the states

and the derivations of the unit cross section, especially for the IS case. The ambiguities

of the former can be reduced by an combined analysis with the (d, d′) experiment at

0◦ to discriminate the ΔT=0 and 1 transitions. The latter factor can be reduced by

a refined measurement of σ̂IS(11B) or the measurement in other nucleus to reduce the

systematic uncertainty. The nucleus 27Al is a candidate to derive another IS unit cross

section because the γ-rays in the mirror nuclei are measureable for the decomposition of

the IS and the IV components of B(M1) [66].

In the present study, we estimated the strength distribution in the high excitation

energy region by using the quenching factors, derived from the observed strengths within

the low excitation energy region and the shell model calculations. Thus, we did not

confirm and observe the strength distribution at the higher excitation energy region ex-
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perimentally. It is essential to perform the direct observation of the strength distribution

at the high excitation energy region for the study of mechanism of the 2p2h configuration

mixings, mediated by the transition operators of ”σ” and ”στ”. The feasible experiment

for the direct observation of the strength distribution is supposed to be a polarization

transfer measurement at 0◦. The model independent analysis by using the polarization

transfer observables is a powerful tool for the identification of the IS and IV 1+ transi-

tions, especially at the continuum region. Although a multi-pole decomposition analysis

(MDA) is also a powerful method to decompose the contributions from each L transition

in the continuum region, it is supposed to be hard for it to be applied to identify the IS

and IV 1+ transitions because their angular distributions are similar.

Finally, it is to be noted that the different transition mechanism between the transition

operators of ”σ” and ”στ” was experimentally suggested for the first time. Although

the shell model calculation reached the great success to predict the strength distribution

within the low excitation energy region, it did not reasonably reproduce the IS/IV strength

distribution into the high excitation energy region. This represents the limitation of the

shell model calculation. Since it is believed to be natural that the transition mechanism

differs between the IS and the IV 1+ transitions within the one meson exchange potential

model, an explicit treatment of psuedscalar meson, π and η, in theory would be expected

to improve the prediction of the strength distribution in the high excitation energy region.

Thus, the present study leads us to the way of the further interesting studies on nuclear

physics.

131



Chapter 8

Summary

The IS and the IV spin-M1 transition strengths were systematically measured in order to

study the difference of the 1+ transition operators of ”σ” and ”στ”. The cross sections in

the (p, p′) reaction at 0−14◦ were measured using 295 MeV proton beam on the N = Z and

even-even nuclei. The experiment was performed at the RCNP by using the Grand Raiden

spectrometer applying the dispersion matching technique for high energy resolution. The

target nuclei of 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, and 40Ca were measured for the

systematic study. These nuclei allowed us to separately observe the pure IS and the

IV transition because their ground states are T = 0. The gas target system was newly

developed to employ neon and argon gas, and the elemental sulfur was successfully used

as a target with charged particle irradiation for the first time.

The shape of the angular distribution of the differential cross section for low-lying

discrete states were compared with the prediction based on the DWBA calculation using

the shell model wavefunctions in order to make the Jπ and T assignment to the transitions.

The cross sections at 0◦ of the transition to the IS and IV 1+ state were converted to the

spin-M1 transition strengths of the B(M1)σ and B(M1)στ , respectively, using the unit

cross sections. The unit cross sections used in the present study were determined from

the results of the β-decay and γ-decay experiments in literature.

The cumulative sums of B(M1)σ and B(M1)στ observed up to Ex = 16 MeV were

compared with the shell model calculations based on the USDA and the USDB interac-

tions. The quenching factors of the IV spin-M1 transitions in the sd-shell region were

roughly averaged to be ∼0.6 with the free gs-factors and became to unity by applying

the empirical gs-factors. This quenching degree was consistent with the GT quenching

factors, derived with not the sum rule but the shell model calculation, observed in the

(p, n) experiments. The quenching phenomena, however, were unobserved in the IS spin-

M1 transitions. The IS quenching factors with the free gs-factors were 1.0 but those with

the empirical ones overestimated the experimental results. An amount of the spin-M1

transition strength distributed into the high excitation energy region owing to the 2p2h
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configuration mixing was estimated from the quenching factors. Because the GT quench-

ing factors based on the shell model calculation were consistent with the IV ones, similar

amount of the strength distributed into the continuum region was expected to be observed

in the IV 1+ transition. The IS quenching factor, however, suggested that the most of

the IS strength locate in the low excitation energy region and little strength be shifted

up into the high excitation energy region. Thus, the different quenching factors and the

different strength distribution in the high excitation energy region owing to the 2p2h con-

figuration mixing between the IS and the IV transitions were experimentally observed for

the first time. Such difference between the IS and the IV transitions may be understood

by the model that the transition is mediated by different psuedoscalar meson of η and

π, respectively. The difference of the strength distributions is supposed to originate from

the difference of the mass and the coupling constant between η and π. Since the IV 1+

transition is supposed to be mediated by π, an explicit treatment of π is desired to be

developed in theory.

The new parameter (RIS/IV ) to denote the total strengths ratio of the IS to the IV

spin-M1 transitions was introduced. The RIS/IV values observed in the experiment and

obtained from the shell-model calculations were surprisingly constant for the N = Z and

even-even nuclei in the sd-shell region. The experimental RIS/IV values were found to be

1.5 times as high as the predicted values in the shell-model calculations i.e., R Exp
IS/IV ∼1.5

and R SM
IS/IV ∼1. The shell-model calculations failed to reproduce the experimental values

even employing the empirical gs-factors or an extension to the (0+1)h̄ω model space.

Thus, it was found that the shell model calculation can not reproduce the RIS/IV value.

Another possible interpretation may reach the ”two-nucleons spin correlation” between

proton and neutron. If one assumes that all the strengths are accumulated in the observed

R Exp
IS/IV value, the experimental RIS/IV value implies that a pair of proton and neutron in

the ground state tends to make a constructive interference in terms of spin. It is expected

that the assumption used here is justified whether the R Exp
IS/IV >1 is kept up to higher

excitation energy.

Finally, this work was the first systematic measurement of the IS and the IV 1+

transition strength distributions at low excitation energy region. The quenching factors,

derived with the shell model calculation, suggested that the strength distribution into the

high excitation energy region owing the 2p2h configuration mixing differ between the IS

and the IV 1+ transitions. Since such difference between the IS and the IV 1+ transitions

has not been considered in theory, the development of the calculation for an explicit

treatment of pion is highly encouraged.
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Appendix A

Formalism of spin-M1 transition
strength

A.1 Magnetic moment

The operator Ô(M1) for a magnetic-dipole (M1) transition and a magnetic-dipole mo-

ment (magnetic moment) is written by

Ô(M1) =

⎡
⎣ Z∑

k=1

(gπ
l lk + gπ

s sk) +
A∑

k=Z+1

(gν
l lk + gν

s sk)

⎤
⎦μN (A.1)

=

[
A∑

k=1

{(
gIS

l lk + gIS
s

σk

2

)
+
(
gIV

l lk + gIV
s

σk

2

)
τz(k)

}]
μN , (A.2)

where μN is the nuclear magneton, and the eigenvalues for the isospin operator τk are

defined as +1 for neutron and −1 for protons. The gyromagnetic factors (g-factors) of

gIS
l , gIS

s , gIV
l , and gIV

s are taken as gIS
l = 1

2
(gπ

l + gν
l ) = 0.5, gIS

s = 1
2
(gπ

s + gν
s ) = 0.880,

gIV
l = −1

2
(gπ

l − gν
l ) = −0.5, and gIV

s = −1
2
(gπ

s − gν
s ) = −4.706 using the g-factors for

protons and neutrons in the free space, gπ
l = 1, gν

l = 0, gπ
s = 5.586, and gν

s = −3.826. The

suffixes of IS and IV denote isoscalar and isovector, respectively. Following the convention

of Edmonds [4], the magnetic moment can be expressed as

μ =

√
J

(J + 1)(2J + 1)

〈
i
∣∣∣∣∣∣Ô(M1)

∣∣∣∣∣∣ i〉 (A.3)

