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Abstract

Cross sections and analyzing powers for polarized proton elastic scattering from 58Ni, and
204,206,208Pb have been measured at intermediate energy Ep = 295 MeV. An effective relativistic
Love-Franey interaction is tuned to reproduce 58Ni scattering data within the framework of the
relativistic impulse approximation.

The neutron densities of the lead isotopes are deduced using model independent sum-of-
Gaussian distributions. Their error-envelopes are estimated by a new χ2 criterion including
uncertainties associated with the reaction model as well as the experimental uncertainties.

The systematic behaviors of extracted error-envelopes of the neutron density distribu-
tions in 204,206,208Pb are presented. The extracted neutron and proton density distributions
of 204,206,208Pb give neutron skin thicknesses of ∆rnp = 0.178+0.047

−0.059 fm, 0.180+0.048
−0.064 fm, and

0.211+0.054
−0.063 fm, respectively. Even including the model uncertainties, the errors of the extracted

∆rnp are at the level of 1 % of the neutron rms radius and still comparable to the previous
results which reflect the experimental errors only.

It is found that the neutron skin thicknesses are strongly correlated with the symmetry
energy at saturation S(ρsat) and the slope coefficient of the symmetry energy L according to
predictions by various relativistic and non-relativistic mean-field models. By using the lin-
ear correlations our results of the neutron skins for 204,206,208Pb lead to the weighted mean of
S(ρsat) = 33.0 ± 1.1 MeV and L = 67.0 ± 12.1 MeV. The extracted ranges of S(ρsat) and L
include the experimental uncertainties only, but they are consistent with and smaller than the
previous results.
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Chapter 1

INTRODUCTION

Since 1950s, various nuclear ground-state properties such as the masses of nuclei, the shapes
and sizes of nuclear matter or nuclear charge distributions, the binding energy per nucleon,
and the nuclear incompressibilities, have been measured by a variety of experimental methods
in many accelerator facilities in the world. Based on the measurements of such properties,
a number of theoretical studies have been also performed over the ages. However even for
the stable nuclei it is not easy to understand the enormous aspects of the nuclear many-body
system.

For the last few decades, in addition, new phenomena such as skin and halo structures,
and the change of the nuclear magic number have been found from the experimental studies
of unstable nuclei, whose neutron number N is very different from its proton number Z. In
the light unstable nuclei, for example, 11Li was found to have a large neutron halo through the
measurements of interaction cross sections [1]. The excess two neutrons in 11Li are remarkably
widespread by the tunneling effect and very weekly bound around 9Li core. The radius of
11Li is comparable to that of 208Pb. It is now expected that the complementary research for
such exotic nuclei as well as for stable nuclei is powerful tool not only to understand these
new features of nuclei, but also to establish more precise and comprehensive framework of
nuclear many-body system including a large isospin asymmetry. For this purpose, several next-
generation facilities in the world, which can provide high-energy and high-intensity radioactive
heavy-ion beams, has been constructed or planned in recent years. Above all, the RI Beam
Factory (RIBF) at RIKEN in Japan has already started providing heavy-ion beam such as
238U at 345 MeV/u and some fruitful results of the productions of new rare isotopes has been
reported [2].

1.1 Equation of state of asymmetric nuclear matter
Among these new phenomena, the role of isospin asymmetry in nuclei and nuclear matters
have received a lot of attention in both the nuclear physics and astrophysics, and have been
investigated using many experimental results and theoretical models. Particularly, the isospin-
dependent term of the equation of state (EOS), i.e., the density dependence of the nuclear
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Rendition of the assumed struc-
ture and phases of a neutron star. Taken from
Ref. [33].

Figure 1.2: Neutron star mass versus cen-
tral density obtained from various types of
the EOSs by relativistic hadronic field models,
taken from Ref. [34]

symmetry energy is now considered as one of the most important question to be solved.
There have been quite a lot of microscopic and phenomenological, non-relativistic and

relativistic approaches to understand the equation of state of asymmetric nuclei and nuclear
matters, such as the Brueckner-Hartree-Fock [3, 4] and the Dirac-Brueckner-Hartree-Fock [5–
8] approach with bare NN interaction, and the non-relativistic mean-field model based on the
Skyrme interactions [9–15] and the relativistic mean-field model [16–27]. In addition, the EOS
of the asymmetric nuclear matter is essential to the understanding of astrophysical phenomena
such as supernova explosions, neutron stars structure and cooling system, and x-ray bursts [28–
32]. Figure 1.1 shows the assumed structure ans phases of a neutron star. The composition
of a neutron star depends on the EOS of the neutron matter as shown in Fig. 1.2. Figure 1.3
shows the typical calculations of the EOS of the symmetric nuclear and pure neutron matter
by microscopic many-body theories and phenomenological approaches.

For asymmetric nuclear matter, the equation of state, i.e., the energy per nucleon can be
generally approximated as

E(ρ, δ) = E(ρ, 0) + S(ρ)δ2 + O(δ4), (1.1)

in terms of baryon density ρ = ρn + ρp, local isospin asymmetry δ = (ρn − ρp)/ρ, energy
per nucleon in symmetric nuclear matter E(ρ, δ = 0), and so-called nuclear symmetry energy
S (ρ). This equation (1.1) is known as the empirical parabolic law for the EOS of asymmetric
nuclear matter. The odd-order terms of δ is vanishing due to the exchange symmetry between
protons and neutrons. Although it has been reported that the higher order terms O(δ4) become
important for determining the transition density and pressure at the inner edge separating the
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Figure 1.3: The EOS of symmetric nuclear matter and pure neutron matter calculated by the
non-relativistic Brueckner-Hartree-Fock and variational approaches using AV18 interaction
with three body force (dotted red), the Dirac-Brueckner-Hartree-Fock using Bonn A (solid
red), chiral perturbation theory (dashed black), and several phenomenological mean field mod-
els (blue) taken from Ref. [34].

liquid core form the solid crust of neutron stars [32], the higher order terms are generally
negligible around normal density [35]. Therefore, the density-dependent symmetry energy
S(ρ) can be obtained from S(ρ) ≈ E(ρ, 1)−E(ρ, 0). This means the energy difference between
the EOS of the neutron matter and the symmetric nuclear matter.

The EOS of the symmetric nuclear matter E0(ρ) = E(ρ, 0) around the saturation density
ρsat can be expanded as

E0(ρ) = E0 +
K0

2
ε2 + O(ε3), (1.2)

K0 = 9ρ2
sat

d2E0(ρ)
dρ2

∣∣∣∣∣∣
ρ=ρsat

, (1.3)

where ε = (ρ − ρsat)/3ρsat. The coefficient K0 is the so-called incompressibility of symmetric
nuclear matter. The binding energy per nucleon E0 and the incompressibility K0 which char-
acterize the symmetric nuclear matter are now known to be about −16 MeV and 230 MeV,
respectively. The incompressibility, in particular, has been recently constrained by many mea-
surements of giant resonances for various nuclei via α-inelastic scattering at 0 degree [36–40].
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1.2 Symmetry energy and neutron skin thickness of 208Pb
On the other hand, the symmetry energy S(ρ) was previously studied by the systematic mea-
surements of the masses of stable nuclei, small δ and ρ around the saturation, based on the
earlier empirical mass formula [41–43]. Thus it was difficult to verify the isospin-asymmetry
dependence of S(ρ). The importance of the symmetry energy of asymmetric nuclear matter
has been recognized by the study of the exotic nuclei with a large neutron excess at the ra-
dioactive ion beam facilities. However the isospin dependence of the symmetry energy S(ρ) is
still less certain and the predictions vary widely among many theoretical models [12, 44, 45].

The nuclear symmetry energy S(ρ) which characterizes the asymmetric nuclei and nuclear
matter is also expanded around the saturation density as follows:

S(ρ) = S(ρsat) + Lε +
Ksym

2
ε2 + O(ε3), (1.4)

L = 3ρsat
dS(ρ)

dρ

∣∣∣∣∣
ρ=ρsat

, (1.5)

Ksym = 9ρ2
sat

d2S(ρ)
dρ2

∣∣∣∣∣∣
ρ=ρsat

, (1.6)

where L and Ksym are the slope and curvature coefficient of the symmetry energy at the satura-
tion, respectively. From Eq. (1.1), (1.2), and (1.4), the saturation properties of the asymmetric
nuclear matter such as the saturation density ρsat(δ), energy per nucleon E0(δ), and the incom-
pressibility K0(δ) as a function of the isospin asymmetry δ, are also derived. The details of the
evolution of the saturation point are described in Appendix C.

In order to describe not only the symmetric but also asymmetric nuclei or nuclear mat-
ter, the non-relativistic mean-field models based of the Skyrme interactions and the relativistic
mean-field models including various types of medium density-dependence have been devel-
oped together with the experimental results of the ground-state properties of finite nuclei over
the ages. It has been shown that the thickness of the neutron skin (∆rnp), defined as the dif-
ference between the neutron (rn) and proton (rp) root-mean-square (rms) radii of a nucleus
(∆rnp ≡ rn − rp), is determined by the balance among the various nuclear matter properties.
Indeed, the neutron skin thickness of 208Pb is strongly correlated with the nuclear symmetry
energy coefficients S(ρsat), L, and Ksym of the equation of state in asymmetric nuclear matter
[25, 26, 44–50]. Figures 1.4–1.6 show that the strong correlations between neutron skin thick-
ness for 208Pb and some symmetry energy parameters such as S(ρsat), L, and Ksym exist by both
the non-relativistic and relativistic mean field models.

208Pb is the heaviest stable nucleus who has doubly-closed shell structure (Z = 82 and
N = 126) having major shell gaps, and hence its nuclear properties such as the binding energy,
charge radius, have been precisely determined.

Therefore the precise extraction of the neutron skin thickness of 208Pb is related to con-
strain the isospin dependence of the effective nuclear interactions and EOS of the isospin
asymmetric nuclear matter, particularly, the density dependence of the nuclear symmetry en-
ergy. Furthermore, it has been suggested that a precise measurement of the skin thickness of
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Figure 1.4: Neutron skin thickness for 208Pb as a function of (a) L, (b) Ksym, and (c) Esym(ρ0) =
S(ρsat) for 21 sets of Skyrme parameterizations. Taken from Ref. [51].

Figure 1.5: Correlation between neutron skin
for 208Pb and the symmetry energy a4 = S(ρsat)
at saturation. Take from Ref. [45].

Figure 1.6: Correlation between neutron skin
for 208Pb and the slope of the symmetry energy
p0 = ρsatL/3. Take from Ref. [45].

208Pb is very important for studying the radius, composition, and cooling system of neutron
stars [23, 24, 26, 30–32, 52, 53].
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1.3 Nucleon density distributions
The nucleon density distribution is one of the most fundamental properties of nuclei. The
precise extraction of the nucleon density distributions (ρp, ρn) and hence the neutron skin
thickness ∆rnp is now known to be indispensable for studying the EOS of the asymmetric
nuclear matter as mentioned in the previous section.

However, compared to other ground-state properties of finite nuclei such as charge den-
sities, charge radii, and binding energies, it is difficult to measure the size and shape of the
neutron densities precisely due to the large ambiguity of the hadronic process.

1.3.1 Proton density distributions
In the case of stable nuclei, the proton density ρp and radius rp can be derived from the nuclear
charge density ρch and the intrinsic nucleon charge density. Nuclear charge distributions for
a variety of stable nuclei are now known accurately from a lot of experiments [54–56]. For
example, the charge radius of 208Pb is 5.5010(9) fm with an accuracy of 0.02 % according to
a combined analysis of electron scattering, muonic atom X-rays, and isotope shift as shown
in Ref. [56]. An electromagnetic probe, due to its simple reaction mechanism, can extract
precise information about charge density deep inside a nucleus.

1.3.2 Neutron density distributions
Neutron density and radius have been studied by many researchers using proton, α, pion scat-
tering, and antiprotonic atoms [57–68]. However, typical experimental uncertainties of ex-
tracted neutron rms radius are more than ten times as large as those of the charge radius.
Hadronic probes exhibit uncertainties in the reaction mechanism which is mainly caused by
an incomplete knowledge of the nucleon–nucleon (NN) scattering amplitude inside the nu-
clear medium. In order to extract precise information about the neutron density distribution an
appropriate probe and an effective NN interaction must be carefully chosen.

“Proton elastic scattering” Proton–nucleus elastic scattering at intermediate energies (Ep ∼
300 MeV) is a relatively good probe for extracting information about both the nuclear surface
and interior. The energy of the incident protons is low enough to suppress meson production
and hence allow a shallow absorptive potential to be obtained. It is also high enough to be
described by an impulse approximation. As mentioned above, however, uncertainties in the
NN interaction in the nucleus are a problem.

In our previous papers [69, 70], we reduced the uncertainties in the NN interaction inside
the nuclear medium by introducing a phenomenological medium modification in the relativis-
tic Love–Franey interaction in terms of the density dependent parameters. This correction is
effectively described as a modification of the masses and coupling constants of the exchanged
mesons according to the nucleon density. To calibrate these “medium effect” parameters, we
use proton elastic scattering from 58Ni, because the proton and neutron densities are supposed
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Figure 1.7: Neutron density distributions of 116,118,120,122,124Sn in the model-independent form
of SOG function extracted from polarized proton elastic scattering at Ep = 295 MeV [70].

to have almost the same shape and radius in 58Ni [8, 13, 58, 66]. Then, using the medium-
effect parameters calibrated for 58Ni, we have extracted the neutron density distributions of tin
isotopes in the form of model-independent Sum-of-Gaussians (SOG) distributions. The accu-
racy of the neutron radii of tin isotopes were found to be less than 0.03 fm including both the
statistical and model uncertainties [70] as shown in Fig. 1.7.

After the success of our analysis method for Ni and Sn isotopes, we have performed sev-
eral experiments to measure proton elastic scattering from heavier or lighter stable nuclei such
as 204,206,208Pb, 40,42,44,48Ca, 36Ar, 32S, 24Mg, 20Ne, and 16,18O. Now we have examined the ap-
plicability of our analysis method to these isotopes. In addition, since our recent analysis
has showed that the absolute values of the cross sections are very important to determine the
model-independent density distributions, a separate experiment has been performed to know
absolute efficiencies of some detectors [71]. Several improvements to reduce the experimental
uncertainties have been also considered in recent analyses.

Above all, we have focused on the neutron density distributions of lead isotopes since the
neutron skin of 208Pb, which is strongly correlated with the EOS parameters as mentioned
above, is expected to constrain the EOS of asymmetric nuclear matter. In this thesis, thus, we
report the most recent results from the analysis of the proton elastic scattering data of lead
isotopes.
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1.4 Purpose of this work
Pb isotopes The purpose of this work is to evaluate the sensitivity of proton elastic scattering
to the neutron densities in heavy nuclei such as lead isotopes 204,206,208Pb with a new χ2 method
including the ambiguity associated with the interaction model used in the present analysis. It
is important for the understanding of isospin asymmetry to study the systematic behavior of
the extracted neutron densities. We also focus on the extracted neutron skin thicknesses of
204,206,208Pb to constrain on the EOS parameters such as S(ρsat) and L.