=

√
J

(J + 1)(2J + 1)

(
gIS

l M(l) +
gIS

s

2
M(σ) + gIV

l M(lτz) +
gIV

s

2
M(στz)

)
μN ,(A.4)

where the initial state is denoted by |i〉, and J is used to represent the total angular

momentum spin. The reduced matrix element in spin but not in isospin is defined as

M(Ô) =
〈
f
∣∣∣∣∣∣Ô∣∣∣∣∣∣ i〉 , (A.5)

where the initial and the final states in the transition denote |i〉 and |f〉, respectively,

following the convention of Edmonds [4]. We note that the final state is identical to the
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initial state for the magnetic moment. The magnetic moment can be divided into the IS

and the IV components as

μIS =

√
J

(J + 1)(2J + 1)

(
gIS

l M(l) +
gIS

s

2
M(σ)

)
μN (A.6)

μIV =

√
J

(J + 1)(2J + 1)

(
gIV

l M(lτz) +
gIV

s

2
M(στz)

)
μN , (A.7)

respectively. If isospin symmetry is assumed, the IS and IV magnetic moments can be

obtained from the corresponding magnetic moments of μ(Tz = ±T ) in mirror nuclei as

μIS =
μ(Tz = +T ) + μ(Tz = −T )

2
(A.8)

μIV =
μ(Tz = +T ) − μ(Tz = −T )

2
, (A.9)

respectively. The g-factors for the IS and IV magnetic moment can be defined as

gIS =
μ(Tz = +T ) + μ(Tz = −T )

2J
(A.10)

gIV =
μ(Tz = +T ) − μ(Tz = −T )

2J
, (A.11)

respectively.

A.2 Spin-M1 transition strength

Applying Eqs. (1.2) and (A.5), the M1 transition strengths can be written as

B(M1) =
1

2Ji + 1

3

4π

∣∣∣〈f ||Ô(M1)||i
〉∣∣∣2 (A.12)

=
1

2Ji + 1

3

4π

∣∣∣∣∣gIS
l M(l) +

gIS
s

2
M(σ) + gIV

l M(lτz) +
gIV

s

2
M(στz)

∣∣∣∣∣
2

μ 2
N .(A.13)

The IS and IV components in B(M1) can be defined as

B(M1)IS =
1

2Ji + 1

3

4π

∣∣∣∣∣gIS
l M(l) +

gIS
s

2
M(σ)

∣∣∣∣∣
2

μ 2
N (A.14)

B(M1)IV =
1

2Ji + 1

3

4π

∣∣∣∣∣gIV
l M(lτz) +

gIV
s

2
M(στz)

∣∣∣∣∣
2

μ 2
N , (A.15)

respectively. In the spin-M1 transition by hadronic scattering, like the (p, p′) reaction,

the orbital components are suppressed. Thus, the IS and IV spin-M1 transition strengths

can be defined as

B(M1)σ =
1

2Ji + 1

3

4π

∣∣∣∣∣g
IS
s

2
M(σ)

∣∣∣∣∣
2

μ 2
N (A.16)

B(M1)στ =
1

2Ji + 1

3

4π

∣∣∣∣∣g
IV
s

2
M(στz)

∣∣∣∣∣
2

μ 2
N , (A.17)

respectively.
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A.3 GT transition strength

Since the GT transition operator [101] is written by

Ô(GT±) =
A∑

k=1

1√
2
σkτ±(k), (A.18)

following the convention of Edmonds [4], the reduced GT transition strength B(GT±) can

be expressed by the equation

B(GT±) =
1

2Ji + 1

∣∣∣∣∣ 1√
2
M(στ±)

∣∣∣∣∣
2

, (A.19)

where MGT (στ±) is a GT matrix element. Applying the Wigner-Eckart theorem in the

isospin space for the direct comparison of the GT and IV M1 matrix elemtns, we get

B(GT±) =
1

2Ji + 1

∣∣∣∣∣∣
1√
2

CGT√
2Tf + 1

M ′(στ±)

∣∣∣∣∣∣
2

, (A.20)

B(M1)στ =
3

4π

1

2Ji + 1

∣∣∣∣∣∣
gIV

s

2

CM1√
2Tf + 1

M ′(στz)

∣∣∣∣∣∣
2

μ 2
N , (A.21)

where CGT and CM1 are the isospin Clebsch-Gordan (CG) coefficients 〈TiTzi1 ± 1|TfTzf〉
and 〈TiTzi10|TfTzf〉 for the GT and the IV M1 transitions, respectively. The suffixes i

and f denote the initial and the final states of the transition, and those of zi and zf are

the initial and the final state of the z-component of the isospin (T ). The reduced matrix

element in spin and isospin is defined as

M ′(Ô) =
〈
f
∣∣∣∣∣∣∣∣∣Ô∣∣∣∣∣∣∣∣∣ i〉 . (A.22)

The meson exchange current (MEC) contributions (Sec. 7.3.3) can be defined by the ratio

of squared matrix elements of the IV M1 and the corresponding GT transitions [66] as

RMEC =
[M(στz)]

2

[M(στ±)]2
. (A.23)

In the present study, RMEC was assumed to be 1 for simplicity, suggesting the assumption

of the isospin symmetry. Thus, applying the equation

[MM1(στ )]2 = [MGT (στ )]
2
, (A.24)

the relationship between B(GT±) and B(M1)στ can be expressed as

B(GT±)

B(M1)στ/μ
2

N

=
8π

3

1

(gIV
s )2

〈Ti, Tiz, 1,±1|Tf , Tfz〉2
〈Ti, Tiz, 1, 0|Tf , Tfz〉2

(A.25)

under the assumption of the isospin symmetry.
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Appendix B

Excitation energy spectra

Observed excitation energy spectra of inelastic scattering at Ep = 295 MeV are summa-

rized in the following. The procedure of the data reduction is described in Sec. 4
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Figure B.1: Excitation energy spectra for the 12C(p, p’) reaction at Ep = 295 MeV and
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Figure B.3: Excitation energy spectra for the 20Ne(p, p’) reaction at Ep = 295 MeV and at
0, 6, 12◦. Peaks due to the aramid window are contaminated. The p−p elastic scattering
are seen as a broad bump at Ex = 12−15 MeV at 12◦. Background events failed to be
subtracted remain at Ex = 6−7 MeV in the 0◦ spectra.
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Figure B.5: Excitation energy spectra for the 28Si(p, p’) reaction at Ep = 295 MeV and
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Figure B.6: Excitation energy spectra for the 32S(p, p’) reaction at Ep = 295 MeV and at
0, 6, 12◦.
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Figure B.7: Excitation energy spectra for the 36Ar(p, p’) reaction at Ep = 295 MeV and at
0, 6, 12◦. Peaks due to the aramid window are contaminated. The p−p elastic scattering
are seen as a broad bump at Ex = 12−15 MeV at 12◦. Background events failed to be
subtracted remain at Ex = 6−7 MeV in the 0◦ spectra.
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Figure B.8: Excitation energy spectra for the 40Ca(p, p’) reaction at Ep = 295 MeV and
at 0, 6, 12◦. Background events failed to be subtracted remain at Ex = 6−7 MeV in the
0◦ spectra.
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Appendix C

Angular distribution of inelastic
scattering cross section

The results of angular distribution of inelastic scattering cross section for a discrete state

are displayed in this chapter. A discrete state that was observed in the 0◦ spectrum was

compared with the DWBA calculations, and then its Jπ assignment, 0+, IS, IV, 1−, or

ΔL ≥ 1, was given. The DWBA calculations of the angular distributions of 0+, IS, IV, 1−,

and 2+ transitions are drawn in Fig. 6.4. The DWBA calculations are not presented for

some discrete states when yields of the state were not extracted from the energy spectra

at 0.40◦ and 1.0◦. See Sec. 6.3.2 for the procedure of the assignment.

In the following figures, the horizontal axis denotes scattering angle in the range of

0◦ to 20◦ in center of mass frame, while the vertical axis expresses the cross section from

10−4 to 101 mb/sr in the logarithmic scale. The error bar denotes the squared sum of the

statistical, the fitting, and the systematic uncertainties.

12C 07.657 MeV 12C 12.708 MeV ; IS 12C 15.113 MeV ; IV

Figure C.1: Angular distributions of inelastic scattering cross section for 12C. The hori-
zontal axis is the scattering angles in the range of 0−20◦ in center of mass frame, while
the vertical axis is the cross section in the range of 10−4 − 101 mb/sr in log-scale.
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16O 06.039 MeV ; L>0 16O 06.124 MeV ; L>0 16O 06.923 MeV ; L>0 16O 07.128 MeV ; L>0

16O 08.877 MeV ; L>0 16O 09.846 MeV ; L>0 16O 10.356 MeV 16O 10.954 MeV ; 0+

16O 11.093 MeV ; 0+ 16O 11.514 MeV ; L>0 16O 12.047 MeV ; 0+ 16O 12.451 MeV ; L>0

16O 12.530 MeV ; L>0 16O 12.786 MeV ; L>0 16O 12.966 MeV ; L>0 16O 13.092 MeV ; L>0

16O 16.200 MeV ; IV 16O 16.442 MeV 16O 16.816 MeV ; L>0 16O 17.112 MeV ; IV

16O 17.272 MeV ; IV 16O 17.877 MeV

Figure C.2: Same as Fig. C.1, but for 16O. See the text for the axes.
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20Ne 05.621 MeV 20Ne 05.788 MeV 20Ne 06.706 MeV ; 0+ 20Ne 07.156 MeV

20Ne 07.191 MeV 20Ne 07.422 MeV 20Ne 07.833 MeV 20Ne 08.708 MeV

20Ne 09.318 MeV 20Ne 09.487 MeV 20Ne 10.273 MeV 20Ne 10.584 MeV

20Ne 10.884 MeV 20Ne 11.263 MeV ; IV 20Ne 11.603 MeV ; L>0 20Ne 12.098 MeV

20Ne 12.170 MeV 20Ne 12.398 MeV ; IS? 20Ne 13.363 MeV ; IV? 20Ne 13.487 MeV ; 0+

20Ne 13.542 MeV ; 0+ 20Ne 13.577 MeV ; 0+ 20Ne 13.676 MeV 20Ne 13.881 MeV

20Ne 13.908 MeV

Figure C.3: Same as Fig. C.1, but for 20Ne. See the text for the axes.
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24Mg 06.011 MeV 24Mg 06.432 MeV ; 0+ 24Mg 07.349 MeV ; L>0 24Mg 07.555 MeV

24Mg 07.616 MeV ; L>0 24Mg 07.748 MeV ; IS 24Mg 08.358 MeV 24Mg 08.437 MeV

24Mg 08.655 MeV 24Mg 08.864 MeV 24Mg 09.003 MeV 24Mg 09.146 MeV

24Mg 09.301 MeV ; 0+ 24Mg 09.458 MeV 24Mg 09.828 MeV ; IS 24Mg 09.968 MeV ; IV

24Mg 10.059 MeV 24Mg 10.333 MeV 24Mg 10.362 MeV ; L>0 24Mg 10.680 MeV

24Mg 10.713 MeV ; IV 24Mg 10.917 MeV 24Mg 11.011 MeV 24Mg 11.162 MeV

24Mg 11.187 MeV 24Mg 11.207 MeV ; L>0 24Mg 11.314 MeV 24Mg 11.390 MeV ; L>0

24Mg 11.458 MeV ; L>0 24Mg 11.518 MeV 24Mg 11.723 MeV ; 0+ 24Mg 11.862 MeV

Figure C.4: Same as Fig. C.1, but for 24Mg. See the text for the axes.
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24Mg 11.970 MeV 24Mg 12.258 MeV 24Mg 12.394 MeV ; L>0 24Mg 12.468 MeV

24Mg 12.526 MeV ; IV 24Mg 12.577 MeV 24Mg 12.812 MeV ; IV 24Mg 12.951 MeV ; IV

24Mg 13.044 MeV 24Mg 13.087 MeV 24Mg 13.124 MeV ; L>0 24Mg 13.267 MeV

24Mg 13.332 MeV 24Mg 13.346 MeV 24Mg 13.353 MeV 24Mg 13.405 MeV ; 0+?

24Mg 13.433 MeV ; L>0 24Mg 13.540 MeV 24Mg 13.581 MeV 24Mg 13.675 MeV

24Mg 13.719 MeV 24Mg 13.767 MeV ; IS? 24Mg 13.798 MeV 24Mg 13.810 MeV

24Mg 13.820 MeV 24Mg 13.850 MeV ; 0+ 24Mg 13.879 MeV ; 0+ 24Mg 13.933 MeV ; IS?

24Mg 14.009 MeV ; IS? 24Mg 14.076 MeV 24Mg 14.098 MeV 24Mg 14.153 MeV

Figure C.5: Same as Fig. C.4 (continue).
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24Mg 14.241 MeV 24Mg 14.407 MeV ; 0+? 24Mg 14.438 MeV ; L>0 24Mg 14.560 MeV

24Mg 14.667 MeV ; L>0 24Mg 14.740 MeV 24Mg 14.808 MeV ; L>0 24Mg 14.920 MeV

24Mg 14.980 MeV 24Mg 15.130 MeV 24Mg 15.280 MeV 24Mg 15.436 MeV

24Mg 15.570 MeV 24Mg 16.046 MeV ; IV?

Figure C.6: Same as Fig. C.5 (continue).
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28Si 06.480 MeV 28Si 06.520 MeV 28Si 06.681 MeV ; 0+ 28Si 06.871 MeV ; L>0

28Si 07.375 MeV ; L>0 28Si 07.408 MeV ; L>0 28Si 07.931 MeV ; L>0 28Si 08.200 MeV

28Si 08.261 MeV ; L>0 28Si 08.590 MeV 28Si 08.959 MeV ; 0+ 28Si 09.037 MeV ; 0+?

28Si 09.318 MeV ; L>0 28Si 09.413 MeV ; L>0 28Si 09.479 MeV ; L>0 28Si 09.495 MeV ; IS

28Si 09.597 MeV ; 0+? 28Si 09.709 MeV ; 0+ 28Si 09.771 MeV ; 0+? 28Si 09.797 MeV ; L>0

28Si 09.930 MeV ; L>0 28Si 10.181 MeV ; L>0 28Si 10.376 MeV 28Si 10.477 MeV ; IV?

28Si 10.515 MeV ; L>0 28Si 10.541 MeV 28Si 10.598 MeV ; IV 28Si 10.726 MeV ; IV

28Si 10.807 MeV ; 0+ 28Si 10.901 MeV ; IV 28Si 10.950 MeV ; L>0 28Si 10.998 MeV ; L>0

Figure C.7: Same as Fig. C.1, but for 28Si. See the text for the axes.
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28Si 11.142 MeV ; 0+ 28Si 11.295 MeV 28Si 11.447 MeV ; IV 28Si 11.799 MeV

28Si 11.942 MeV ; IV 28Si 12.075 MeV ; L>0 28Si 12.216 MeV 28Si 12.245 MeV ; 0+

28Si 12.329 MeV ; IV 28Si 12.440 MeV 28Si 12.474 MeV 28Si 12.724 MeV ; L>0

28Si 12.751 MeV ; 0+ 28Si 12.802 MeV 28Si 12.901 MeV 28Si 12.971 MeV ; 0+

28Si 13.041 MeV ; 0+ 28Si 13.050 MeV 28Si 13.106 MeV ; L>0 28Si 13.188 MeV ; IS?

28Si 13.208 MeV ; L>0 28Si 13.231 MeV ; IS? 28Si 13.319 MeV ; IV 28Si 13.414 MeV

28Si 13.546 MeV 28Si 13.678 MeV 28Si 13.782 MeV ; L>0 28Si 13.871 MeV ; 0+

28Si 13.901 MeV 28Si 14.014 MeV ; IV 28Si 14.073 MeV ; L>0 28Si 14.345 MeV

Figure C.8: Same as Fig. C.7 (continue).
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28Si 14.571 MeV ; IS? 28Si 14.710 MeV 28Si 14.890 MeV ; 0+? 28Si 15.021 MeV ; 0+?