Furthermore, if our analysis method to describe the scattering observables and to extract
the precise information of the density distributions works successfully even for lead isotopes
with large isospin asymmetries, we could apply this approach to unstable nuclei on the basis
of this work. Indeed, we have already proposed and performed the so-called ESPRI project
(Elastic Scattering of Protons with RI beams) at NIRS-HIMAC in Chiba, Japan, GSI in Ger-
many, and RIBF in RIKEN, Japan. This project aims to measure the cross sections of pro-
ton elastic scattering from unstable nuclei by missing mass spectroscopy. Protons, which are
inverse-kinematically scattered from solid hydrogen target by heavy ion beam of unstable nu-
clei at Ep = 300 MeV/A, are detected up to the momentum transfer of 2.5 fm−1 with recoil
particle spectrometer (RPS) which consists of plastic scintillators, multi-wire-drift chambers,
and NaI(Tl) calorimeter arrays. We have already performed developments and experiments
for several unstable nuclei such as 9,10,11C, 20O, and 66,70Ni, and achieved 1-mm-thick solid
hydrogen target and the excitation energy resolution of σ ∼ 500 keV. An approved experiment
is planned to be performed at RIBF in FY2011.

Previous or planned experiments for 208Pb Since 1980s, there have been several attempts
to extract the neutron density distribution or the neutron skin thickness of 208Pb as listed in
Table 1.1. They were all deduced by using hadronic reaction and consistent with each other
within the errors. However, except for the 208Pb(p, p) at 650 MeV analysis, they must assume
a specific model-dependent function or a specific theoretical calculation as the neutron density
distribution of 208Pb because they cannot reduce the large uncertainties caused by the various
model assumptions. Thus, the uncertainties associated with the theoretical models are inherent
in all the results listed in Table 1.1. It is difficult to estimate the errors due to the model uncer-
tainties, which are usually not mentioned, but they really should do unless they use hadronic
probes. On the other hand, wide-ranged angular distributions of scattering observables are
powerful tools to evaluate how precisely the reaction and structure models can explain the real
data. In addition, we used the realistic proton density and the effective NN interaction tuned
by the real data. This enables us to reduce the ambiguity of the reaction model and to use the
model-independent density distributions.

There have been also several attempts to extract the neutron density distributions of 208Pb
from proton elastic scattering data [58, 62]. The energy of the incident protons, Ep = 650 and
800 MeV used in Refs. [58, 62] are rather high, where the real part of the optical potential
is completely repulsive and the imaginary part is about 50 MeV deep. Thus the information
about the nuclear interior is masked by the strong absorption. To avoid this large ambiguity
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Table 1.1: The previous results of rn, rp and ∆rnp for 208Pb deuced from several experiments
using various hadronic probes (all in fm). Except for X-ray cascade from p̄-atom (2), the errors
are experimental only.

Experiment rp rn ∆rnp
208Pb(p, p) at 800 MeV [58]∗ 5.45 5.59(4) 0.14(4)
208Pb(p, p) at 650 MeV [62]† 5.46 5.66(4) 0.20(4)
Isospin diffusion data in Sn + Sn at
50 MeV/u [51]‡

- - 0.22(4)

GDR from (α, α′) at 120 MeV[61] - - 0.19(9)
PDR from 129−132Sn(γ, γ′) [68]¶ - - 0.18(4)
PDR in 68Ni and 132Sn [72]‖ - - 0.194(24)
X-ray cascade from p̄-atom (1)[67]∗∗ 5.44 5.60 0.16(2)stat(4)syst

X-ray cascade from p̄-atom (2)[73]†† 5.45 5.65(5)mdl 0.20(4)exp(5)mdl

∗2nd-order KMT potential assuming 3pG neutron density.
†Density-dependent t-matrix using model-independent FB neutron density.
‡21 sets of the Skyrme interaction parameters.
¶PDR strengths analyzed by RHB+RQRPA calculations with DD-ME parametrization.
‖Energy weighted sum rule by PDR data globally fitted with various mean field models
∗∗antiproton-nucleus optical potentials assuming 2pF proton and neutron density.
††newly developed Skyrme parametrization Skxsxx constrained by antiproton data of Ref. [67].

of the interior structure, Starodubsky and Hintz [62] assumed that the nuclear matter density
in the nuclear interior is almost constant. They did not use the model-independent function
itself to extract the neutron density, but instead used the Skyrme–Hartree–Fock density plus
a small correction expanded in a Fourier–Bessel series to estimate the error-envelopes of the
neutron densities which reflect only the statistical errors of the experimental data. They also
used a density-dependent t matrix calibrated by p-40Ca scattering data in the framework of
the non-relativistic formalism. Their approach is very similar to ours, as seen in our previous
study for tin isotopes [70], but they did not estimate the errors due to the model ambiguity,
which is an unavoidable problem in describing hadronic reactions.

There are several theoretical approaches for energy-independent global analysis. Skyrme–
Hartree–Fock models with modern parameterizations have been tested employing the g-folding
optical potential to explain the data obtained from nucleon-nucleus elastic scattering from
208Pb at 40, 65, and 200 MeV [63]. It has been suggested that 208Pb has a neutron skin thick-
ness of ∼ 0.17 fm, because the SkM* model gives the best agreement with the experimental
data. Another global analysis of proton-nucleus elastic scattering data in the energy range
from 500 to 1040 MeV based on the Dirac phenomenological optical model in Ref. [64] gave
a range of ∆rnp from 0.083 to 0.111 fm for 208Pb. The obtained range of ∆rnp changes de-
pending on the momentum transfer range and the NN interaction used for the global fit. In



10 CHAPTER 1. INTRODUCTION

these theoretical approaches, statistical errors and the effect of the model-dependence must be
considered in the error-estimation of ∆rnp.

As a different experimental approach, a parity-violating electron elastic scattering measure-
ment to extract the neutron radius in 208Pb (PREX) has been proposed at Jefferson Laboratory
[74, 75]. This challenging experiment is planned to measure the neutron rms radius for 208Pb
with an accuracy of 1 % assuming a simple model-dependent function such as a Woods-Saxon
for the neutron density of 208Pb. The advantage of this method is said to be its “model inde-
pendence” of the interaction mechanism, but the planned accuracy of 1 % is larger than the
recent measurements using hadronic probes [62, 67, 68]. Besides this electroweak probe mea-
surement has many experimental difficulties because of the required accuracy to measure the
very “weak” violation (∼ 0.1 ppm = 10−7).

Previous analyses for the EOS parameters Several studies including listed Refs. in Ta-
ble 1.1 deduced the S(ρsat) and L from various measurements such as isospin diffusion [51],
pigmy dipole resonance [68, 72], and world data of various nuclear reactions [76]. The ex-
tracted regions are not so different each other, but widely spread, even though the uncertainties
associated with the dependence of a certain theoretical model were not considered.Figures 1.8
and 1.9 taken from Refs. [72, 76], show that the recent results of the slope coefficient L are
summarized. Thus, the situation of the EOS parameters is similar to that of the neutron skin
thickness for 208Pb as mentioned above. Our approach may be also effective to constrain the
theoretical models and the EOS parameters. The study for other nuclei as well as lead isotopes
will give us more strict constraint on the EOS paramters.

This work aimed to extract the model-independent neutron density distributions and neu-
tron rms radius of 204,206,208Pb with an accuracy of 1 % (δrn/rn) even including the model
uncertainties. This accuracy is comparable to the planned accuracy of the PREX experiment.

In this thesis we report our results of quantifying the uncertainty of both the experimental
data and the present reaction model as the errors of the neutron densities in lead isotopes. The
experimental procedures are described in Chap. 2. The experimental data of proton elastic
scattering from 58Ni, and 204,206,208Pb at Ep = 295 MeV have been newly obtained and several
improvements have been applied at the data reduction, as explained in Chap. 3. so as to
reduce the systematic uncertainties which have not been considered previously. This work
is mainly based on the approach and technique described in Refs. [69, 70]. A brief outline
of the medium-modified RIA model and the results of the extraction of the neutron density
distributions in lead isotopes are given in Chap. 4. The extracted neutron rms radii and skin
thickness are compared with several theoretical calculations in Chap. 5. Finally we provide a
summary in Chap. 6.

This thesis is mainly based on the recent article Ref. [77].
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Figure 1.8: Constraint regions on the S(ρsat)-L plane by several recent analyses. Taken from
Ref. [76].

Figure 1.9: Constraint regions on the L by several recent analyses. Taken from Ref. [72].





Chapter 2

EXPERIMENTAL PROCEDURE

The experiment (E248) was performed at the ring cyclotron facility in the Research Center for
Nuclear Physics (RCNP), Osaka University. An overview of the RCNP facility is shown in
Fig. 2.1. The polarized proton ealstic scattering from 58Ni, and 204,206,208Pb at Ep = 295 MeV
was measured by using the high-resolution magnetic spectrometer, “Grand Raiden” [78] and
focal plane detectors [79]. Differential cross sections and analyzing powers were obtained in
the angular range of 7.5◦ ≤ θlab ≤ 48.0◦. In this chapter the details about the experimental
setup and procedure are described.

2.1 Beam line

2.1.1 Polarized proton beam

A high intensity polarized ion source (HIPIS) provided a polarized proton beam employing
the cold atomic beam technology (∼ 30 K) and an electron cyclotron resonance ionizer [80].
The polarized proton beam extracted from HIPIS was injected to an azimuthally varying field
(AVF) cyclotron (K120) to keep the polarization axis in the vertical direction. The beam at
53 MeV after acceleration with the AVF cyclotron was further accelerated up to 295 MeV us-
ing a six sector ring cyclotron (K400) in a coupled mode. Since the single turn extraction from
the ring cyclotron was achieved, the beam was very clean and free from the background caused
by other bunches. The vertically polarized proton beam from the ring cyclotron was achromat-
ically transported to the WS beam line and scattered at a target in a scattering chamber. A
typical size of the beam spot was less than 1 mm in diamter.

A schematic view of the WS beam line in the experimental hall is shown in Fig. 2.2.
The beam was tuned by using many constituent elements of the beam line such as dipole,
quadratic, and steering magnets, and beam viewers so that the beam was transported along
the central axis of the beam line arranged in advance. Since the beam was achromatically
transported on the target, if the drift of the beam energy occurred due to instabilities of the
beam conditions, we cannot recognize the drift by the beam spot on the target position only.
Therefore, during the experiment we regularly checked the two beam viewers of BV9-WS

13
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Figure 2.1: Overview of the RCNP ring cyclotron facility with the WS beam line. AVF and
Ring cyclotron operate in a coupled mode and provide polarized proton beam at Ep = 295 MeV
to the WS beam line in west experimental hall.

and BV8-WS located at momentum-dispersive positions (∼3 m and ∼10 m upstream from the
target position, respectively) as shown in Fig. 2.2. At BV9-WS, for example, the dispersion is
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Figure 2.2: Schematic view of WS beam line

about ±5 mm, this value corresponds to the range of the beam incident angle −0.1◦ ≤ θinc. ≤
0.1◦ (±5/3000 rad). Thus, the uncertainty of the incident beam angle was approximately,
δθinc. ' ±0.02◦ after the beam spot at BV9-WS were narrowed enough to distinguish the
1 mm drift of the beam at BV9-WS by eyes. The effect of this uncertainty on the scattering
observables is referred to in Chap. 3.4.

2.1.2 Beam line polarimeter
The polarization of the proton beam was constantly monitored by using a sampling-type beam
line polarimeter (BLP) placed in the WS beam line. The BLP consists of four (left, right, up,
and down) pairs of plastic scintillation counters to measure p-H scattering from the (CH2)n

foil. In Fig. 2.3 the top view of the BLP is shown and the left and right pairs of counters in the
horizontal plane can be seen. The other (up and down) pairs are located in the vertical plane.
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Figure 2.3: Setup of the BLP (top view)

A proton in the beam was elastically or quasi-elastically scattered from another proton of
hydrogen or carbon in the (CH2)n foil and the scattered and recoiled protons are simultaneously
detected with a pair of scintillation counters. Each pair of scintillation counters was located at
the scattering and recoil angles of 17.0◦ and 70.5◦ where p-p scattering from (CH2)n realizes
the large effective analyzing power Ay = 0.40. The y-component of the polarization was
derived from the asymmetry of the number of the events counted by the left and right pairs
of scintillation counters. A typical beam polarization was about 70 %. The up and down
pairs of the counters were used to determined the beam intensity during the measurements as
mentioned in Sec. 2.3.

The polyethylene target was periodically inserted into the beam position during the polar-
ization measurement, while it was removed out of the beam position during the data aquisition
of the focal-plane events. The polarization direction of the proton beam was reversed for every
one second to reduce the systematic asymmetries.

2.2 Targets
Self-supporting metal foils were used as 204,206,208Pb and 58Ni targets in this experiment. Two
types of thin and thick metal foils were prepared for each target except for 204Pb. Thin targets
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were for the measurements at forward angles (7.5◦ ≤ θlab ≤ 28.5◦) in order to reduce the dead
time of the data acquisition less than 10 %, while thick ones were for the measurements at
backward angles (25.5◦ ≤ θlab ≤ 48.0◦) to increase the yields. The thicknesses and enrichments
of the targets are listed in Table 2.1.

In order to reduce the relative systematic errors due to instabilities of the beam condition or
detectors, the four targets were automatically interchanged every ∼5 minutes at each scattering
angle. Typically the errors of the target thicknesses are about 1 %.

Table 2.1: Target thicknesses and enrichments of Ni, and lead isotopes.

Nucleus Thin Thick Enrichment
204Pb 23.7 mg/cm2 not prepared 99.6 %
206Pb 18.4 mg/cm2 50.9 mg/cm2 99.3 %
208Pb 31.5 mg/cm2 78.8 mg/cm2 99.7 %
58Ni 39.5 mg/cm2 100 mg/cm2 99.39 %

2.3 Faraday Cups
The proton beam was stopped by two kinds of Faraday cups depending on the settings of the
measurement. In the measurements at forward angles (7.5◦ ≤ θlab ≤ 28.5◦) the Faraday cup
was mounted inside the scattering chamber (SCFC). This Faraday cup was most stable against
the fluctuations of the beam profile, and its charge collection efficiency has been measured by
a seperate experiment [71].

In the measurements at backward angles (25.5◦ ≤ θlab ≤ 48.0◦) the intensity of the proton
beam was much higher than that for the forward measurements to increase the yields. The
other Faraday cup located about 25 m downstream from the scattering chamber (WallFC) was
used due to the regulation of the radiation control. The relative charge collection efficiency
between the SCFC and WallFC was monitored by using p-H cross section counted by up and
down pairs of BLP.

2.4 Magnetic spectrometer, “Grand Raiden”
Scattered particles from a target nucleus were analyzed using the high resolutin magnetic spec-
trometer “Grand Raiden” (GR) [78]. Figure 2.4 shows a schematic view of the GR spectrom-
eter and focal plane detectors [79].