28Si 15.120 MeV ; 0+ 28Si 15.155 MeV ; IV? 28Si 15.357 MeV 28Si 15.479 MeV ; IV?

28Si 15.747 MeV ; 0+? 28Si 15.916 MeV ; 0+?

Figure C.9: Same as Fig. C.8 (continue).
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32S 04.276 MeV ; L>0 32S 04.459 MeV 32S 04.700 MeV ; L>0 32S 04.992 MeV ; L>0

32S 05.550 MeV ; L>0 32S 05.800 MeV ; L>0 32S 06.224 MeV 32S 06.411 MeV

32S 06.582 MeV ; 0+ 32S 06.675 MeV ; 0+? 32S 06.988 MeV ; IV 32S 07.099 MeV ; 0+?

32S 07.187 MeV ; IS 32S 07.403 MeV ; L>0 32S 07.478 MeV ; L>0 32S 07.635 MeV ; 0+

32S 07.920 MeV ; 0+ 32S 07.975 MeV 32S 08.125 MeV ; IV 32S 08.407 MeV

32S 08.499 MeV 32S 08.690 MeV 32S 08.861 MeV 32S 09.023 MeV

32S 09.168 MeV ; 0+ 32S 09.215 MeV ; 0+? 32S 09.297 MeV ; IS 32S 09.404 MeV ; L>0

32S 09.464 MeV ; L>0 32S 09.488 MeV ; 0+? 32S 09.580 MeV ; 0+ 32S 09.664 MeV ; IV?

Figure C.10: Same as Fig. C.1, but for 32S. See the text for the axes.
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32S 09.724 MeV ; 1- 32S 09.817 MeV 32S 09.849 MeV 32S 09.898 MeV ; IS?

32S 09.956 MeV ; IS 32S 10.085 MeV ; L>0 32S 10.182 MeV ; 0+ 32S 10.232 MeV

32S 10.301 MeV ; L>0 32S 10.450 MeV 32S 10.465 MeV ; 1- 32S 10.792 MeV ; 0+

32S 10.834 MeV ; 0+ 32S 10.913 MeV 32S 11.123 MeV ; IV? 32S 11.144 MeV ; IV

32S 11.592 MeV ; 0+ 32S 11.637 MeV ; IV 32S 11.739 MeV ; 0+ 32S 11.875 MeV ; 0+

32S 12.017 MeV ; L>0 32S 12.197 MeV ; L>0 32S 12.413 MeV ; L>0 32S 12.537 MeV ; 0+

32S 12.578 MeV ; IV? 32S 12.784 MeV ; 0+? 32S 12.930 MeV 32S 13.085 MeV ; L>0

32S 13.216 MeV ; 0+ 32S 13.375 MeV ; 0+ 32S 13.406 MeV ; L>0 32S 13.480 MeV

Figure C.11: Same as Fig. C.10 (continue).
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32S 13.587 MeV ; 0+? 32S 13.715 MeV ; IV? 32S 13.820 MeV ; IV? 32S 13.884 MeV ; IV?

32S 13.971 MeV 32S 14.072 MeV ; L>0 32S 14.471 MeV ; 0+ 32S 14.562 MeV ; 0+

32S 14.621 MeV ; L>0 32S 14.796 MeV ; L>0 32S 14.902 MeV ; 0+ 32S 14.993 MeV ; 0+?

32S 15.127 MeV ; IV? 32S 15.239 MeV ; 0+?

Figure C.12: Same as Fig. C.11 (continue).
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36Ar 05.834 MeV ; L>0 36Ar 06.730 MeV 36Ar 07.436 MeV ; L>0 36Ar 07.573 MeV

36Ar 07.710 MeV 36Ar 07.879 MeV 36Ar 07.971 MeV 36Ar 08.136 MeV ; IV

36Ar 08.303 MeV 36Ar 08.365 MeV 36Ar 08.448 MeV 36Ar 08.682 MeV ; 0+

36Ar 08.985 MeV ; IS 36Ar 09.144 MeV 36Ar 09.366 MeV 36Ar 09.408 MeV ; 0+

36Ar 09.466 MeV 36Ar 09.606 MeV 36Ar 09.960 MeV ; IV 36Ar 09.987 MeV ; IV

36Ar 10.050 MeV 36Ar 10.068 MeV ; 0+ 36Ar 10.092 MeV 36Ar 10.322 MeV

36Ar 10.423 MeV 36Ar 10.500 MeV 36Ar 10.539 MeV 36Ar 11.115 MeV

36Ar 11.156 MeV ; 0+? 36Ar 11.226 MeV 36Ar 11.266 MeV 36Ar 11.360 MeV

Figure C.13: Same as Fig. C.1, but for 36Ar. See the text for the axes.
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36Ar 11.482 MeV ; 0+ 36Ar 11.555 MeV ; 0+ 36Ar 11.598 MeV 36Ar 11.678 MeV

36Ar 11.732 MeV 36Ar 12.033 MeV ; IV? 36Ar 12.174 MeV ; 0+? 36Ar 12.274 MeV

36Ar 12.321 MeV ; IV 36Ar 12.417 MeV ; L>0 36Ar 12.445 MeV ; L>0 36Ar 12.476 MeV

36Ar 12.516 MeV ; 0+ 36Ar 12.588 MeV ; L>0 36Ar 12.634 MeV 36Ar 12.757 MeV ; L>0

36Ar 13.460 MeV ; L>0 36Ar 13.777 MeV ; L>0 36Ar 13.912 MeV ; L>0 36Ar 14.196 MeV ; L>0

36Ar 14.343 MeV ; L>0 36Ar 14.482 MeV ; IS?

Figure C.14: Same as Fig. C.13 (continue).
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40Ca 06.248 MeV 40Ca 06.550 MeV 40Ca 06.717 MeV 40Ca 06.884 MeV ; L>0

40Ca 06.920 MeV ; L>0 40Ca 07.278 MeV 40Ca 07.448 MeV 40Ca 07.520 MeV

40Ca 07.686 MeV 40Ca 07.856 MeV ; L>0 40Ca 08.074 MeV ; L>0 40Ca 08.266 MeV ; L>0

40Ca 08.356 MeV 40Ca 08.415 MeV ; L>0 40Ca 08.474 MeV 40Ca 08.569 MeV ; L>0

40Ca 08.742 MeV ; L>0 40Ca 08.931 MeV 40Ca 08.975 MeV ; L>0 40Ca 09.121 MeV

40Ca 09.203 MeV 40Ca 09.302 MeV ; 1- 40Ca 09.356 MeV 40Ca 09.393 MeV

40Ca 09.428 MeV ; L>0 40Ca 09.532 MeV 40Ca 09.603 MeV ; L>0 40Ca 09.651 MeV ; 0+?

40Ca 09.788 MeV 40Ca 09.865 MeV ; L>0 40Ca 10.040 MeV 40Ca 10.205 MeV ; 0+

Figure C.15: Same as Fig. C.1, but for 40Ca. See the text for the axes.
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40Ca 10.259 MeV 40Ca 10.319 MeV ; IV 40Ca 10.376 MeV ; 0+? 40Ca 10.431 MeV

40Ca 10.522 MeV 40Ca 10.736 MeV 40Ca 10.778 MeV

Figure C.16: Same as Fig. C.15 (continue).
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Appendix D

Data table of elastics scattering

Observed cross sections and analyzing powers of elastic scattering at Ep = 295 MeV are

summarized in the following.

Table D.1: Proton elastic scattering cross sections and analyzing powers on 12C at
Ep = 295 MeV.

θcm (degree) dσ/dΩ (mb/sr) Ay

6.65 424.408 ± 6.100 0.499 ± 0.010
9.97 239.140 ± 3.409 0.659 ± 0.008

13.29 110.960 ± 1.595 0.748 ± 0.007
16.60 41.305 ± 0.603 0.685 ± 0.008
19.91 11.406 ± 0.179 0.362 ± 0.010
23.22 2.053 ± 0.032 -0.392 ± 0.010
26.51 0.534 ± 0.009 -0.249 ± 0.011
29.80 0.614 ± 0.012 0.906 ± 0.008
33.09 0.652 ± 0.012 0.798 ± 0.008
36.36 0.455 ± 0.008 0.561 ± 0.010
39.62 0.239 ± 0.004 0.284 ± 0.012

Table D.2: Same as Table D.1, but for 20Ne.

θcm (degree) dσ/dΩ (mb/sr) Ay

9.59 239.740 ± 11.084 0.651 ± 0.043
12.78 85.605 ± 4.037 0.736 ± 0.041
15.97 18.834 ± 0.932 0.412 ± 0.048
19.16 2.452 ± 0.162 -0.525 ± 0.061
22.34 1.343 ± 0.097 0.573 ± 0.067
25.52 1.106 ± 0.098 0.846 ± 0.074
28.70 0.492 ± 0.058 0.751 ± 0.104
31.87 0.170 ± 0.022 0.281 ± 0.128
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Table D.3: Same as Table D.1, but for 24Mg.

θcm (degree) dσ/dΩ (mb/sr) Ay

6.33 984.963 ± 14.044 0.483 ± 0.012
9.49 407.426 ± 5.853 0.753 ± 0.013

12.65 96.908 ± 1.415 0.665 ± 0.011
15.81 14.132 ± 0.205 0.243 ± 0.013
18.97 2.273 ± 0.038 -0.131 ± 0.015
22.12 3.242 ± 0.050 0.926 ± 0.010
25.27 2.401 ± 0.041 0.836 ± 0.012
28.42 0.914 ± 0.018 0.477 ± 0.016
31.56 0.170 ± 0.005 -0.301 ± 0.025
34.70 0.033 ± 0.002 -0.382 ± 0.051

Table D.4: Same as Table D.1, but for 28Si.

θcm (degree) dσ/dΩ (mb/sr) Ay

6.28 1518.251 ± 22.316 0.438 ± 0.009
9.42 574.082 ± 8.697 0.628 ± 0.009

12.56 131.245 ± 2.362 0.655 ± 0.010
15.69 13.480 ± 0.255 -0.015 ± 0.013
18.83 4.592 ± 0.071 0.416 ± 0.010
21.96 6.213 ± 0.077 0.953 ± 0.005
25.09 3.674 ± 0.045 0.708 ± 0.006
28.22 1.090 ± 0.017 0.161 ± 0.011
31.34 0.168 ± 0.003 -0.747 ± 0.009
34.46 0.115 ± 0.002 0.594 ± 0.010
37.58 0.121 ± 0.003 0.788 ± 0.010

Table D.5: Same as Table D.1, but for 32S.

θcm (degree) dσ/dΩ (mb/sr) Ay

6.25 1787.256 ± 44.971 0.438 ± 0.020
9.37 504.827 ± 12.694 0.626 ± 0.019

12.49 100.851 ± 2.564 0.610 ± 0.020
15.61 7.737 ± 0.203 -0.371 ± 0.021
18.73 7.110 ± 0.191 0.818 ± 0.019
21.84 6.879 ± 0.085 0.938 ± 0.008
24.96 2.769 ± 0.039 0.554 ± 0.011
28.07 0.466 ± 0.011 -0.342 ± 0.019
31.18 0.147 ± 0.005 0.222 ± 0.027
34.28 0.197 ± 0.006 0.903 ± 0.021
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Table D.6: Same as Table D.1, but for 36Ar.

θcm (degree) dσ/dΩ (mb/sr) Ay

9.33 578.319 ± 26.797 0.632 ± 0.039
12.44 75.157 ± 3.567 0.572 ± 0.042
15.54 5.815 ± 0.355 -0.538 ± 0.052
18.65 11.310 ± 0.591 0.936 ± 0.038
21.75 6.395 ± 0.366 0.843 ± 0.044
24.85 1.351 ± 0.107 0.116 ± 0.078
27.95 0.237 ± 0.044 -0.806 ± 0.154
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Appendix E

Data table of differential cross
sections at 0◦ and B(M1)σ and
B(M1)στ values

The excitation energies, differential cross sections at 0.40◦ in laboratory flame for the

0+ and 1+ transitions measured at Ep = 295 MeV are tabulated in the followings. The

B(M1)σ and B(M1)στ values in the IS and IV spin-M1 transitions, respectively, are

also summarized. The uncertainties for excitation energy were ±10 keV in the region of

7−15 MeV. The error in the differential cross section originates from the quadric sum

of the statistical, the systematic, and the fitting uncertainties. The uncertainty in the

B(M1)σ,στ values is arising from the quadric sum of the error in the cross section and

that in the unit cross section. See the text in Sec. 6.6 for the details of the error.

For the comparison, the previous B(M1)σ and B(M1)στ values from (p, p′) experi-

ments [12,83,84] are written in the tables of 16O, 20Ne, 24Mg, 28Si, 32S. The B(M1) values

from (e, e′) experiments [81,82,85,86] are shown in the tables of 12C, 36Ar, 40Ca since the

previous B(M1)σ and B(M1)στ values were not found in the literature.

Table E.1: The excitation energies, cross sections at 0.40◦ in laboratory frame, and the
B(M1)σ and B(M1)στvalues assigned as IS and IV states, respectively, in 12C.

Present (p, p′) (e, e′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)b

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
7.657 0+ 0.690 ± 0.026
12.708 1+IS 0.298 ± 0.016 0.147 ± 0.039 12.71 0.04 ± 0.00
15.113 1+IV 3.429 ± 0.076 2.523 ± 0.552 15.11 2.63 ± 0.08

aFrom Ref. [81].
bThe values are taken from Ref. [82].

166



Table E.2: Same as Table E.1, but for 16O.

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
10.954 0+ 0.035 ± 0.003
11.093 0+ 0.013 ± 0.002
12.047 0+ 0.148 ± 0.011

14.00 0.54 ± 0.04b

16.200 1+IV 0.070 ± 0.006 0.058 ± 0.014 16.22 0.08 ± 0.01
17.112 1+IV 0.253 ± 0.019 0.208 ± 0.050 17.14 0.30 ± 0.03
17.272 1+IV 0.173 ± 0.014 0.132 ± 0.032

18.77 0.17 ± 0.02b

aFrom Ref. [83].
bAssigned as the IV 1+ transition in Ref. [83].

Table E.3: Same as Table E.1, but for 20Ne.

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
6.706 0+ 0.258 ± 0.047
11.263 1+IV 0.592 ± 0.027 0.488 ± 0.117 11.25 0.49 ± 0.06
12.398 (1+IS) 0.054 ± 0.013 0.018 ± 0.007b

13.363 (1+IV) 0.030 ± 0.027 0.024 ± 0.022
13.487 0+ 0.142 ± 0.019 13.51 0.25 ± 0.03
13.542 0+ 0.090 ± 0.017
13.577 0+ 0.065 ± 0.022

15.72 0.14 ± 0.02c

aFrom Ref. [84].
bAssumed as a mixed state with 0+ (Sec. 6.3.4).
cAssigned as the IV 1+ transition in Ref. [84].
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Table E.4: Same as Table E.1, but for 24Mg.