The GR spectrometer has a Q1-SX-Q2-D1(-MP)-D2(-DSR) configuration, where D, Q,
and SX denote a dipole, a quadrupole, and a sextupole magnet, respectively. Design specifica-
tions of the spectrometer are summarized in Table 2.2. The multipole magnet (MP) is designed
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Table 2.2: Design specifications of the GR spectrometer

Configuration Q1-SX-Q2-D1(-MP)-D2(-DSR)
Mean orbit radius 3 m
Total deflection angle 162◦

Measureable angle −4◦–90◦

Focal plane length 120 cm
Focal plane tilting angle 45◦

Maximum magnetic rigidity 5.4 T·m
Momentum range 5%
Momentum resolution (p/∆p) 37000
Momentum dispersion (x|δ) 15.45 m
Horizontal magnification (x|x) −0.417
Vertical magnification (y|y) 5.98

to minimize the higher-order aberrations. The third dipole magnet (DSR) is additionally used
for measurements of the spin rotation parameters or the polarization transfers. The MP and
DSR magnets were not used in the present experiment.

The GR spectrometer can rotate around the axis located at the center of the scattering
chamber from −4◦ to 90◦. Therefore we can obtain the angular distributions of the scattering
observables such as the cross sections, analyzing powers, and spin rotation parameters using
polarized beam. In this experiment, we measured the polarized proton scattering over the
angular range covered from 7.5◦ to 48.5◦ in 1.5◦ steps. This angular range corresponds to the
momentum transfer from 0.55 fm−1 up to 3.5 fm−1.
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Figure 2.4: Schematic view of the magnetic spectrometer, “Grand Raiden”
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Table 2.3: Specifications of the VDCs.

Wire configuration X(0◦), U(−48.2◦)
Active area 1150W mm ×120H mm
Number of sense wires 192(X), 208(U)
Anode-cathode gap 10 mm
Anode wire spacing 2 mm
Sense wire spacing 6 mm (X), 4 mm (U)
Sense wires 20 µmφ gold-plated tungsten wire
Potential wires 50 µmφ gold-plated beryllium-copper wire
Cathode 10 µm-thick carbon-aramid film
Applied voltage −5.6 kV (cathode), −0.3 kV (potential), 0 V (sense)
Gas mixture Argon (71.4%) + Iso-butane (28.6%) + Isopropyl-alcohol
Entrance and exit window 12.5 µm aramid film
Pre-amplifier LeCroy 2735DC
Digitizer LeCroy 3377 TDC

2.5 Focal plane detectors

The trajectories of the scattered particles were reconstructed from two sets (X1, U1 and X2,
U2) of vertical-type multi-wire drift chambers (VDCs) [79]. VDCs were placed at the focal
plane of the GR spectrometer. Specifications of VDCs are summarized in Table 2.3. Each
VDC consists of two sets of anode wire planes (X and U), sandwiched between three cathode
planes. The structure of a X plane is illustrated in Fig. 2.5. Sense wire spacings are 6 mm and
4 mm for X and U planes, respectively, as shown in Fig. 2.6.

VDCs were filled with mixture gas of argon (71.4%), iso-butane (28.6%), and iso-propyl-
alcohol. The saturated vapor of iso-propyl-alcohol at 2◦C and 1 atm was used to avoid a gain
loss caused by aging effects such as polymerizations of the quencher gas, which contaminate
the anode wires. High voltages of −5.6 kV and −0.3 kV were supplied to the cathode planes
and the potential wires, respectively, while the sense wires were grounded (0 V).

The atoms in the gas were ionized along the trajectory of the incoming charged particle.
Electrons in ionized gas moved toward a sense wire. The drift velocity was almost constant and
avalanche multiplications occured near the sense wire where the electric field rapidly become
strong. Signals from sense wires were amplified and discriminated with LeCroy 2735DC cards
and timing information was digitized with LeCroy 3377 drift chamber TDC.

Two 1-cm-thick plastic scintillators (PS1 and PS2) right behind the VDCs were used to
generate the trigger signals of the data acquisition. Timing and pulse-height information of the
signals of PS1 and PS2 are digitized by using LeCroy FERA and FERET systems. A 1-cm-
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thick aluminum plate was placed between the two plastic scintillators to prevent δ-electrons
knocked out by scattered particles at PS1 from entering PS2.

d
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Figure 2.5: Structure of a X plane of the VDCs.

2.6 Trigger system

The readout electronics and trigger systems of the focal plane scintillators for GR are shown in
Fig. 2.7. Output analog signals from plastic scintillators (PS1 and PS2) were divided into two
passages, the one was discriminated by a constant fraction discriminator (CFD; Ortec 935) and
the other was sent to a FERA (Fast Encoding and Readout ADC; LeCroy 4300B) module after
a delay. One of the CFD outputs was transmitted to TFC (Time to FERA Converter) backed
by FERA modules. A coincidence signal of the CFD outputs from both sides of the same
scintillators was generated by a Mean-Timer circuit (REPIC PRN-070), in which the times of
two signals were averaged.

The trigger system was constructed with LeCroy 2366 universal logic modules (ULM) with
field programmable gate-array (FPGA) chips [81]. The logical circuits were designed using a
CAD program on a personal computer and down-loaded to the ULMs. As shown in Fig. 2.7,
the trigger system received signals from the outputs of the Mean Timers and generated the GR
trigger by the coincidence of PS1 and PS2, internally.
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Figure 2.6: Wire configurations of the VDCs. The wire numbering orders are shown by the
arrows

2.7 Data acquisition system
Schematic view of the data acquisition (DAQ) system [82, 83] is shown in Fig. 2.8. Two types
of data line, i.e., the drift-time data detected by two VDCs and the charge and timing data
detected by trigger scintillators (PS1 and PS2), existed in this experiment. They were digitized
by LeCroy 3377 system and LeCroy FERA/TFC system, respectively, event by event. For the
subsequent event reconstruction, a event header, an event counter, and input register words are
attached to the each digitized data by using a specified modules, that is, the Flow Controlling
Event Tagger (FCET) [84].

The digitized data for each detector system was transfered and accumlated in pararell via
the ECL bus to high speed memory modules (HSM) in the VME crate. Each data line was
connected to a pair of two HSMs, which worked in a double-buffer mode to reduce the dead
time caused by the transfer of the buffered data. Finally, the buffered data was transfered and
stored in the work station server “IBM RS/6000 SP” via the Gigabit Ethernet link. The event
reconstruction and online data analysis were performed also on this computer.

This data readout flow completely starts with hardware logics, which does not include
software management nor CAMAC functions. Therefore the typical dead time for an event is
less than 30 micro seconds. In the present experiment, the acquired data is about 50 GBytes.
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Figure 2.7: Wire configurations of the VDCs. The wire numbering orders are shown by the
arrows
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Figure 2.8: Schematic view of the data acquisition system



Chapter 3

DATA REDUCTION & RESULTS

The data reduction was performed by using the central computing system at RCNP, i.e., IBM
RS/6000 SP system named “kasuga”.

The acquired data consists of the BLP data and the focal plane detectors data. While the
BLP data was used to determine and calibrate the beam properties such as the beam polariza-
tions and the beam intensities, the data of the focal plane detectors was used to identify the
incoming particles and to determine their focal plane positions, i.e., to obtain the elastically
scattered proton events. Now the details of these procedures are described in this chapter.

3.1 BLP data
Yields on the four (L, R, U, and D) pairs of scintillators (NL, NR, NU , and ND) at the BLP for
spin-up (↑) and spin-down (↓) modes are described as

N↑L(U) = N p↑
L(U) − Na↑

L(U) = σ0N0N↑bεL(U)∆ΩL(U)(1 + Ay p↑y(x)), (3.1)

N↑R(D) = N p↑
R(D) − Na↑

R(D) = σ0N0N↑bεR(D)∆ΩR(D)(1 − Ay p↑y(x)), (3.2)

N↓L(U) = N p↓
L(U) − Na↓

L(U) = σ0N0N↓bεL(U)∆ΩL(U)(1 + Ay p↓y(x)), (3.3)

N↓R(D) = N p↓
R(D) − Na↓

R(D) = σ0N0N↓bεR(D)∆ΩR(D)(1 − Ay p↓y(x)), (3.4)

where Np and Na are the numbers of prompt and accidental coincidence events measured by
BLP, respectively. σ0 and Ay are the unpolarized cross section and analyzing power for p-H
scattering from polyethylene target. N0 and Nb are numbers of the target and beam particles.
py(x) is the vertical (horizontal) component of the beam polarization and p↓ ≤ 0 ≤ p↑. ε and
∆Ω are the efficiency and solid angle of each detector. The scattering angles of forward and
backward protons were θlab = 17.0◦ and 70.5◦ for 295 MeV proton beam, respectively.

3.1.1 Beam polarization
The beam polarization was determined by using the left-right asymmetry at BLP as described
in Sec. 2.1.1. The analyzing powers of Ay = 0.40±0.01 for the inclusive (p, 2p) scattering from

25



26 CHAPTER 3. DATA REDUCTION & RESULTS

0.6
0.7
0.8
0.9

1000 1020 1040 1060 1080 1100

(a)

0.6
0.7
0.8
0.9

1000 1020 1040 1060 1080 1100

(b)

B
ea

m
 p

ol
ar

iz
at

io
n 

|p
y|

0.6
0.7
0.8
0.9

1000 1020 1040 1060 1080 1100

(c)

1

1.1

1.2

1000 1020 1040 1060 1080 1100

(d)

A
sy

m
m

et
ry

 β
L

R

Run number

Figure 3.1: Three types of beam polarization (a, b, c) and instrumental asymmetry (d) for
each run. Red and blue circles mean |p↑(↓)| (spin-up and -down mode). Beam polarizations (a)
assuming asymmetry βLR = 1, (b) using each βLR , and (c) using the averaged βLR fitted by a
Gaussian as shown in Fig. 3.2 are compared with each other. In this data reduction the type of
(c) was used.

the polyethylene target, which was previously calibrated by another BLP installed between the
AVF and ring cyclotrons [85, 86], was used to determine the beam polarization.

The beam polarization can be obtained from Eq. (3.1), (3.2), (3.3), (3.4) as follows:

p↑(↓)y =
1
Ay

N↑(↓)L − βLRN↑(↓)R

N↑(↓)L + βLRN↑(↓)R

, (3.5)

βLR ≡
εL∆ΩL

εR∆ΩR
=

N↓LN↑b − N↑LN↓b
N↑RN↓b − N↓RN↑b

=
N↓LQ↑ − N↑LQ↓

N↑RQ↓ − N↓RQ↑
, (3.6)

where Q is the charge of the proton beam collected by SCFC or WallFC. Since βLR in Eq. (3.6)
is the form of the fraction, the collection efficiency of each Faraday cup is canceled out. The
instrumental asymmetry βLR should be constant and independent from the beam polarization
during the measurement. However, due to instabilities of the beam condition or detectors the
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Figure 3.2: The projection of the instrumental asymmetries βLR in Fig. 3.1(d) was fitted with
a Gaussian.

asymmetry βLR calculated from Eq. (3.6) fluctuated for each run as shown in Fig. 3.1(d). Since
the trigger rate dependence of βLR was not seen, the main source of this fluctuation is thought
to be the beam instabilities.

Figure 3.1(a), (b), and (c) show three types of the beam polarization |p↑(↓)| for each run.
Red and blue circles represent spin-up and spin-down mode, respectively. The three types (a),
(b), and (c) in Fig. 3.1 means the calculations of beam polarizations using three different βLR;
(a) assuming no instrumental asymmetry, that is, βLR = 1, (b) using βLR calculated for each run,
and (c) using the averaged value of βLR. The averaged βLR was determined from the projection
of the instrumental asymmetries βLR of Fig. 3.1(d). The histogram in Fig. 3.2 was fitted with
a Gaussian. The half width at half maximum (HWHM) of the fitted Gaussian is used as an
uncertainty of the averaged βLR. The solid lines in (a), (b), and (c) are the arithmetic means
of spin-up and -down beam polarizations for each type of polarization. It is found that the
solid lines are almost constant and the same with each other independently from run number
and the types of the βLR. This means that the polarization of the protons produced by the ion
source kept stable during the experiment and independent from the instability of the beam
conditions such as the energy and the transmission which mainly depend on the beam line and
the cyclotrons.

While the polarizations calculated by type (b) are unstable due to the fluctuated βLR, the
type (c) calculation realized stable |py| since the constant value of βLR = 1.06(3) was used. The
beam polarization the type (c) was used in this data reduction. The typical beam polarization
was about 75 % during the measurement.
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3.1.2 Beam intensity
In the measurements at backward angles the thick target and WallFC were used for high-
intensity proton beam (∼ 400 nA) as mentioned in Sec. 2.3. Because of the multiple scattering
at a target, the transmission efficiency of the proton beam from the target to the WallFC is less
than 100 %. Then we used the up and down pairs of the BLP detectors (U and D) to determine
the relative charge collection efficiency of the WallFC to the SCFC including the loss of the
beam transmission behind the target.

The absolute charge collection efficiency of the SCFC has been already calibrated by an
separate experiment [71]. The SCFC, which is located right behind the target, can catch almost
all the incident protons which enter the target area. Thus the SCFC is suitable for the reliable
reference.

From Eqs. (3.1)-(3.4), the intensity of the incident proton beam (N↑(↓)b ) at the BLP is given
as

N↑(↓)b = (N↑(↓)U +
N↑(↓)D

βUD
)/(2σ0N0εD∆ΩD), (3.7)

βUD ≡ εU∆ΩU

εD∆ΩD
=

N↓U N↑b − N↑U N↓b
N↑DN↓b − N↓DN↑b

. (3.8)

Assuming the transmission from the BLP to the Faraday Cup and the ε∆Ω are constant during
the measurement, the beam charge QSC(Wall) collected by the SCFC (WallFC) is proportional
to the number of the beam and the yield (NU + ND/βUD) from Eq. (3.7) as follows:

QSC(Wall) = RSC(Wall) · Nb =
RSC(Wall)

2σ0N0εD∆ΩD

(
NU +

ND

βUD

)
. (3.9)

Thus the ratio RSC(Wall) is described as

RSC(Wall) = 2σ0N0εD∆ΩD
QSC(Wall)

NU +
ND
βUD

. (3.10)

From Eq. (3.10) the relative ratio R = RWall/RSC was calculated for each run and target. The
averaged ratio R for each target was determined as listed in Table 3.1. The ratio of 204Pb is
relatively large compared to the other three targets. This is because the thin target was used
for 204Pb only in the backward measurements. Compared to the case of the beam polarization
in the previous subsection, the fluctuation of the up-down instrumental asymmetry βUD were
relatively small and hence, the errors of the ratios are about 1 % as shown in Table 3.1.

3.2 Particle identification
Timing and pulse-height information of trigger scintillators (PS1 and PS2) were used to iden-
tify the charged particle which triggered the event.
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Table 3.1: The relative ratio R = RWall/RSC of the beam collection efficiencies of SCFC and
WallFC

Target 204Pb 206Pb 208Pb 58Ni
R 0.97(1) 0.95(1) 0.92(1) 0.95(1)
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Figure 3.3: The spectrum of the geometrical mean P̄ of PS1. proton and deuteron peaks are
identified.