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
6.432 0+ 0.688 ± 0.023
7.748 1+ISb 0.045 ± 0.023 0.023 ± 0.013 7.75 0.02 ± 0.01
9.301 0+ 0.306 ± 0.013
9.828 1+IS 0.282 ± 0.012 0.180 ± 0.051 9.83 0.29 ± 0.02
9.968 1+IV 0.258 ± 0.011 0.238 ± 0.059 9.97 0.38 ± 0.03
10.713 1+IV 2.558 ± 0.048 2.266 ± 0.549 10.72 2.75 ± 0.20
11.723 0+ 0.117 ± 0.010
12.526 1+IV 0.612 ± 0.020 0.559 ± 0.136 12.53 0.60 ± 0.03
12.812 1+IV 0.794 ± 0.022 0.732 ± 0.178 12.82 0.85 ± 0.03
12.951 1+IV 0.238 ± 0.012 0.215 ± 0.053 12.96 0.37 ± 0.02
13.405 (0+) 0.048 ± 0.010
13.767 (1+IS) 0.054 ± 0.008 0.017 ± 0.006c

13.850 0+ 0.105 ± 0.009
13.879 0+ 0.135 ± 0.010 13.90 0.56 ± 0.09d

13.933 (1+IS) 0.055 ± 0.008 0.021 ± 0.007c

14.009 (1+IS) 0.058 ± 0.009 0.023 ± 0.008c

14.407 (0+) 0.026 ± 0.006
14.87 0.02 ± 0.01e

15.22 0.03 ± 0.01e

16.046 (1+IV) 0.430 ± 0.038 0.385 ± 0.099 16.12 0.31 ± 0.06
aFrom Ref. [12].
bAssigned as not IV but IS although the shape of the angular distribution is close to that of IV. An IV
state should be at higher than Ex = 9.52 MeV in 24Mg owing to the isospin symmetry structure [102].
cAssumed as a mixed state with 0+ (Sec. 6.3.4).
dAssigned as the IV 1+ transition in Ref. [12].
eAssigned as the IS 1+ transition in Ref. [12].
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Table E.5: Same as Table E.1, but for 28Si.

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
6.681 0+ 0.072 ± 0.004
8.959 0+ 0.075 ± 0.004
9.037 (0+) 0.014 ± 0.002
9.495b 1+IS 0.356 ± 0.009 0.237 ± 0.068 9.50 0.09 ± 0.01
9.597 (0+) 0.012 ± 0.002
9.709 0+ 0.138 ± 0.005 9.72 0.39 ± 0.06
9.771 (0+) 0.022 ± 0.003
10.477 (1+IV) 0.017 ± 0.003 0.016 ± 0.005
10.598 1+IV 0.531 ± 0.012 0.493 ± 0.123 10.59 0.83 ± 0.12
10.726 1+IV 0.198 ± 0.007 0.184 ± 0.046 10.73 0.32 ± 0.04
10.807 0+ 0.071 ± 0.004 10.82 0.21 ± 0.04
10.901 1+IV 0.212 ± 0.007 0.203 ± 0.051 10.90 0.35 ± 0.05
11.142 0+ 0.137 ± 0.007 11.16 0.31 ± 0.07
11.447 1+IV 2.844 ± 0.044 2.706 ± 0.673 11.45 3.32 ± 0.24
11.942 1+IV 0.029 ± 0.004 0.028 ± 0.008
12.245 0+ 0.027 ± 0.003
12.329 1+IV 0.623 ± 0.013 0.588 ± 0.147 12.33 0.73 ± 0.14
12.751 0+ 0.018 ± 0.003
12.971 0+ 0.121 ± 0.006 12.99 0.23 ± 0.05
13.041 0+ 0.083 ± 0.005
13.188 (1+IS) 0.049 ± 0.006 0.019 ± 0.006c 13.22 0.03 ± 0.01
13.231 (1+IS) 0.015 ± 0.004 0.012 ± 0.005
13.319 1+IV 0.468 ± 0.011 0.447 ± 0.112 13.35 0.81 ± 0.14
13.871 0+ 0.040 ± 0.004
14.014 1+IV 1.247 ± 0.026 1.222 ± 0.304 14.03 1.31 ± 0.12
14.571 (1+IS) 0.275 ± 0.015 0.096 ± 0.030c

14.890 (0+) 0.604 ± 0.040
15.021 (0+) 0.115 ± 0.011
15.120 0+ 0.217 ± 0.024
15.155 (1+IV) 0.236 ± 0.023 0.244 ± 0.065 15.15 0.42 ± 0.04
15.479 (1+IV) 0.127 ± 0.012 0.133 ± 0.035 15.50 0.12 ± 0.08
15.747 (0+) 0.125 ± 0.011 15.80 0.22 ± 0.02
15.916 (0+) 0.040 ± 0.010

aFrom Ref. [12].
bDecomposed from the state at 9.479 MeV (2+; 0.031(4) mb/sr at 0.40◦).
cAssumed as a mixed state with 0+ (Sec. 6.3.4).
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Table E.6: Same as Table E.1, but for 32S.

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
6.582 0+ 0.194 ± 0.007
6.675 (0+) 0.011 ± 0.003
6.988 1+IVb 0.020 ± 0.003 0.018 ± 0.005 6.98 0.02 ± 0.01
7.099 (0+) 0.017 ± 0.003
7.187 1+ISb 0.029 ± 0.003 0.018 ± 0.006 7.19 0.02 ± 0.01
7.635 0+ 0.128 ± 0.005
7.920 0+ 0.027 ± 0.003
8.125 1+IV 0.627 ± 0.018 0.608 ± 0.156 8.13 1.46 ± 0.19
9.168 0+ 0.012 ± 0.003
9.215 (0+) 0.011 ± 0.003
9.297 1+IS 0.059 ± 0.004 0.043 ± 0.013 9.28 0.05 ± 0.01
9.488 (0+) 0.022 ± 0.003
9.580 0+ 0.009 ± 0.003
9.664 (1+IV) 0.096 ± 0.005 0.096 ± 0.025 9.66 0.17 ± 0.02
9.898 (1+IS) 0.014 ± 0.003 0.010 ± 0.004
9.956 1+IS 0.154 ± 0.006 0.111 ± 0.033 9.93 0.10 ± 0.02
10.182 0+ 0.019 ± 0.003
10.792 0+ 0.200 ± 0.007
10.834 0+ 0.104 ± 0.005
11.123c (1+IV) 0.400 ± 0.023 0.398 ± 0.104
11.144c 1+IV 1.550 ± 0.042 1.553 ± 0.398 11.13 4.08 ± 0.53
11.592 0+ 0.253 ± 0.012
11.637 1+IV 0.761 ± 0.022 0.765 ± 0.196 11.63 2.38 ± 0.35
11.739 0+ 0.225 ± 0.014
11.875 0+ 0.071 ± 0.007 11.88 0.37 ± 0.06
12.537 0+ 0.097 ± 0.009
12.578 (1+IV) 0.099 ± 0.009 0.098 ± 0.027 12.56 0.33 ± 0.06
12.784 (0+) 0.099 ± 0.011

aFrom Ref. [12].
bFollowed to the assignment in Ref. [42].
cIn the (p, p′) spectrum, the peak was decomposed to be the two states.
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Table E.7: Same as Table E.1, but for 32S (continued).

Present (p, p′) Previous (p, p′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)σ,στ

(MeV) (mb/sr) (μ 2
N ) (MeV) (μ 2

N )
13.216 0+ 0.069 ± 0.005 13.23 0.04 ± 0.01
13.375 0+ 0.044 ± 0.005
13.587 (0+) 0.028 ± 0.005
13.715 (1+IV) 0.048 ± 0.006 0.049 ± 0.014
13.820 (1+IV) 0.074 ± 0.010 0.068 ± 0.020 13.77 0.03 ± 0.01
13.884 (1+IV) 0.123 ± 0.008 0.118 ± 0.031 13.90 0.24 ± 0.03
14.471 0+ 0.086 ± 0.006
14.562 0+ 0.118 ± 0.007
14.902 0+ 0.048 ± 0.006 14.88 0.20 ± 0.04
14.993 (0+) 0.160 ± 0.009 15.04 0.04 ± 0.01
15.127 (1+IV) 0.149 ± 0.009 0.155 ± 0.040
15.239 (0+) 0.051 ± 0.005

15.58 0.28 ± 0.05b

15.70 0.16 ± 0.04b

15.84 0.26 ± 0.06b

aFrom Ref. [12].
bAssigned as the IV 1+ transition in Ref. [12].
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Table E.8: Same as Table E.1, but for 36Ar.