The energy loss of a charged particle passing through a plastic scintillator (∆E) depends on
the charge and velocity as described by the well-known Bethe-Bloch formula. The scintillation
photons produced at a position x where the charged particle passed through were detected by
PMTs attached on both sides of a scintillator. The number of the scintillation photons initially
produced at x was proportional to∆E, but it was attenuated due to the absorption in the material
of the scintillator during the transmission. The number of photons entering a PMT (I) is simply
described as a function of position x,

I(x) = I0 exp
(
− x

l

)
, (3.11)

where I0 is the initial number of photons at x and l is the attenuation length of the material.
When the length of the scintillator is L, the numbers of photons at the both sides of the scin-
tillator are I(x) and I(L − x). The output charge of the left and right side of PMTs (PL and PR)
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Figure 3.4: Colors plot of P̄ of PS1 versus the position spectrum at the focal plane. It is found
that P̄ is independent of the focal plane position.

are proportional to I(x) and I(L − x) respectively. The geometrical mean P̄ of PL and PR is

P̄ =
√

PL · PR ∝
√

I(x) · I(L − x) = I0 exp
(
− L

2l

)
. (3.12)

P̄ is independent of the position x and proportional to the initial number I0 and ∆E. The P̄
spectra are useful for the particle identification (PID) as shown in Fig. 3.3. Figure 3.4 shows
the P̄ of PS1 versus the X position at the focal plane. The X position at the focal plane was
determined by VDCs data as written in the next section. The geometrical mean P̄ of PS1 is
found to be independent of the position at the focal plane.

However the proton peak in the ∆E spectrum has a tail structure over the deuteron peak
region as clearly seen in Fig. 3.4. If only the ∆E information was used for the particle identi-
fication, the proton events in the tail was cut off together with the deuteron and triton events.
This causes the reduction of the yields, which accounts for about one percent of the total and is
not negligible for the precise measurement of the cross sections, especially at the angles where
the background events are relatively large.

Then the information about time of flight (TOF) was also used for PID. Figure 3.5 shows
the time difference between the trigger produced by PS1 and PS2 and the radio-frequency
(RF) signal of the AVF cyclotron. There exist two peaks in the Fig. 3.5 because the RF signals
were downscaled to a half of its frequency. Two-dimensional colors plot of TOF versus the X
position at the focal plane is also shown in Fig. 3.6. One can clearly distinguish the elastically



3.3. MULTI-WIRE DRIFT CHAMBERS 31

Figure 3.5: TOF spectrum between the trigger and the downscaled RF.

scattered protons from deuterons. It is found that the TOF spectrum is useful to identify the
proton events. Figure 3.7 shows the two-dimensional plot of TOF versus ∆E which was finally
used for PID. The area surrounded by the dashed lines was used as the gate of the proton events.

3.3 Multi-wire drift chambers

3.3.1 Track reconstruction of scattered particles
As mentioned in Sec. 2.5, the scattered particles analyzed by the GR spectrometer were de-
tected with VDCs at the focal plane. Since a charged particle enter VDCs in the 45◦ direction,
the number of hit wires in one plane is usually more than three as shown in Fig. 2.5 while the
background events such as the X- and γ-rays mostly hit only one wire.

The following procedures were applied for the reconstruction of each wire-plane position
where the charged particle passed through in VDCs as reported in Ref. [87].

• A cluster had at least two hit wires. A single hit wire is not considered as a cluster and
ignored.

• If there existed more than two hit wires in a single cluster, the hit wire of the shortest
drift time was ignored. This is because the uniformity of the electric field was distorted
near the sense wire.
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Figure 3.6: Colors plot of the X position at the focal plane versus TOF. Elastically scattered
protons can be clearly identified as shown in the area surrounded by the solid circle.

Figure 3.7: Colors plot of P̄ versus TOF of PS1 for PID.
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Figure 3.8: (a) TDC spectrum on X1 plane obtained from LeCroy 3377. (b) Drift length (cm)
converted from TDC spectrum (a) by using so-called x-t relation.

• The intercept position and angle for each cluster were calculated by a least-square
method.

The position and angle of a trajectory at each wire plane is calculated by a least-square fitting
of the drift lengths of the hit wires in one cluster The trajectory is uniquely determined by
combining the deduced positions at four wire planes. The residual position resolution for each
plane was about 300 µm in full width at half maximum (FWHM). It corresponds to the energy
resolution of about 10 keV at Ep = 295 MeV, which is much smaller than the energy spread
of the beam (≥ 100 keV in FWHM). Figure 3.8 shows the typical TDC spectrum (drift time)
and the converted drift length.

If more than one clusters existed in the X1(U1) and/or X2(U2) plane, the consistency
among the angles was checked for all the possible combinations by χ square method. In
addition, If there were more than one good track (multi-track event), this event is ignored
because we could not judge whether each track is true or not. However, the number of multi-
track event is less than 1 % and neglected here. This multi-cluster treatment is effective for
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Figure 3.9: θ versus X plot at the focal plane of the spectrometer reconstructed from the VDCs
data in the case of 208Pb at θlab. = 36.0◦.

avoiding severe reduction of the yields and efficiencies of VDCs especially at the scattering
angles where the background events are relatively large. The yield ratios of single-cluster over
multi-cluster events are about 80 ∼ 95 %.

After the reconstruction of the trajectories of the scattered particles, the position and angle
spectra at the focal plane were obtained as shown in Fig. 3.9. Figure 3.10 shows the typical
position spectra of the four target nulcei at θlab. = 36◦. Elastically scattered proton events
can be distinguished from other inelastic events which represent excited states of each target
nucleus. Finally their yields for 204,206,208Pb and 58Ni targets were counted within the 3σ region
of the elastic peaks in Fig. 3.10.
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3.3.2 Tracking efficiency
The tracking efficiencies of each plane of VDCs was estimated as follows:

εX1 =
NX1∩U1∩X2∩U2

NU1∩X2∩U2
, (3.13)

εU1 =
NX1∩U1∩X2∩U2

NX1∩X2∩U2
, (3.14)

εX2 =
NX1∩U1∩X2∩U2

NX1∩U1∩U2
, (3.15)

εU2 =
NX1∩U1∩X2∩U2

NX1∩U1∩X2
, (3.16)

where NX1∩U1∩X2∩U2 denotes the number of events in which the cluster positions can be deter-
mined for all planes, while NU1∩X2∩U2, for example, denotes the number of three planes except
for X1 plane. The total tracking efficiency for the elastic events is estimated by multiplying
the efficiencies of all the four planes:

εtotal = εX1εU1εX2εU2. (3.17)

The obtained efficiencies were about 95 ∼ 98% per plane. Thus the total efficiencies εtotal

were about 86 ∼ 92%. The efficiencies gradually decreased as the scattering angle become
large. This is because at the backward angles the rate and yield of the background events
is getting large compared to the elastic events, and thereby the inefficient moment, when the
electric field is effectively lowered, becomes large. If the mulcti-cluster treatments were not
performed, the efficiency of each plane would get down to ∼ 90% because of the high amount
of the background events.

It should be noted that even if one analyzes only single cluster events for the track re-
construction, in order to calculate the efficiency for each plane by using Eqs. (3.13)–(3.16)
one must use all the events including multi-cluster events for the denominators of Eqs. (3.13)–
(3.16). Otherwise, the efficiency is misestimated and seems to be much higher than it should be
especially where the background events relatively increase and make the multi-cluster events.

This is mainly caused by the strong correlations of the background events among four
planes. Now we think about the case of the X1 plane efficiency, for example. In case of no
correlation between four planes, from Eq. (3.13), the tracking efficiency εX1 for the single-
cluster events is written as

εX1 =

∏4
i=1 εi(1 − mi)Y∏4
i=2 εi(1 − mi)Y

= ε1(1 − m1), (3.18)

where εi, mi, and Y are the intrinsic efficiency against elastically scattered protons for each
plane, the probability of making multi-cluster for each plane, and the real yield, respectively.

However, if there existed correlations between four planes, the εX1 is

εX1 =

(∏4
i=1 εi

)
(1 − m)Y(∏4

i=2 εi
)

(1 − m)Y
= ε1. (3.19)
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Here, for simplicity, it is assumed that all four planes are simultaneously correlated with one
another and thus the probability of detecting multi-cluster events is m. The two equations
above shows that the existence of the correlations causes the overestimation of the efficiencies
of single-cluster tracks.

Indeed, it is found that there exits the correlations among four planes and the efficiencies
calculated by Eqs. (3.13)–(3.16) are little different between the single- and multi-cluster anal-
yses. Besides, the yield reconstructed by single-cluster analysis is, of course, smaller than by
multi-cluster analysis. Therefore, when one uses such a overestimated efficiency, the cross
sections finally obtained are doubly underestimated. It is known that this estimation causes
about 5 ∼ 20 % decrease of the cross sections depending on the scattering angles. The previ-
ously measured data for 58Ni in Ref. [69] used only single cluster events to estimate the VDCs
efficiencies. This is one of the reasons that we newly measured the data for 58Ni as well as lead
isotopes.

3.4 Differential cross sections and analyzing powers
Elastically scattered proton events for each target nucleus can be chosen from the position
spectrum of the focal plane as shown in Fig. 3.10. Yields of the elastic events for each spin
direction of the beam (↑ and ↓) are expressed as

Y↑(↓) =
dσ
dΩ

(
1 + p↑(↓)y Ay

)
NtN

↑(↓)
b l↑(↓)ε↑(↓)∆ΩGR, (3.20)

where py, Nt, Nb, l, ε, and ∆ΩGR are the y component of the beam polarization, number of
target nuclei in unit area, number of protons in the beam, live-time ratio of the DAQ system,
total detector efficiency, and solid angle of the Grand Raiden spectrometer, respectively. The
number of proton in the beam Nb was derived from the collected charge by each Faraday Cup
and the collection efficiency of the SCFC as mentioned in Sec. 3.1.2. The total efficiency ε
was determined by the product of the total efficiency of the VDCs and the trigger efficiency
of PS1 and PS2 for protons at 295 MeV. The absolute trigger efficiency of PS1 and PS2 has
been also measured in a separate experiment recently as written in Ref. [71]. The solid angle
∆ΩGR was defined by the slit of ±20 mrad wide and ±30 mrad high which was located at the
entrance of the Grand Raiden spectrometer.

Therefore, differential cross sections dσ/dΩ and analyzing powers Ay at each scattering
angle are derived from Eq. (3.20) as follows:

dσ
dΩ

=
1

p↑y − p↓y

 Y↓p↑y
N↓bε

↓l↓
−

Y↑p↓y
N↑bε

↑l↑

 1
Nt∆ΩGR

, (3.21)

Ay =
1 − α
αp↑y − p↓y

, (3.22)

α =
Y↓

N↓bε
↓l↓

/
Y↑

N↑bε
↑l↑
. (3.23)
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Note that p↓y is a negative value, thus dσ/dΩ becomes positive definite. Statistical errors of
cross sections and analyzing powers (∆(dσ/dΩ) and ∆Ay) are estimated by the simple way of
the propagation of uncertainty and described as

∆

(
dσ
dΩ

)
=

dσ
dΩ
· 1

p↑y − p↓y
· 1

αp↑y − p↓y
×

{
(1 − α)2

[
(p↓y∆p↑y)2 + (p↑y∆p↓y)2

]
+(p↑y − p↓y)2

 p↓2y

Y↑
+
α2 p↑2y

Y↓




1/2

, (3.24)

∆Ay =
1

(αp↑y − p↓y)2

{
(1 − α)2(α2∆p↑2y + ∆p↓2y )

+α2(p↑y − p↓y)2
(

1
Y↑
+

1
Y↓

)}1/2

. (3.25)

The uncertainties of the counting statistics (1/
√

Y) are so small that the statistical errors are
mainly determined by the uncertainty of the polarization (py ∼ 0.75(4) determined from BLP
data) especially for the analyzing powers. The statistical errors are typically about 1 ∼ 2 %.

The systematic errors of this measurement mainly consist of the uncertainties of the beam
instability and the target thicknesses, and these are about 1 % respectively. The ambiguity of
the incident angle is the main component of the beam instability which affects the scattering
observables for heavy nuclei such as lead isotopes. This uncertainty was estimated from the
change of the cross sections when the the scattering angles change with ±0.02◦, which were
calculated by the RIA calculation. a

Therefore, the systematic errors account for a main part of the uncertainties of this experi-
mental data. The error of Nb was due to the error of the charge collection efficiency as written
in Sec. 3.1.2. In this data reduction this error was added to the systematic errors, not to the
statistical errors described above. We totally estimated the the systematic errors as ±3 % of
the obtained data. Therefore the experimental uncertainties are finally obtained by adding the
±3 % systematic errors to the statistical errors calculated from Eq. (3.24) and (3.25)

Compared to previous measurements at RCNP as performed in Ref. [69] and [70], there
are several improvements in both the measurement and data reduction which are already men-
tioned above. Thus newly obtained data is systematically improved and especially the data set
of cross sections for 58Ni is around 10 ∼ 15 % larger than the previous set used in Ref. [69] and
[70]. Although the previous data cannot be compared directly with the new data since the con-

a As mentioned in Chap. 2.1, we monitored the beam positions to keep the beam conditions stable after each
measurement. That means that we did not recognize the short-term and real-time stability of the beam just as the
measurement is running. The BLP data in Figs. 3.1 and 3.2 partly shows the instabilities of the beam conditions
during the measurement. Thus, we estimated the uncertainty from the beam angle a little bit larger than the simply
calculated from the angular range of θlab. ± 0.02◦. For more sophisticated measurement with small uncertainty of
the beam conditions, we need new instruments for nondestructive monitoring of the real-time beam position with
an accuracy of less than 1 mm.
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ditions of the measurements are different from each other, we summarize these improvements
and the effects on the cross section data:

• Monitoring the beam condition by beam line viewers after each run. (keep the variation
of the cross section due to the angular fluctuation about ±1 %.)

• Particle identification using dE-TOF information. (increase of ≥ 1 %: see in Ref. [71])

• Multi-cluster treatments for the VDCs data reduction. (increase of 5 ∼ 20 % if one used
Eqs. (3.13)–(3.16) to estimate the tracking efficiencies.)

• Calibrations of absolute efficiencies of the trigger scintillators and absolute collection
efficiencies of the SCFC by a separate experiment in Ref. [71]. (increase of ∼ 2.0 % and
1.5 %, respectively )

Data sets of angular distributions of differential cross sections and analyzing powers for
polarized proton elastic scattering from 58Ni and 204,206,208Pb were obtained over an angular
range of 7◦ < θ < 50◦, corresponding to a range of momentum transfer from 0.55 fm−1 to
3.5 fm−1. The digital data are listed in Appendix A. In the next chapter the analysis method
to extract the neutron density distributions in lead isotopes via the experimental data of proton
elastic scattering are given.





Chapter 4

ANALYSIS

In this chapter, we report our analysis method and results of the neutron density distributions
extracted from the experimental data of proton elastic scattering from 204.206,208Pb.

The analysis method is based on the framework of the relativistic impulse approximation
(RIA) using the relativistic Love-Franey (RLF) NN interaction [88] proposed by Murdock and
Horowitz (MH model) [89, 90].

4.1 Relativistic impulse approximation
In the MH model the nucleon–nucleus optical potential is calculated by folding the RLF NN
interaction with the nucleon vector and scalar density of the target nucleus. The RLF NN
interaction is based on the Lorentz invariant NN scattering amplitude of

F = F S + F Vγ
µ
(0)γ(1)µ + F PSγ5

(0)γ
5
(1)

+F Tσ
µν
(0)σ(1)µν + F Aγ5

(0)γ
µ
(0)γ

5
(1)γ(1)µ, (4.1)

where F S , F V , F PS , F T , and F A denote the scalar, vector, tensor, pseudoscalar, and axial
vector amplitudes, and the subscripts (0) and (1) represent the incident and recoil nucleon,
respectively. For a spin-zero spherical nucleus, only the scalar and the zeroth-component of
the vector amplitudes are dominant contribution to the optical potential. The details of the RIA
calculations by MH model are mentioned in Appendix B.

Figure 4.1 shows the obtained experimental data of cross sections and analyzing powers
for elastic scattering from 204,206,208Pb, and 58Ni compared with two kinds of model calcula-
tions. The solid and dashed lines are the RIA calculations [89, 90] with Dirac–Hartree (DH)
[17] densities of the target nuclei, and the calculations using the recent global Dirac optical
model by Cooper, Hama and Clark [91], respectively. Although both calculations well repro-
duce the analyzing powers, only the global Dirac optical model is in good agreement with the
cross sections. The MH model poorly reproduces the angular distributions of the cross section
especially at backward angles. This is because neither the RLF interaction nor the nucleon
densities used in the MH model are realistic. However, even though a realistic nucleon density

41
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Figure 4.1: Obtained data of differential cross sections and analyzing powers for elastic scat-
tering from 58Ni and 204,206,208Pb at Ep =295 MeV, whereas the lines are due to Murdock and
Horowitz (solid) [89, 90] and the global Dirac optical potential (dashed) [91]. The dash-dotted
lines show the MH model calculations for 58Ni with the realistic nucleon density by an unfold-
ing charge density.

of 58Ni, as mentioned in the next subsection, was used in place of the DH density for the MH
calculation (dash-dotted lines in Fig. 4.1), the disagreement with the experimental data of 58Ni
still remains. In order to explain the experimental data we need the effective NN interaction
inside the nuclear medium in place of the RLF interaction.



4.1. RELATIVISTIC IMPULSE APPROXIMATION 43

4.1.1 Realistic point proton density distributions
A realistic point proton density distribution was determined by unfolding the nuclear charge
distribution extracted from electron elastic scattering [54, 55, 92–94] with the intrinsic charge
distributions of the proton and neutron. Using the Fourier transform of the radial density
ρ̃(q) = F {ρ(r)}where q is the momentum transfer, the relationship between the charge, proton,
neutron, intrinsic proton-charge, and intrinsic neutron-charge densities ρch, ρp, ρn, ρp

ch, ρn
ch is

approximately described as

ρ̃ch(q) ' ρ̃p(q)ρ̃p
ch(q) + ρ̃n(q)ρ̃n

ch(q)
' ρ̃p(q)Gp

E(q2) + ρ̃n(q)Gn
E(q2), (4.2)

where in the non-relativistic limit, ρ̃p(n)
ch ' Gp(n)

E (q2) which is the experimentally determined
Sachs electric form factor in proton (neutron). The correction term by the spin–orbit and
relativistic effects on the Sachs form factors in the Breit frame, the so–called Darwin–Foldy
correction, are negligible because their effects on the nuclear size are one order smaller than
the neutron-charge radius and comparable with the error of charge radius as shown in Refs.
[58, 95].

For the nuclear charge distributions of 204,206,208Pb and 56Ni, we used the parameter sets of
the model-independent analyses of electron scattering and/or muonic X-ray data as listed in
Ref. [54]. The Sum-of-Gaussians (SOG) expansion were used for 206,208Pb, 56Ni, whereas the
Fourier-Bessel (FB) series expansion for 204Pb. The model-independent analyses in the form
of SOG and FB have been originally developed by Sick [92], and Friar and Negele [94, 96],
respectively.

For the intrinsic nucleon charge form factor ρ̃p(n)
ch , we adopted a new set of nucleon electro-

magnetic form factors which have been recently extracted from the reanalysis of the world e-p
and e-d scattering data at low-momentum transfers from 0.3 to 1 GeV2/c2 where the nucleon
charge form factor is very sensitive to its model-independent charge radius [97–100]. The
proton-charge radius of 0.895(18) fm obtained from ρ̃p

ch in Refs. [97–99] is much larger than
the value of 0.863(4) fm used in the previous work [101], but is consistent with the value of
0.883(14) fm obtained from the recent measurement of the hydrogen 1S Lamb shift [102]. a b

In order to know the neutron density distribution, not only the nucleon-charge radius but
also its density is required because the realistic point proton distribution is derived from
nucleus- and nucleon-charge density. In this work we adopted the parameterization of nu-
cleon charge distribution reported in Ref. [99], which can reproduce the model-independent

a Compared to the new analysis of elastic e-p scattering data, the previous analyses [101, 103] did not in-
clude various higher-order corrections at both low and high momentum transfers such as the Darwin-Foldy term,
Coulomb distortion, etc. [104–106], while the analyses of the atomic Lamb shift measurements have devel-
oped including various QED corrections. Thus the previously extracted nucleon form factors are rather model-
dependent and can not give the intrinsic charge radii which should be compared with the Lamb shift results.

b It should be noted, however, that the very recent measurement of the muonic-hydrogen Lamb shift has
resulted in rp

ch = 0.84184(67) fm with a remarkable accuracy of 0.08% [107]. This new value is very inconsistent
with, and 5σ smaller than the ones mentioned above. The origin of this large discrepancy is not understood at
this time and requires further validation of this measurement and the QED effects on muonic-hydrogen atoms.
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nucleon charge radius. The procedure of unfolding method follows the same way as men-
tioned in Ref. [70]. Figure 4.2 shows the extracted proton density distributions of 58Ni and
204,206,208Pb (solid lines) by unfolding method. Compared to the theoretical DH calculations
(blue dotted lines), the extracted distributions show the gradual change of density as a function
of radius and particularly the slopes of the surface diffusenesses are relatively small. On the
contrary, the Hartree–Fock–Bogolyubov calculations with several Skyrme interactions (green
lines) have more gradual slopes than the extracted proton densities.

In the case of 58Ni, the neutron rms radius is expected to be almost the same as the proton
rms radius as mentioned later. Therefore we assumed that the neutron density of 58Ni has the
same shape as the proton density, that is, ρn = (N/Z)ρp.

4.1.2 Scalar and Vector density distributions
For the RIA calculations, scalar density distributions are necessary as well as baryon density
distributions. While the vector density is normalized to the mass number by baryon number
conservation, there is no analogous normalization condition for the scalar density. Scalar
density distributions can not be extracted directly, unless the wave functions of the ground state
are known in advance by solving the field equations for the scalar meson. In the relativistic
mean field theory [108], however, the scalar density ρS is approximated in the form of the
vector density ρV as follows:

ρS (r) ≈
{

1 − 3
10

k2
F

M∗2

}
ρV(r), (4.3)

where kF and M∗ are the local Fermi momentum and the effective mass, respectively. The
density ratio of ρS /ρV derived from Eq. (4.3) is usually about 0.93 at the saturation (kF '
1.30 fm−1 and M∗ ' 0.6M), but around the surface of nuclei the ratio gradually approaches
one. According to the DH calculations for heavy nuclei the volume integral of the ratios are
almost constant at 0.96, as reported in Refs. [69, 70]. Therefore, we simply assumed a scalar
density ρS of ρS = 0.96ρV for a vector density ρV using the realistic nucleon density.

The effect of the negative-energy states in the filled ”Dirac sea”, namely, the vacuum polar-
ization on the scalar density was reported in Ref. [109] and causes 10% reduction of the scalar
density in the nuclear center. In this work we did not deal with the effect explicitly, but it may
be included somewhat by the density-dependent modification of the effective NN interaction
as written in the next section.
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Figure 4.2: Proton density distributions of 58Ni and 204,206,208Pb by unfolding charge distribu-
tions with the new parameter sets of nucleon charge form factor (solid lines). The blue dotted
lines are due to the DH calculations for comparison, while the green long-dotted, short-dotted,
dashed, and dash-dotted lines are due to Skyrme–Hartree–Fock–Bogolyubov calculations with
SIII, SKM*, SKP, and SLY4 parametrizations, respectively.
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4.2 Medium modification of NN interaction

The RLF interaction in the MH model is described by a set of five Lorentz covariant functions
and was determined from the free NN phase shift analysis [88]. It was found that the Dirac
optical potential folded by the free NN interaction can not fully reproduce the experimental
data at high momentum transfers even using the realistic nucleon density. In order to explain
the experimental data, we introduced a medium modification into the RLF NN scattering am-
plitudes by varying the coupling constants and masses of the σ and ω mesons depending on
the local density as follows:

g2
j , ḡ2

j →
g2

j

1 + a jρ(r)/ρ0
,

ḡ2
j

1 + ā jρ(r)/ρ0
(4.4)

m j, m̄ j → m j

[
1 + b j

ρ(r)
ρ0

]
, m̄ j

[
1 + b̄ j

ρ(r)
ρ0

]
(4.5)

j = σ,ω,

where m j, m̄ j, g j, and ḡ j are the masses and coupling constants of σ and ω mesons for real
and imaginary amplitudes, respectively. The normal density ρ0 is 0.1934 fm−3. In free space,
where the density of the target nucleus is zero, the masses and coupling constants of the ex-
changed mesons are set to be the same as those of the free NN interaction, but inside the
nucleus the modification is assumed to be proportional to the nucleon density ρ(r) with the
phenomenological parameters a j, ā j, b j, and b̄ j. This density-dependence describes the first–
order approximation in terms of the nuclear density and partially explains various many-body
effects such as Pauli blocking c, vacuum polarization [109, 110], multi-step processes [111],
and partial restoration of chiral symmetry [112]. This density-dependent correction has the
analogous expression of the nuclear effective interaction in a nucleus reported by Nagata and
co-workers in Ref. [113].

Since the modification has a universal form of local-density dependent terms, we can apply
it to any other nuclei once the parameters are calibrated with a real nucleus. At the present
stage we have used four parameters assuming the same modification for the real and imaginary
parts of the NN scattering amplitude (a j = ā j, b j = b̄ j) because with eight parameters there are
so many degrees of freedom that these parameters have strong correlations with each other.

The extraction of the neutron densities of lead isotopes is based on the medium-modified
RIA calculation with realistic proton densities. For this purpose we first need to determine
the medium-modification of the effective RLF interaction. In the next subsection, we report
the calibration of the medium-effect parameters using the experimental data of proton elastic
scattering from 58Ni.

cThough in the MH model the correction of the Pauli blocking effect is introduced by modifying the optical
potentials with a local-density approximation based on the Dirac-Brueckner calculation [89, 90], when using the
medium-modified RIA we omit the Pauli blocking correction in the MH model. For the Pauli blocking correction
we phenomenologically modified the NN interaction, not the optical potential.
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4.3 Calibration of the medium effect parameters
For the calibration of the four medium-effect parameters, a j and b j ( j = σ, ω), we have
chosen p-58Ni elastic scattering because 58Ni is the heaviest spherical nucleus with N ≈ Z
and the neutron density of 58Ni is expected to have a similar distribution to the proton density
(ρn = (N/Z)ρp). Both the experimental and theoretical results [8, 13, 27, 58, 66, 114] support
a neutron rms radius for 58Ni that is almost the same as the proton rms radius, while for
N = Z nuclei, such as 40Ca or 56Ni, the proton rms radii are larger than the neutron rms radii
due to Coulomb repulsion. Figure 4.3 and 4.4is neutron-number dependence of neutron skin
thicknesses for Ni isotopes by several relativistic and non-relativistic calculations, respectively,
and shows that all the listed theoretical calculations also agree that the neutron skin thickness
of 58Ni is almost zero. The realistic proton density of 58Ni is extracted by unfolding the charge
density with the new intrinsic nucleon-charge density.

A fit to the 58Ni data of cross sections and analyzing powers obtained in this experiment
and spin rotation parameters previously measured at the same energy [87] was carried out by
χ2 test [115] with the four medium-effect parameters. The value of χ2 is given by

χ2 =
∑
θi

(yexp
θi
− ycalc
θi

)2/∆y2
θi
, (4.6)

where yexp
θi

, ∆yθi , and ycalc
θi

are the ith experimental data, error, and medium-modified RIA cal-
culation for 58Ni at each θi. The best-fit parameters providing a minimum of χ2 (χ2

min), are
listed in Table 4.1. The solid line in Fig. 4.5 is the medium-modified RIA calculation with
these best-fit parameters and the realistic nucleon densities deduced from the charge distribu-
tion. Compared to the previous work [70], the modifications by the best-fit parameters are
very small. The best-fit calculations are in better agreement with the experimental data than
the previous data even though the number and angular range of the data points is much larger
than for the previous data [69, 70]. This means that the improvements to reduce the experi-
mental systematic uncertainties work very well. The standard error of each best-fit parameter
in Table 4.1 was determined from a contour corresponding to an increase of 1 in χ2 from χ2

min
by allowing all the other parameters to vary freely to minimize χ2 for each chosen value of the
parameter.

Table 4.1: Best-fit medium-effect parameters a j and b j ( j = σ, ω) in Eq. (4.4), (4.5).

j σ ω

a j −0.044 ± 0.026 0.037 ± 0.040
b j 0.097 ± 0.013 0.075 ± 0.021
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Figure 4.3: The neutron skin thicknesses for even-Ni isotopes calculated by DBHF with the
Groningen (triangles) and Bonn A (circles) interactions, and RMF with the NL3 [19] (crosses)
parametrization. All of them shows that the neutron skin thickness of 58Ni is almost zero.
Taken from Ref. [8].
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Figure 4.4: The neutron skin thicknesses for even-Ni isotopes calculated by Hartree–Fock–
Bogolyubov (HFB) plus pairing corrections using five types of Skyrme forces, that is, SIII
[116] (filled circles), SkM* [9] (filled squares), SkP [10] (asterisks), Sly4 [11] (open circles),
and SLy5 [11] (open squares) parameterizations. As is the case with relativistic models in
Fig. 4.3 nonrelativistic models show that the neutron skin thickness of 58Ni is almost zero.
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Figure 4.5: Calibration of medium-effect parameters by fitting to the experimental data for
58Ni. The solid line is the medium-modified RIA calculation with best-fit parameters. The
dashed and dash-dotted lines are from the original MH model with DH and realistic nucleon
densities.
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4.4 Extraction of neutron density distributions
Using the effective NN interaction calibrated by 58Ni data we extracted the neutron density
distributions of 204,206,208Pb. The realistic proton density distributions of lead isotopes were
also used by unfolding charge distributions.

In order to find the best-fit neutron density distribution, we used a sum-of-Gaussian (SOG)
function, which has been originally investigated in the model-independent analysis of charge
distributions [54, 55]. The SOG neutron density is described as

ρn(r) =
N

2π3/2γ3

12∑
i=1

Qi

1 + 2R2
i /γ

2

×(e−(r−Ri)2/γ2
+ e−(r+Ri)2/γ2

), (4.7)

where N and Qi are the number of neutrons, and the fraction of N in the ith Gaussian with
the normalization condition

∑
i Qi = 1, respectively. For simplicity we fixed the width γ and

position Ri of the ith Gaussian to the same values used for the charge distributions of 208Pb in
Ref. [54] since the e-208Pb elastic scattering data covers a wider range of momentum transfer
from 0.44 to 3.7 fm−1 than our data from 0.55 to 3.5 fm−1.