Present (p, p′) (e, e′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)
(MeV) (mb/sr) (μ 2

N ) (MeV) (μ 2
N )

7.440 0.13 ± 0.02e

8.136 1+IV 0.917 ± 0.086 0.864 ± 0.239 8.158 0.21 ± 0.06
8.482 0.12 ± 0.03e

8.682 0+ 0.247 ± 0.059
8.985b 1+IS 0.163 ± 0.049 0.114 ± 0.048
9.408 0+ 0.341 ± 0.051
9.960c 1+IV 0.301 ± 0.045 0.281 ± 0.084
9.987c 1+IV 1.116 ± 0.063 1.158 ± 0.308 9.995 0.53 ± 0.06
10.068 0+ 0.321 ± 0.044

10.276 0.12 ± 0.03e

10.615 0.12 ± 0.05e

10.719 0.14 ± 0.03e

10.764 0.12 ± 0.03e

11.156 (0+) 0.979 ± 0.053 11.177 0.45 ± 0.05
11.384 0.11 ± 0.02e

11.482 0+ 0.158 ± 0.030
11.555 0+ 0.191 ± 0.031
12.033 (1+IV) 0.093 ± 0.029 0.084 ± 0.034 12.066 0.16 ± 0.03
12.174 (0+) 0.103 ± 0.029
12.321 1+IV 0.283 ± 0.034 0.281 ± 0.080
12.516 0+ 0.156 ± 0.032

12.801 0.29 ± 0.08e

13.201 0.17 ± 0.08e

13.481 0.13 ± 0.03e

13.740 0.12 ± 0.04e

13.800 0.17 ± 0.03e

14.482 (1+IS) 0.124 ± 0.031 0.040 ± 0.016d

aFrom Ref. [85].
bThe isoscalar 1+ transition that was found in 36Ar for the first time.
cIn the (p, p′) spectrum, the peak was decomposed to be the two states.
dAssumed as a mixed state with 0+ (Sec. 6.3.4).
eAssigned as the ΔL ≥ 1 transition in the present work.
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Table E.9: Same as Table E.1, but for 40Ca.

Present (p, p′) (e, e′)a

Ex Jπ, T dσ/dΩ 0.40◦ B(M1)σ,στ Ex B(M1)
(MeV) (mb/sr) (μ 2

N ) (MeV) (μ 2
N )

9.651 (0+) 0.042 ± 0.008
10.205 0+ 0.048 ± 0.007
10.319 1+IV 0.300 ± 0.012 0.325 ± 0.087 10.32 1.12 ± 0.27
10.376 (0+) 0.069 ± 0.008

aFrom Ref. [86].
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Appendix F

Stability of analyzer target for the
BLP

Several experiments using polarized beams have been performed at the RCNP. The po-

larizations of the beams have been measured by using the beam line polarimeter BLP

which measures the asymmetry of the p + p scattering. In the BLP, two pairs of plastic

scintillation counters are used to detect elastically scattered protons and the recoil pro-

tons from the analyzer target in coincidence. The analyzing power of the scattering on

the analyzer target used for the BLP should be known with enough accuracy to deduce

the polarization of the beam. Since the analyzing power of a polyethylene (CH2) sheet in

the region of intermediate energies have been reported in Ref. [27], CH2 sheets have been

usually used for the analyzer target.

We studied the performance of CH2 and aramid (C14O2N2H3, made by Asahi-kase

CO. Ltd. )1 films for the analyzer target using the 295 MeV proton beam. There are

two BLP’s (BLP1 and BLP2) in the WS beam line. An aramid film of 5.0 mg/cm2 was

placed at the target position of BLP1 and a CH2 film of 8.4 mg/cm2 was used in the

BLP2. A typical beam intensity was 10 nA. Figure F.1 shows the relative time evolution

of the scattering rates per unit beam charges, observed for the two BLP’s during the

beam irradiation. The beam charges were measured by using the Faraday cup in the

scattering chamber. The relative hydrogen ratios at the beginning are normalized to

unity. A generally decreasing tendency may be seen in the rate for the CH2 target. The

discontinuous rises in the figure were observed to occur at the times of fine adjustment

of the beam line, which probably caused the slight changes in the beam position on the

target. These observations most plausibly suggest that the hydrogen atoms were released

from the target into vacuum by the proton bombardment. The event rate for the aramid

foil target, on the other hand, was observed to be stable up to the accumulated beam

charges of up to 100 μC.

1It is to be noted that the aramid film used as windows for the gas target cell was made by To-re
CO. Ltd., C14O2N2Cl2H8.
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Figure F.1: The charge dependence of the relative hydrogen ratio in the aramid (5
mg/cm2) and the CH2 (8.4 mg/cm2).

—————————

Assuming the analyzing power for the CH2 target to be 0.40 ± 0.01 for 300 MeV

proton beam [27], that of the aramid film was determined in absolute value to be

A aramid
y = 0.38 ± 0.01,

where the error originates from statistics. The A aramid
y was used to evaluate the beam

polarization in the analysis described in Chap. 5.

175



Bibliography

[1] C. Gaarde, Nucl. Phys. A396, 127c (1983).

[2] K. Ikeda, S. Fujii, and J.I. Fujita, Phys. Lett. 3, 271 (1963).

[3] M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys., 56, 446 (2006).

[4] A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University,

Princeton, NJ, 1960).

[5] W.G. Love and M.A. Franey, Phys. Rev. C 24, 1073 (1981).

[6] M.A. Franey and W.G. Love, Phys. Rev. C 31, 488 (1985).

[7] Toru Suzuki, Nucl. Phys. A577, 167c (1994), and references therein.

[8] A. Tamii, H. Akimune, I. Daito, Y. Fujita, M. Fujiwara, K. Hatanaka, K. Hosono,

F. Ihara, T. Inomata, T. Ishikawa, M. Itoh, M. Kawabata,T. Kawabata, M. Nakamura,

T. Noro, E. Obayashi, H. Sakaguchi, H. Takeda, T. Taki, H. Toyokawa, H.P. Yoshida,

M. Yoshimura, M. Yosoi, Phys. Let. B 451, 61 (1999).

[9] T. Kawabata, T. Ishikawa, M. Itoh, M. Nakamura, H. Sakaguchi, H. Takeda, T. Taki,

M. Uchida, Y. Yasuda, M. Yosoi, H. Akimune, K. Yamasaki, G.P.A. Berg, H. Fujimura,

K. Hara, K. Hatanaka, J. Kamiya, T. Noro, E. Obayashi, T. Wakasa, H.P. Yoshida,

B.A. Brown, H. Fujita, Y. Fujita, Y. Shimbara, H. Ueno, M. Fujiwara, K. Hosono,

A. Tamii, H. Toyokawa, Phys. Rev. C. 65, 064316 (2002).

[10] A. Willis, M. Morlet, N. Marty, C. Djalali, J. Guillot, H. Langevin-Joliot,

J. Van de Wiele, A. Mack, B. Bonin, R. Fergerson, E. Tomasi-Gustafsson, J.C. Lu-

gol, J.C. Duchazeaubeneix, and H. Sakaguchi, Phys. Rev. C. 43, 2177 (1991).

[11] N. Anantaraman, B.A. Brown, G.M. Crawley, A. Galonsky, B.H. Wildenthal,

C. Djalali, N. Marty, M. Morlet, A. Willis, and J.C. Jourdain, Phys. Rev. Lett. 31,

1409 (1984).

[12] G.M. Crawley, C. Djalali, N. Marty, M. Morlet, A. Willis, N. Anantaraman,

B.A. Brown, and A. Galonsky, Phys. Rev. C. 39, 311 (1989).

176



[13] B.H. Wildenthal, Prog. Part. Nucl. Phys 11, 5 (1984).

[14] F. Petrovitch and W.G. Love Nucl. Phys. A354, 499c (1981).

[15] B.D. Anderson, T. Chittrakarn, A.R. Baldwin, C. Lebo, R. Madey, P.C. Tandy,

J.W. Watson, C.C. Foster, B.A. Brown, and B.H. Wildenthal, Phys. Rev. C 36, 2195

(1987).

[16] B.D. Anderson, N. Tamimi, A.R. Baldwin, M. Elaasar, R. Madey, D.M. Manley,

M. Mostajabodda’vati, J.W. Watson, W.M. Zhang, and C.C. Foster, Phys. Rev. C 43,

50 (1991).

[17] A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Adv. Nucl. Phys. 18, 1 (1987).