We searched for the best-fit values of Qi by the χ2 method. Figure 4.6 shows the results
of the medium-modified RIA calculations with the best-fit neutron density distributions of
204,206,208Pb (solid lines). The medium-modified RIA calculations with the DH nucleon den-
sity (dash-dotted lines) well reproduce the analyzing powers and the angular positions of the
diffraction peaks and minima compared with the original MH calculations (dashed lines), but
still overestimate the absolute values of the cross sections. The best-fit calculations (solid
lines) are in good agreement with the experimental data of both the cross sections and ana-
lyzing powers even in the high momentum transfer region up to 3.5 fm−1. It was found that
the absolute values of the cross sections affect the nucleon density distributions quite directly.
Thus when using the model-independent densities it is very important to determine the cross
sections precisely. The typical reduced χ2

min, namely χ2
min/ν, where ν is the number of degrees

of freedom, is about 4.

Coulomb potential effect in lead isotopes In the search for the best-fit parameters of the
neutron densities, it was also found that the the Coulomb potentials, i.e., the charge radii of
lead isotopes are sensitive to the scattering observables especially at high momentum transfers.
For the calculation of the Coulomb potential the charge density of the target nucleus is assumed
to be that of a uniformly charged sphere of radius r0A1/3 where r0 = 1.25 fm is usually known
to be the reduced Coulomb radius. Where the radius is larger than R0 = r0A1/3, non-relativistic
Coulomb wave functions are used. In the case of 208Pb, for example, r0 is about 1.20 fm, which
reproduces experimentally determined value of the rms charge radius of 208Pb. If the reduced
Coulomb radius r0 is changed by ±5% (r0 = 1.14, 1.26 fm), the reduced χ2 of the fitting
with the experimental data increases by about δχ2/ν = ±50/47 ∼ ±1. This χ2 increase is
surprisingly larger than the value corresponding to 1 standard deviation (details are mentioned
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Figure 4.6: Best fit results for neutron density distributions in 204,206,208Pb, are shown as solid
lines. The original MH and medium-modified RIA calculations with the DH nucleon density
are also shown by dashed and dash-dotted lines.

in the next subsection) and shows that the precise measurement of the experimental data with
small systematic uncertainties has been achieved to such an extent that the small change of
Coulomb radius can be distinguished. The difference of the calculated observable between
r0 = 1.20 fm and r0 = 1.14, 1.26 fm occurs almost at the backward angles (θlab. > 30◦), and
hence arises from the change of the depth of the Coulomb potential rather than its radius due
to the nuclear charge conservation. Therefore in the RIA calculations in this thesis we used the
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adjusted values of the reduced Coulomb radii of target nuclei which reproduce the rms charge
radii reported in Ref. [54, 56].

4.4.1 Estimation of error-envelopes

“Experimental uncertainties” The standard error-envelopes of the neutron density distri-
butions due to the experimental errors can be estimated by the increase ∆χ2 corresponding to
1 standard deviation from χ2

min, expressed as the following inequality:

χ2 ≤ χ2
min + ∆χ

2. (4.8)

For the error-estimation of the neutron density we need to know the 1–standard deviation
region encompassed by the joint variation of multi parameters. ∆χ2 for multi parameters obeys
the χ2 probability distribution function for m degrees of freedom, where m is the number of
fitted parameters [115], and is roughly equal to m for 1 standard deviation (∆χ2 ≈ m = 11
in this case). By using the Monte Carlo technique, we determined both the minimum and
maximum envelopes of all the possible neutron density distributions which satisfy Eq. (4.8) as
the standard error-envelope. The errors of the neutron rms radii are also determined from the
maximum and minimum value of the rms radii of the allowed neutron density distributions.

Figure 4.7 shows the case of 208Pb. The hatched area surrounded by the solid lines in Fig.
4.7 (c) shows the standard error-envelope of the neutron density in 208Pb estimated by Eq. (4.8),
together with the DH neutron density distribution (dashed line). The three-parameter-Gaussian
(3pG) neutron density extracted from the p-208Pb elastic scattering at 800 MeV using the
second-order Kerman-McMaus-Thaler (KMT) model [58] (dash-dotted line) is also shown
for comparison. The inset in Fig. 4.7 (c) is a magnification of the density distributions in the
radial range from 4.5 fm to 6.5 fm.

The lines presented with the experimental observables for p-208Pb in Figs. 4.7 (a) and (b),
are the medium-modified RIA calculations with the best-fit neutron density (solid), the 3pG
neutron density (dash-dotted), and the DH nucleon density (dashed). Although there seems to
be little difference between the medium-modified RIA calculations with the best-fit and 3pG
neutron density since the solid line overlaps with the dash-dotted line extensively, χ2 for the
3pG neutron density (= 255.3) is about 5σ (= 5∆χ2 ' 55) larger than χ2

min (= 192.5) especially
at data points of high momentum transfer. The difference also appears in the rms radii. Our
analysis gave a neutron rms radius for 208Pb of rn = 5.653+0.026

−0.029 fm, which is 0.06 fm larger
than the value of rn =5.593 fm of the 3pG neutron density. This means that the data even at
high momentum transfers can affect the rms radius. Because of the conservation of neutron
number N, the information of the scattering observables at high and low momentum transfers,
which reflects the bulk and surface structure, respectively, can doubly constrain the neutron
radius. This allows us to extract the precise information about the neutron density from proton
elastic scattering.

Figure 4.8 shows the percent deviation d between the experimental data and the medium-
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Figure 4.7: Results of fitting to the experimental data and extracted neutron density of 208Pb
with its standard error-envelope (solid lines). The dashed and dash-dotted lines are medium-
modified RIA calculations but using the DH nucleon densities and the 3pG neutron density by
Ray [58] respectively. The dotted line in (c) is the realistic proton density.

modified RIA calculations for cross sections for 208Pb, which is written as

d = 200 ×
σexp − σcal

σexp + σcal
, (4.9)

where σexp(cal) is the experimental (theoretical) cross section at each scattering angle. The red,
green, and blue marks stand for the same definitions as in Fig. 4.7. The agreement with the
experimental data is almost at the level of ±10 %. Compared to the calculation of the 3pG
neutron density (green marks), our results (red marks) are found to be improved particularly
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Figure 4.8: Percent deviation between the experimental data and the medium-modified RIA
calculations of differential cross section at each angle defined as Eq. (4.9). The marks are the
same definitions as Fig. 4.7. The lines are just for the guide.

at the backward angles. The percent deviation fluctuate largely at forward angles, where the
angular distribution of the cross section rapidly changes.

The results for 204,206Pb are qualitatively similar to that for 208Pb and they are shown in
Figs. 4.9 and 4.10.

It was found that our method to extract the neutron densities works successfully even for
heavy nuclei like lead isotopes. The results of the fitting and the error estimation show that the
systematic uncertainties of the experimental data are small enough to deduce the neutron radii
with a good accuracy of 0.5 % and thereby the medium-modified RIA works well. However,
the difference between the experimental data and the medium-modified RIA predictions still
exists as the minimum reduced χ2 is about 4.
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Figure 4.9: Results of fitting to the experimental data and extracted neutron density of 204Pb
with its standard error-envelope (solid lines). The dashed lines are medium-modified RIA
calculations but using the DH nucleon densities.
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Figure 4.10: Results of fitting to the experimental data and extracted neutron density of 206Pb
with its standard error-envelope (solid lines). The dashed lines are medium-modified RIA
calculations but using the DH nucleon densities.
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“Model uncertainties” In addition to the experimental uncertainty, we evaluated the error-
envelopes including the model uncertainties in the medium-modified RIA. If the theoretical
model was ideal, the reduced χ2

min should be nearly equal to 1. However, the value of χ2
min/ν in

this case is about 4, which is far from 1 and shows the incompleteness of this medium-modified
RIA model as well as the unknown systematic errors of the experiment. To incorporate this
incompleteness into Eq. (4.8) as the model uncertainties, we simply multiplied the experi-
mental errors by a constant factor S which realizes χ2

min/ν = 1. Therefore, we defined a new
chi-square as χ̃2 ≡ χ2/S 2 assuming that χ̃2 follows the same χ2 distribution and Eq. (4.8):

χ̃2 ≤ χ̃2
min + ∆χ̃

2, (4.10)

where χ̃2
min/ν ≡ (χ2

min/S
2)/ν = 1 and ∆χ̃2 = ∆χ2. Thus Eq. (4.10) is equivalent to

χ2 ≤ χ2
min + ∆χ

2 × S 2

= χ2
min + ∆χ

2 × (χ2
min/ν). (4.11)

The error-envelopes including the model uncertainties were estimated by Eq. (4.11) for 204,206,208Pb
data d, where ∆χ2 for the 204,206,208Pb data is defined as the number of fitted parameters m,
namely 11. The cross-hatched areas in Fig. 4.11 show the error-envelopes of the neutron den-
sity distributions for 204,206,208Pb obtained from Eq. (4.11) and the hatched areas are the stan-
dard error-envelopes due to Eq. (4.8). The radial distributions of the neutron surface densities
4πr2ρ(r) are also shown in Fig. 4.12 whose definitions are the same as Fig. 4.11. The neutron
surface density distributions show that the errors of the neutron density distributions are large
at both the inner (0–3 fm) and surface (8–10 fm) regions. Particularly, the error-envelopes of
the surface regions causes the errors of the rms redii.

In this analysis for lead isotopes we neglected the density dependence of ρ and π mesons
in the medium modification because the difference between the proton and neutron density is
about 1/5 less than the normal density and the modification for ρ and π mesons is expected to
be much smaller than for σ and ω mesons. The error from this assumption is also included
in the model uncertainties described by Eq. (4.11). When using model-dependent hadronic
process, it is important to show these error-envelopes including the model uncertainties, in
parallel with the conventional method of showing the experimental uncertainties only.

Table 4.2 lists the best-fit values of the SOG parameters Qi and χ2
min/ν for each lead isotope.

In addition, a fit to the upper and lower error-envelopes including the model uncertainties for
each isotope was made by using the SOG parameters Qi of Eq. (4.7) with the same γ, N, and
Ri as used in the investigation of the neutron densities. In this case the normalization condition
is not satisfied (

∑
Qi , 1) because the envelope is not the density distribution itself. The fitted

parameters Qi are listed in Table 4.3.
d In Ref. [70] it was reported that the error-envelopes of tin isotopes were estimated by Eq. (4.11) for the

neutron-density parameters together with Eq. (4.8) for the medium-effect parameters, simultaneously. In that
case, however, the envelope is doubly-estimated because the fluctuation of the medium-effect parameters indi-
cated by Eq. (4.8) is a part of the uncertainties associated with the various model assumptions described by
Eq. (4.11). Thus, Eq. (4.11) is enough to evaluate the error-envelopes including the model uncertainties.
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Figure 4.11: Extracted neutron densities for 204,206,208Pb with two types of error-envelopes
shown together with DH neutron densities (dotted lines) and point proton densities by un-
folding charge densities (dash-dotted lines). The cross-hatched blue and hatched red error-
envelopes were estimated by Eq. (4.11) and Eq. (4.8), respectively.
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Table 4.2: Best-fit SOG parameters of the neutron density distributions for 204,206,208Pb. The
width γ (= 1.70/

√
3/2) and position Ri of the ith Gaussian in Eq. (4.7) are fixed to the values

of the charge distribution [54]. The number in the parentheses are the χ2
min over the degrees of

freedom ν for each isotope.

i Ri (fm) Qi (the fraction of N in ith Gaussian,
∑

i Qi = 1)
204Pb (180.1/47) 206Pb (185.3/47) 208Pb (192.5/47)

1 0.1 0.0065961 0.0068899 0.0053549
2 0.7 0.0126023 0.0123201 0.0106038
3 1.6 0.0063489 0.0000021 0.0208715
4 2.1 0.0323212 0.0231717 0.0096117
5 2.7 0.0703161 0.0998543 0.0767189
6 3.5 0.1150041 0.0677595 0.0639530
7 4.2 0.0413854 0.0961086 0.1324368
8 5.1 0.3317518 0.2860324 0.2484495
9 6.0 0.2994768 0.3249540 0.3467533
10 6.6 0.0315217 0.0333252 0.0271199
11 7.6 0.0526614 0.0495821 0.0581130
12 8.7 0.0000142 0.0000001 0.0000137
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Table 4.3: Fitted SOG parameters Qi of the upper and lower error-envelopes of the neutron
density distribution for each lead isotope determined by Eq. (4.11). γ, N, and Ri are the same
as in Table 4.2, but the normalization condition is not satisfied in the case of the envelopes
(
∑

Qi , 1).

i Ri (fm) Qi
204Pb 206Pb 208Pb

upper lower upper lower upper lower
1 0.1 0.0094688 0.0000016 0.0140275 0.0001227 0.0084768 0.0001292
2 0.7 0.0127647 0.0189556 0.0007678 0.0155131 0.0096719 0.0172562
3 1.6 0.0000598 0.0140777 0.0000035 0.0003936 0.0132542 0.0157425
4 2.1 0.0311879 0.0063748 0.0704769 0.0046326 0.0280440 0.0000877
5 2.7 0.1455760 0.0595549 0.0864652 0.0624612 0.0850354 0.0723946
6 3.5 0.0080875 0.1396962 0.0398421 0.0909420 0.0764422 0.0516049
7 4.2 0.1394140 0.0019071 0.1516393 0.0225707 0.1243973 0.1416711
8 5.1 0.2843110 0.3534691 0.2477640 0.2273172 0.2607873 0.2296302
9 6.0 0.3396610 0.2677440 0.3580471 0.2415563 0.3540381 0.3434331
10 6.6 0.0181303 0.0464501 0.0231355 0.0216326 0.0245054 0.0257194
11 7.6 0.0593428 0.0452618 0.0566526 0.0330576 0.0663033 0.0502610
12 8.7 0.0000224 0.0000093 0.0000018 0.0000028 0.0000095 0.0000095





Chapter 5

RESULTS AND DISCUSSION

In the previous chapter, we succeeded in extracting the neutron density distributions of 204,206,208Pb
and estimated their error-envelopes even including the uncertainties associated with our reac-
tion model. The result of the density distributions and their parameters are already shown in
Fig. 4.11, Tables 4.2 and 4.3. Now we show and discuss more details of the extracted quantities
such as the neutron radii and the neutron skin thicknesses.

5.1 Charge, proton, and neutron rms radii

The differences between the rms radius of the best-fit neutron density and the maximum (min-
imum) rms radii in all the neutron densities constituting each error-envelope determined by
Eq. (4.11) are listed in Table 5.1 as the upper (lower) errors of the rms radius of neutron δrmdl

n ,
while the errors of the rms radii δrstd

n are the experimental ones determined by Eq. (4.8).

It is found that the effect of the model uncertainty on the errors of rn for lead isotopes is as
large as that of the experimental uncertainty. The neutron rms radii rn were determined with a
good accuracy of about 1 % ('0.06 fm) even including the model uncertainty.

Table 5.1: Root-mean-square radii of the charge rch, proton runfold
p , and neutron rn used in

this work. The two types of errors for rn, namely, δrmdl
n determined by Eq. (4.11) and δrstd

n by
Eq. (4.8), are listed (all in fm).

Nucleus rch runfold
p rn δrstd

n δrmdl
n

204Pb 5.479(2) 5.420(2) 5.598 +0.029
−0.020

+0.047
−0.059

206Pb 5.490(2) 5.433(2) 5.613 +0.026
−0.026

+0.048
−0.064

208Pb 5.503(2) 5.442(2) 5.653 +0.026
−0.029

+0.054
−0.063
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Table 5.2: Obtained values of rn, rp and ∆rnp for 208Pb compared with the previous results
deuced from several experiments using various hadronic probes (all in fm). Except for this
work and X-ray cascade from p̄-atom (2), the errors are experimental only. The errors of this
work stand for the total errors including the model uncertainties δrmdl

n determined by Eq. (4.11).

Experiment rp rn ∆rnp

This work from Table. 5.1 5.442(2) 5.653+0.054
−0.063 0.211+0.054

−0.063
208Pb(p, p) at 800 MeV [58]∗ 5.45 5.59(4) 0.14(4)
208Pb(p, p) at 650 MeV [62]† 5.46 5.66(4) 0.20(4)
Isospin diffusion data in Sn + Sn at
50 MeV/u [51]‡

- - 0.22(4)

GDR from (α, α′) at 120 MeV[61] - - 0.19(9)
PDR from 129−132Sn(γ, γ′) [68]¶ - - 0.18(4)
PDR in 68Ni and 132Sn [72]‖ - - 0.194(24)
X-ray cascade from p̄-atom (1)[67]∗∗ 5.44 5.60 0.16(2)stat(4)syst

X-ray cascade from p̄-atom (2)[73]†† 5.45 5.65(5)mdl 0.20(4)exp(5)mdl

∗2nd-order KMT potential assuming 3pG neutron density.
†Density-dependent t-matrix using model-independent FB neutron density.
‡21 sets of the Skyrme interaction parameters.
¶PDR strengths analyzed by RHB+RQRPA calculations with DD-ME parameterization.
‖Energy weighted sum rule by PDR data globally fitted with various mean field models
∗∗antiproton-nucleus optical potentials assuming 2pF proton and neutron density.
††newly developed Skyrme parameterization Skxsxx constrained by antiproton data of Ref. [67].

5.2 Neutron skin thicknesses

“Systematic change of ∆rnp” The systematic behavior of the extracted neutron skin
thicknesses ∆rnp for lead isotopes with the two types of error bars due to δrstd

n (red) and δrmdl
n

(blue) is shown with previous experimental and theoretical results [9–11, 19, 22, 23, 62, 67,
68, 73, 117] in Fig. 5.1. The errors due to δrstd

n (red) are the experimental only and thus, should
be compared with other experimental results. The present result shows a slight increase of the
neutron skin thickness at 208Pb.

As seen in Fig. 5.1, the resulting values of the neutron skin thicknesses have similar values
and tendency to other results except for the case of NL3 parameterization [19] within the error
bars. The recently developed parameterizations of DD-ME2, DD-PC1, FSUGold, and Skxs20
are particularly consistent with our result. The neutron skin thickness and density of 204Pb was
firstly extracted by our measurements and will be useful to constrain the various theoretical
models.
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“∆rnp for 208Pb” The obtained neutron skin thickness ∆rnp for 208Pb is compared with
those obtained from previous experiments in Table 5.2. The listed experimental results includ-
ing this work are not very different within the error bars. However, none of the previous results
considers the model ambiguities used in their analyses. In addition, except for the proton elas-
tic scattering approaches, other analysis methods assumed the model-dependent shape of the
neutron density, and thus it is inherently difficult to extract the precise values of the neutron
skin thicknesses and the density distributions as well as to estimate the model uncertainties
due to many theoretical assumptions.

In Table 5.3 we list the typical relativistic and non-relativistic mean field models with vari-
ous parameter sets. Non-relativistic mean field models with D1S [118], D1N [118], SIII [116],
SkM* [9], SkI3 [119], SkI4 [119], SkP [10], SkX [12], Sly4 [11], SSk [120], GSkI [120],
GSkII [120], BSk14 [121], BSk17 [122], and BSk20 [123] parameterization are shown. Since
the relativistic mean field (RMF) model was originally proposed by Walecka in Ref. [124], the
effective Lagrangian has been adjusted to the well-known many nuclear properties and devel-
oped from many theoretical researches. They are classified into several types of the RMF pa-
rameterizations such as NL1 [125], NL3 [19], NL-SH [126], TM1 [18], G2 [127], PK1 [114],
FSUGold [23], FSUGZ03 [24], BKA20 [25], BKA22 [25], BKA24 [25], and IU-FSU [128]
for the nonlinear meson-meson coupling model, PKDD [114], DD-ME1 [129], DD-ME2 [22],
and DD-PC1 [117] for the density-dependent meson-nucleon couping model, PC-F1 [21], PC-
LA [130], PC-PK1 [131], and FKVW [132] for the point-coupling model, SL1 [26], SLC
[26] for the Brown-Rho scaling model, QMC-I and QMC-II [133] for the quark-meson cou-
pling model. These paramterizations are tuned to reproduce the properties of various finite
nuclei. Previously, predictions of the neutron skin thicknesses widely differed between the
non-relativistic and relativistic mean field models, but recent studies using newly developed
relativistic parameterizations such as DD-ME and FSUGold have reported ∆rnp results closer
to those of non-relativistic models than the relativistic model with NL1, NL3, NL-SH, and
TM1 parameterization.

In the case of FSUGold parameterization, for example, two additional coupling constants
which represent non-linear vector and isoscalar–isovector couplings, were introduced based
on relativistic effective field theory [16]. The new relativistic parameterization has been cal-
ibrated to explain the measurements of the giant monopole resonance in 90Zr and 208Pb and
the isovector giant dipole resonance in 208Pb, without compromising the quality of the other
ground state properties such as the binding energy per nucleon and the charge radii. The pre-
dicted value of ∆rnp = 0.21 fm for 208Pb by FSUGold parameterization is in close agreement
with our result.

The most recent theoretical studies [51, 72, 73] as listed in Table. 5.2 which are con-
strained by the most recent experimental data, namely, the X-ray cascade of antiprotonic atoms
[67], isospin diffusion in heavy-ion collisions [134], and pigmy dipole resonance (PDR) data
[68], have reported neutron skin thicknesses of 208Pb of 0.20(4) fm [73], 0.22(4) fm [51], and
0.194(24) fm [72], respectively. These obtained values are in remarkable agreement with ours
of ∆rnp = 0.211+0.054

−0.063 fm.
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Figure 5.1: Systematic behavior of the neutron skin thicknesses for 204,206,208Pb. The filled
circles are the results of this work with the two types of error bars. The red and blue lines
represent the errors due to the experimental only δrstd

n and including the model uncertainties
δrmdl

n , respectively. The filled squares, triangle, and inverted triangle are from the analysis of
proton elastic scattering at 650 MeV [62], X-ray cascade from antiprotonic atoms [67], and
PDR strengths from 129−132Sn(γ, γ′) [68], respectively, with their statistical errors only. The
open triangles, crosses, squares and diamonds show the calculations of relativistic mean field
models (pale blue marks) with NL3 [19], DD-ME2 [22], DD-PC1 [117], and FSUGold [23]
parameterization while the open circles, squares, stars and asterisks are from non-relativistic
mean field models (pink marks) with SkM* [9], SkP [10], Sly4 [11], and Skxs20 [73] param-
eterization. DD-ME2, FSUGold, and Skxs20 parameterizations have been recently developed
and conform closely to all the extracted neutron skin thicknesses.



5.2. NEUTRON SKIN THICKNESSES 67

“Symmetry energy coefficients” Correlations between the neutron skin for 208Pb and
the symmetry energy coefficients of nuclear matter have also been reported by various recent
theoretical studies [44–48, 51] as mentioned in Chap. 1 (the correlation factor is almost 1 for
208Pb). In Table 5.3, the nuclear matter incompressibility K0, the symmetry energy S(ρsat)
and its slope L and curvature Ksym at saturation density ρsat as defined by Eqs. (1.2)–(1.6),
are listed compared with the neutron skin thicknesses for 208Pb. The incompressibility K0

is now expected to be about 210–250 MeV [22–25, 38, 39, 135, 136] constrained by many
measurements of isoscalar giant resonances for various nuclei [36, 37, 40]. The symmetry
energy S(ρsat) at saturation is also known to be ∼32 MeV, but L and Ksym are still less certain
and their predicted values vary widely among many theoretical models. Particularly the slope
coefficient L of the symmetry energy at saturation density is strongly correlated with ∆rnp for
208Pb [35, 51].

Then we tried to extract L by examining the global correlation between ∆rnp for 208Pb and L
of typical theoretical predictions as listed in Table 5.3. First, the correlations between neutron
skin thickness for 208Pb and several EOS coefficients such as K0, S(ρsat), L, and Ksym calculated
with the listed parameterizations, are shown in Figs. 5.2, 5.3, 5.4, and 5.5, respectively. The
incompressibility K0 is not correlated with the neutron skin. The hatched areas in Fig. 5.2
represent the two range of K0, namely, 205–240 MeV and 230–250 MeV constrained by Itoh
et al. [36] and Li et al. [40], respectively.

On the other hand, the symmetry energy S(ρsat) and slope L coefficients predicted by those
parameterizations, whether relativistic or non-relativistic, show strong linear correlations with
∆rnp. Assuming that these linearity were valid as reported in many articles, linear fittings
were performed. The solid straight lines in Figs. 5.4 and 5.5 show the linear fittings. Since
fitting errors are almost negligible with respect to the errors of the neutron skin thickness, we
deduced the range of acceptable values for S(ρsat) and L corresponding to the errors of ∆rnp.
Our results are S(ρsat) = 33.7+4.0

−4.6 MeV and L = 74.3+37.9
−20.3 MeV by using the extracted ∆rnp for

208Pb. The red and blue thick lines on the y-axis in all the Figures represent the two types of the
errors of ∆rnp for 208Pb due to the experimental errors only (red) and the total errors including
the model uncertainties (blue), respectively. Those on the x-axis in Figs. 5.4 and 5.5 are the
resulted range of S(ρsat) and L. The red and blue boxes in Fig. 5.6 are the constraint regions
on S(ρsat) - L plane by the extracted ∆rnp for 208Pb.

For 204,206Pb, similar correlations can be seen whereas there are small number of theoretical
models we can use. Thus, the same fittings as in the case of 208Pb were carried out. Figures 5.7,
5.8, 5.9, and 5.10 show the obtained ranges of S(ρsat) and L for 204,206Pb, respectively.

Figure 5.11 and 5.12 show all the obtained regions S(ρsat) - L plane for 204,206,208Pb due to
the experimental errors and the total errors, respectively. Since the model uncertainties are not
independently determined for each isotopes, the weighted average of three ranges due to the
total errors in Fig. 5.12 must not be performed. On the other hand, the experimental errors
are independent among three isotopes. Therefore, we deduced the weighted average of three
ranges due to the experimental errors as shown in Fig. 5.11. The combined ranges of S(ρsat)
and L resulted in S(ρsat) = 33.0 ± 1.1 MeV and L = 67.0 ± 12.1 MeV, respectively, which is



68 CHAPTER 5. RESULTS AND DISCUSSION

consistent with L = 88 ± 25 MeV obtained from the recent analysis of isospin diffusion data
[51] and L = 65 ± 16 MeV determined by the energy-weighted sum rule of PDR data [72].

However, the errors of ∆rnp including model uncertainties is still so large that the constraint
on the slope coefficient L is wide with the range of 30–90 MeV by such a rough estimation as
the global correlation approach mentioned above. Therefore we need to develop our analysis
and experimental data for a more precise measurement of the neutron skin thickness. Extend-
ing our analysis to other nuclei is also important to improve the constraint on the value of the
slope L.

Table 5.3: Neutron skin thickness for 208Pb and the nuclear matter properties at saturation
density, such as the incompressibility coefficient K0, the symmetry energy S(ρsat), its slope L,
and the curvature Ksym in various relativistic and non-relativistic theoretical models.

Model E0(ρ) S(ρ)
∆rnp (fm) K0 (MeV) S(ρsat) (MeV) L (MeV) Ksym (MeV)

Relativistic
nonlinear coupling
NL1 [125] 0.321 212 43.5 140.1 143
NL3 [19] 0.280 271.8 37.4 118.6 100
NL-Z [137] 0.307 173 41.7 133.3
NL-SH [126] 0.266 355 36.1 113.6 80
TM1[18] 0.271 281 36.9 110.8 34
G2 [127] 0.257 215 36.4 100.7 −7
PK1[114] 0.260 282.6 37.6 116 55
FSUGold [23] 0.207 230 32.6 60.6 −52
FSUGZ03 [24] 0.190 233 31.6 64 −11
BKA20 [25] 0.200 240 32.3 76 −15
BKA22 [25] 0.220 227 33.3 79 −9
BKA24 [25] 0.240 228 34.3 85 −15
IU-FSU [128] 0.160 231.2 31.3 47.2
density dependent
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Continued.

Model ∆rnp (fm) K0 (MeV) S(ρsat) (MeV) L (MeV) Ksym (MeV)
PKDD [114] 0.240 262.2 36.8 90 −80
DD-ME1 [129] 0.200 245 33.1 55 −101
DD-ME2 [22] 0.193 251 32.3 51 −87
DD-PC1 [117] 0.200 230 33 70 −108
point coupling
PC-F1 [21] 0.270 255 37.8 117 75
PC-LA [130] 0.250 264 37.2 108 −61
PC-PK1 [131] 0.260 238 35.6 113 95
FKVW [132] 0.200 250 33.1 80 11
Brown-Rho scaling
SLC [26] 0.210 230 31.6
quark-meson coupling
QMC-I [133] 0.26 280 35
QMC-II [133] 0.27 382 35
Non-relativistic
Gogny
D1S[118] 0.135 210 32.0 22.4 −252
D1N[118] 0.142 230 29.3 31.9
Skyrme
SIII [116] 0.13 355 28.2 9.9 −394
SkM*[9] 0.17 216 30.0 45.8 −156
SkI3 [119] 0.22 258 34.8 100.5 73
SkI4 [119] 0.18 248 29.5 60.4 −41
SkP [10] 0.145 201 30.0 19.7 −267
SkX [12] 0.16 271 31.1 33.2 −252
Skxs20 [73] 0.200 200
Sly4 [11] 0.16 229.9 32.0 46.0 −120
Sk255 [136] 0.250 255.0 37.4 95.0 −58.3
Sk272 [136] 0.243 271.6 37.4 91.7 −67.8
SSk [120] 0.17 229.2 33.5 52.8
GSkI [120] 0.19 230.2 32.0 63.5



70 CHAPTER 5. RESULTS AND DISCUSSION

Continued.

Model ∆rnp (fm) K0 (MeV) S(ρsat) (MeV) L (MeV) Ksym (MeV)
GSkII [120] 0.20 233.6 34.2 66.8
BSk14 [121] 0.16 239.3 30.0 43.9
BSk17 [122] 0.15 241.7 30.0 36.3
BSk20 [123] 0.14 241.4 30.0 37.4 −137
This work 0.211+0.054

−0.063 - - - -
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Figure 5.2: ∆rnp for 208Pb (fm) vs K0 (MeV).