[18] I.S. Towner, Phys. Rep. 155, 263 (1987).

[19] Y. Sakemi, H. Sakaguchi, M. Yosoi, H. Akimune, T. Takahashi, A. Yamagoshi,

A. Tamii, M. Fujiwara, K. Hatanaka, K. Hosono, T. Noro, H. Togawa, I. Daito, Y. Fu-

jita, and T. Inomata, Phys. Rev. C. 51, 3162 (1995).

[20] A. Tamii, Y. Fujita, H. Matsubara, T. Adachi, J. Carter, M. Dozono, H. Fujita,

K. Fujita, H. Hashimoto, K. Hatanaka, T. Itahashi, M. Itoh, T. Kawabata, K. Nakan-

ishi, S. Ninomiya, A.B. Perez-Cerdan, L. Popescu, B. Rubio, T. Saito, H. Sakaguchi,

Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F.D. Smit, Y. Tameshige, M. Yosoi

and J. Zenhiro, Nucl. Instr. Meth. A 605, 326-338 (2009).

[21] Y. Fujita, K. Hatanaka, G.P.A. Berg, K. Hosono, N. Matsuoka, S. Morinobu, T. Noro,

M. Sato, K. Tamura, and H. Ueno, Nucl. Instr. Meth. B 126, 274 (1997).

[22] H. Fujita, Y. Fujita, G.P.A. Berg, A.D. Bacher, C.C. Foster, K. Hara, K. Hatanaka,

T. Kawabata, T. Noro, H. Sakaguchi, Y. Shimbara, T. Shinada, E.J. Stephenson,

H. Uenoa, and M. Yosoi, Nucl. Instr. Meth. A 484, 17 (2002).

[23] T. Wakasa, K. Hatanaka, Y. Fujita, G.P.A. Berg, H. Fujimura, H. Fujita, M. Itoh,

J. Kamiya, T. Kawabata, K. Nagayama, T. Noro, H. Sakaguchi, Y. Shimbara,

H. Takeda, K. Tamura, H. Uenob, M. Uchida, M. Uraki, and M. Yosoi, Nucl. Instr.

Meth. A 482, 79 (2002).

[24] M. Fujiwara, H. Akimune, I. Daito, H. Fujimura, Y. Fujita, K. Hatanaka, H. Ikegami,

I. Katayama, K. Nagayama, N. Matsuoka, S. Morinobu, T. Noro, M. Yoshimura, H. Sak-

aguchi, Y. Sakemi, A. Tamii, and M. Yosoi, Nucl. Instr. Meth. A 422, 484 (1999).

[25] P. Ludwig, R. Geller and G. Melin, Review of Scientific Instruments, 63, p.2892

(1992).

177



[26] K. Hatanaka, K. Takahisa, H. Tamura, M. Sato, and I. Miura, Nucl. Instr. Meth. A

384, 1575 (1997).

[27] H. Takeda, Memoirs of the Faculty of Science, Kyoto University, Vol. XXXXIV .

No.1, Article 1, (2003).

[28] T. Noro et al., RCNP Annual Report, Osaka University, 1991, pp. 177.

[29] N. Fujita, Masters Thesis, Miyazaki University, 2009, (unpublished).

[30] N. Matsuoka and T. Noro, RCNP Annual Report, Osaka University, 1987, pp. 176;

N. Matsuoka et al., RCNP Annual Report, Osaka University, 1991, pp. 186.

[31] N. Matsuoka et al., RCNP Annual Report, Osaka University, 1991, pp. 161.

[32] M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T. Murakami,

H. Takeda, T. Taki, S. Terashima, N. Tsukahara, Y. Yasuda, M. Yosoi, U. Garg,

M. Hedden, B. Kharraja, M. Koss, B.K. Nayak, S. Zhu, H. Fujimura, M. Fujiwara,

K. Hara, H.P. Yoshida, H. Akimune, M.N. Harakeh, and M. Volkerts, Phys. Rev. C.

68, 064602 (2003).

[33] K. Sagara, private communication.

[34] H.P. Yoshida et al., RCNP Annual Report, Osaka University, 1996, pp. 164.

[35] A. Tamii, H. Sakaguchi, H. Takeda, M. Yosoi, H. Akimune, M. Fujiwara, H. Ogata,

M. Tanaka, H. Togawa, IEEE Trans. on Nucl. Sci. 43 (1996) 2488.

[36] T. Kawabata et al., RCNP Annual Report, Osaka University, 1996, pp. 161.

[37] http://www.nndc.bnl.gov/nudat2.

[38] H. Fujita, G.P.A. Berg, Y. Fujita, K. Hatanaka, T. Noro, E.J. Stephenson, C.C. Fos-

ter, H. Sakaguchi, M. Itoh, T. Taki, K. Tamura, H. Ueno, Nucl. Instr. Meth. A 469,

55 (2001).

[39] T. Kawabata, H. Akimune, H. Fujimura, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara,

K. Hatanaka, K. Hosono, T. Ishikawa, M. Itoh, J. Kamiya, M. Nakamura, T. Noro,

E. Obayashi, H. Sakaguchi, Y. Shimbara, H. Takeda, T. Taki, A. Tamii, H. Toyokawa,

N. Tsukahara, M. Uchida, H. Ueno, T. Wakasa, K. Yamasaki, Y. Yasuda, H.P. Yoshida

and M. Yosoi, Nucl. Instr. and Meth. A 459, 171 (2001).

[40] H. Matsubara, H. Sakaguchi, T. Kishi, and A. Tamii, Nucl. Instr. and Meth. B 267,

3682-3687 (2009).

178



[41] B. Reitz, F. Hofmann, P. von Neumann-Cosel, F. Neumeyer, C. Rangacharyulu,

A. Richter, G. Schrieder, D.I. Sober, and B.A. Brown, Phys. Rev. Lett. 82, 291 (1999).

[42] F. Hofmann, P. von Neumann-Cosel, F. Neumeyer, C. Rangacharyulu, B. Reitz,

A. Richter, G. Schrieder, D.I. Sober, L.W. Fagg, and B.A. Brown, Phys. Rev. C 65,

024311 (2002).

[43] A. Tamii, Doctral Dissertation, Kyoto Univ. (1999), private communication.

[44] For example, G.F. Knoll, Radiation Detection and Measurement, 3rd ed., John Wiley

& Sons, Inc., New York (2000).

[45] J. Raynal, program code ECIS-88 NEA-0850/08.

[46] E.D. Cooper, S. Hama, B.C. Clark, and R.L. Mercer, Phys. Rev. C 47, 297 (1993).

[47] J. Zenihiro, H. Sakaguchi, T. Murakami, H. Takeda, S. Terashima, Y. Matsuba,

M. Yosoi, Y. Yasuda, and M. Itoh, Nucl. Phys. A805, 281 (2008), and private commu-

nication.

[48] E.D. Cooper, S. Hama, and B.C. Clark, Phys. Rev. C 80, 034605 (2009).

[49] B.A. Brown and W.D.M. Rae, MSU-NSCL report (2007).

[50] B.A. Brown, and B.H. Wildenthal, Nucl. Phys. A474, 290 (1987).

[51] S. Cohen and D. Kurath, Nucl. Phys. 73, 1-24 (1965).

[52] B.A. Brown and B.H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).

[53] B.A. Brown and W.A. Richter, Phys. Rev. C 74, 034315 (2006).

[54] J. Raynal, program code DWBA07 NEA-1209/008.

[55] K. Yagi, Genshikaku butsuri gaku (Asakura syotenn, Tokyo, 1971), in Japanese.

[56] Michael W. Kirson, Nucl. Phys. A781, 350 (2007).

[57] M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Côté, P. Pirès, and
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J. Jänecke, K. Katori, C. Lüttge, S. Nakayama, P. von Neumann-Cosel, A. Richter,

A. Tamii, M. Tanaka, H. Ueno, and M. Yosoi, Nucl. Instr. and Meth. A 402, 371

(1998).

[101] Y. Fujita, H. Akimune, I. Daito, H. Fujimura, M. Fujiwara, M.N. Harakeh, T. Ino-
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