0.1

0.15

0.2

0.25

0.3

0.35

-500 -400 -300 -200 -100 0 100 200 300

Ksym (MeV)

∆r
np

 (
fm

)

Relativistic

Non-relativistic

Figure 5.3: ∆rnp for 208Pb (fm) vs Ksym (MeV).



5.2. NEUTRON SKIN THICKNESSES 71

0.1

0.15

0.2

0.25

0.3

0.35

20 25 30 35 40 45

S(ρsat) (MeV)

∆r
np

 (
fm

)

(33.7, 0.211)

29.1 37.731.6 35.7

Relativistic

Non-relativistic

Figure 5.4: ∆rnp for 208Pb (fm) vs S(ρsat)
(MeV).

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140

L (MeV)

∆r
np

 (
fm

)

(74.3, 0.211)

30.2 112.254.0 92.6

Relativistic

Non-relativistic

Figure 5.5: ∆rnp for 208Pb (fm) vs the slope
coefficient L (MeV).



72 CHAPTER 5. RESULTS AND DISCUSSION

0

20

40

60

80

100

120

140

20 25 30 35 40 45

S(ρsat) (MeV)

L
 (

M
eV

)

Relativistic
Non-relativistic
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model uncertainties.
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“Isobaric incompressibility” We also examined a more advanced topic of the EOS
briefly. It has been found that the contributions of the higher order terms in Eqs. (1.2) and (1.4)
are not necessarily negligible especially for the incompressibility of the asymmetric nuclear
matter as discussed in Ref. [138, 139]. The EOS of the symmetric nuclear matter E0(ρ) is
expanded to one-order higher than Eq. (1.2). The coefficient of third-order derivative J0 in the
expansion of E0(ρ) is expressed as

E0(ρ) = E0 +
K0

2!
ε2 +

J0

3!
ε3 + O(ε4), (5.1)

J0 = 27ρ3
sat

d3E0(ρ)
dρ3

∣∣∣∣∣∣
ρ=ρsat

. (5.2)

Recently the isospin dependence of incompressibility has been studied by the high-quality
data of isoscalar giant monopole resonances (ISGMR) in Sn isotopes measured from (α, α′)
reaction at RCNP [39, 40, 139, 140]. The extended, so-called, isobaric incompressibility K(δ)
with isospin asymmetry δ can be expressed as

K(δ) = K0 + Kτδ2 + O(δ4) (5.3)

Kτ ≈ Ksym − 6L − J0

K0
L, (5.4)

where the third term of the right hand in Eq. (5.4) is derived from the higher-order coeffi-
cient J0 in Eq. (5.1). The asymmetry term Kτ characterizes the isospin dependence of the
incompressibility K(δ) and also very important to understand the properties of the asymmetric
nuclear or neutron matter such as neutron stars. Chen et al. in Ref. [138] obtained a value of
Kτ = −370±120 MeV from the analysis of isospin diffusion data considering the higher-order
terms of the EOS and the incompresibility at saturation. However, Li et al. in Ref. [40] re-
sulted in Kτ = −550 ± 100 MeV much different from that of Chen et al. The result of Li et
al. were obtained from the ISGMR strength distributions in Sn isotopes by using the empirical
expression of the finite nucleus incompressibility KA with the lowest order terms only [141]:

KA ≈ K0 + KsurfA−1/3 + Kτα2 + KCoul
Z2

Z4/3 , (5.5)

where A, Z, Ksurf , and KCoul are the mass and atomic number, the surface, and Coulomb terms
with α = (N − Z)/A. The higher-order terms of this expansion, which was neglected in their
analysis, are not negligible as pointed out in Ref. [142]. That is the reason of the discrepancy
between the results of Chen and Li. Thus, since the analysis method of Ref. [40] are still
ambiguous to extract the Kτ only, we used the result of Chen et al. [138] as shown in the
hatched area in Fig. 5.13. While the effect of L on Kτ accounts for about 75%, no correlation
is found between Kτ and ∆rnp (or L) in Fig. 5.13. However, combined with the range of
Kτ = −370 ± 120 MeV, our result of ∆rnp for 208Pb put some constraints on the theoretical
models.
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“Future perspectives” Since unknown systematic errors are also included in the model
uncertainties, further progress from both experiment and theory are necessary. To achieve
more precise extraction of the neutron density distributions with an accuracy of less than 1%
of neutron radius rn, we need to reveal such a systematic ambiguity. Then, we need to develop
both the experimental and theoretical improvements. Some clues for the improvements were
also obtained from this work for lead isotopes.

• To reduce the systematic uncertainties due to the instabilities of the beam conditions
just while the data is been taking, the check of the beam-line viewers is not enough.
Therefore we plan to install beam position monitors (BPM), especially, cavity-BPM for
on-line non-destructive monitoring. The high-quality beam is also needed.

• In the relativistic framework, Scalar density is also necessary. Since the Scalar-to-Vector
ratio is changing depending on the change of the effective mass around surface region
of a nucleus, we need more careful treatment of Scalar density than that of the present
as the use of the constant value of ρS /ρV = 0.96.

• Coulomb potentials are now assumed to be the rigid sphere, but its effect on the scat-
tering observables is found to be not so small. we need to modify the calculation of
Coulomb potentials with the folding form of proton density distributions.

• For unstable nuclei, charge and proton density distributions are also unknown param-
eters, thus we need to investigate the simultaneous extraction method of proton and
neutron density distributions, otherwise, to wait for other experiments such as electron
scattering, isotope shift measurements. Since the sensitivity of Coulomb potentials to
the scattering observables was recognized, we are examining the simultaneous extrac-
tion by using proton elastic scatterings of different incident energies, that is, different
NN amplitudes.

• We will proceed the reanalyses of the obtained experimental data for lighter nuclei such
as 40,42,44,48Ca, 16,18O with several improvements to reduce systematic uncertainties as
listed above. We will verify how applicable our analysis method is to extract the neutron
densities of light nuclei. Particularly, 48Ca is expected to have a neutron skin structure.
The neutron skin thickness of 48Ca is also important to determine the EOS parameters.

These improvements listed above are the next steps towards the precise extraction of the nu-
cleon density distributions of various nuclei, and are now in progress.



Chapter 6

SUMMARY

We measured the angular distributions of cross sections and analyzing powers for polarized
proton elastic scattering from 58Ni and 204,206,208Pb at Ep = 295 MeV. Using the experimental
data, we have extracted the neutron density distributions of 204,206,208Pb. In order to explain
the proton elastic scattering at intermediate energies, phenomenological medium modifica-
tions were introduced into the free NN interaction with density-dependent parameters. The
medium-effect parameters were determined from the experimental observables for 58Ni, whose
nucleon density is well known. After the calibration of the effective NN interaction, we de-
duced the neutron density distributions of 204,206,208Pb in the form of a model-independent SOG
distribution.

Furthermore, we have evaluated the error-envelopes of the neutron densities due to both
experimental uncertainties and uncertainties associated with the various model assumptions
in the medium-modified RIA by means of a new χ2 criterion. The model ambiguity due to
the theoretical assumptions, especially in use of hadronic probes, is very important to extract
physical quantities. However it is very difficult to estimate such an ambiguity and hence it is
usually not mentioned in many cases.

The extracted rms radius of the neutron density for 208Pb is consistent with past results and
recent theoretical predictions such as FSUGold or BKA20 parameterization. The experimental
standard errors of the neutron rms radii (δrstd

n ' 0.03 fm) are slightly smaller than the value
of Ref. [62]. Even including the model ambiguity, the estimated errors of the neutron rms
radii (δrmdl

n ' 0.06 fm) were found to be relatively small with an accuracy of about 1 %, which
is comparable or better than the estimated accuracy of the PREX experiment using parity-
violating electron scattering at its present status.

We also deduced the constraint range of the symmetry energy at saturation S(ρsat) and
the slope coefficient L of the symmetry energy corresponding to the results of the extracted
neutron skin thicknesses ∆rnp for 204,206,2208Pb by using the global correlations between S(ρsat),
L, and ∆rnp. Since the the errors including the model uncertainties are not independent among
204,206,2208Pb, the method of the weighted average was not be able to be applied to combining
the three constraint ranges due to the total errors including the model uncertainties. Therefore,
we obtained the combined range of S(ρsat) = 33.0± 1.1 MeV and L = 67.0± 12.1 MeV, which
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reflect the experimental errors of ∆rnp only. The obtained ranges are very consistent with and
much smaller than the previous results. However, the errors of S(ρsat) and L due to the model
uncertainties (∼ 3 MeV and 40 MeV) are much larger than the ones due to the experimental
uncertainties (1.1 MeV and 12.1 MeV). Further progress from both the experiment and theory
are necessary.
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Appendix A

Data table

Table A.1: Differential cross sections and analyzing powers for 58Ni(p, p) at Ep = 295 MeV.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

7.67 1.867×103 0.062×103 0.508 0.045
9.20 6.474×102 0.224×102 0.630 0.048

10.74 1.952×102 0.067×102 0.590 0.046
12.27 2.194×101 0.067×101 0.174 0.041
13.80 1.562×101 0.051×101 0.467 0.044
14.83 3.263×101 0.124×101 0.862 0.054
15.34 3.658×101 0.140×101 0.886 0.055
16.87 4.174×101 0.163×101 0.922 0.056
18.40 3.159×101 0.121×101 0.869 0.055
19.93 1.652×101 0.057×101 0.644 0.048
21.47 7.064 0.216 0.234 0.041
23.00 2.042 0.070 −0.607 0.047
24.53 1.319 0.040 −0.047 0.041
26.06 1.797 0.066 0.789 0.052
27.59 2.006 0.077 0.898 0.056
29.12 1.703 0.061 0.777 0.051
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Continued.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

30.65 1.031 0.034 0.528 0.045
32.18 4.881×10−1 0.149×10−1 0.116 0.041
33.71 1.781×10−1 0.059×10−1 −0.540 0.045
35.24 8.786×10−2 0.289×10−2 −0.492 0.045
36.77 1.004×10−1 0.033×10−1 0.470 0.044
38.29 1.158×10−1 0.042×10−1 0.763 0.051
39.82 1.007×10−1 0.036×10−1 0.749 0.051
41.35 6.607×10−2 0.229×10−2 0.652 0.048
42.87 3.169×10−2 0.102×10−2 0.428 0.043
44.40 1.113×10−2 0.034×10−2 0.012 0.041
45.92 3.274×10−3 0.118×10−3 −0.649 0.050
47.44 3.275×10−3 0.137×10−3 0.365 0.044
48.97 4.929×10−3 0.226×10−3 0.786 0.052
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Table A.2: Differential cross sections and analyzing powers for 204Pb(p, p) at Ep = 295 MeV.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

7.55 1.540×103 0.063×103 0.325 0.042
9.06 5.709×102 0.255×102 0.666 0.049

10.57 6.785×102 0.240×102 0.680 0.048
12.08 3.526×102 0.130×102 0.793 0.052
13.59 9.619×101 0.349×101 0.757 0.050
14.59 1.991×101 0.071×101 0.672 0.048
15.10 1.919×101 0.069×101 0.705 0.049
16.61 4.882×101 0.192×101 0.937 0.057
18.11 4.339×101 0.171×101 0.936 0.057
19.62 1.575×101 0.055×101 0.646 0.048
21.13 4.166 0.128 −0.159 0.041
22.64 5.049 0.178 0.671 0.048
24.15 6.383 0.244 0.874 0.055
25.66 4.131 0.150 0.645 0.048
27.17 1.463 0.044 −0.035 0.040
28.68 6.671×10−1 0.210×10−1 −0.227 0.042
30.19 9.571×10−1 0.338×10−1 0.698 0.049
31.69 8.870×10−1 0.351×10−1 0.690 0.056
33.20 4.427×10−1 0.139×10−1 0.322 0.042
34.71 1.355×10−1 0.044×10−1 −0.455 0.044
36.22 1.187×10−1 0.037×10−1 0.284 0.042
37.73 1.551×10−1 0.060×10−1 0.660 0.053
39.23 1.089×10−1 0.037×10−1 0.583 0.046
40.74 3.929×10−2 0.121×10−1 0.109 0.041
42.25 1.234×10−2 0.040×10−2 −0.337 0.043

Continued.
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Continued.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

43.76 1.767×10−2 0.061×10−2 0.600 0.047
45.26 1.993×10−2 0.072×10−2 0.741 0.051
46.77 1.104×10−2 0.038×10−2 0.573 0.047
48.28 2.959×10−3 0.104×10−3 0.034 0.047
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Table A.3: Differential cross sections and analyzing powers for 206Pb(p, p) at Ep = 295 MeV.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

7.55 1.537×103 0.063×103 0.326 0.042
9.06 5.931×102 0.265×102 0.640 0.049

10.57 6.977×102 0.247×102 0.675 0.048
12.08 3.507×102 0.129×102 0.796 0.052
13.59 9.188×101 0.334×101 0.754 0.050
14.59 1.987×101 0.071×101 0.668 0.048
15.10 2.002×101 0.073×101 0.726 0.050
16.60 5.120×101 0.201×101 0.936 0.057
18.11 4.439×101 0.175×101 0.935 0.057
19.62 1.523×101 0.053×101 0.635 0.048
21.13 4.045 0.125 −0.194 0.041
22.64 5.461 0.195 0.696 0.049
24.15 6.504 0.250 0.877 0.055
25.66 4.052 0.145 0.624 0.048
27.17 1.398 0.042 −0.093 0.041
28.68 6.926×10−1 0.214×10−1 −0.143 0.050
30.18 9.901×10−1 0.353×10−1 0.721 0.050
31.69 8.747×10−1 0.343×10−1 0.671 0.055
33.20 4.154×10−1 0.129×10−1 0.271 0.041
34.71 1.279×10−1 0.043×10−1 −0.494 0.045
36.22 1.267×10−1 0.040×10−1 0.365 0.043
37.72 1.577×10−1 0.059×10−1 0.702 0.052
39.23 1.047×10−1 0.035×10−1 0.544 0.046
40.74 3.580×10−2 0.111×10−2 0.026 0.041
42.25 1.277×10−2 0.041×10−2 −0.263 0.043

Continued.
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Continued.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

43.75 1.947×10−2 0.069×10−2 0.634 0.048
45.26 2.037×10−2 0.074×10−2 0.727 0.051
46.77 1.041×10−2 0.035×10−2 0.520 0.046
48.27 2.449×10−3 0.095×10−3 −0.070 0.052
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Table A.4: Differential cross sections and analyzing powers for 208Pb(p, p) at Ep = 295 MeV.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

7.55 1.580×103 0.065×103 0.326 0.042
9.06 5.958×102 0.262×102 0.626 0.048

10.57 7.352×102 0.260×102 0.683 0.048
12.08 3.521×102 0.130×102 0.797 0.052
13.59 9.086×101 0.329×101 0.752 0.050
14.59 2.002×101 0.071×101 0.692 0.049
15.09 2.148×101 0.078×101 0.741 0.050
16.60 5.260×101 0.206×101 0.935 0.057
18.11 4.444×101 0.175×101 0.933 0.057
19.62 1.467×101 0.050×101 0.606 0.047
21.13 4.045 0.125 −0.181 0.041
22.64 5.610 0.202 0.730 0.050
24.15 6.541 0.250 0.868 0.055
25.66 3.861 0.135 0.593 0.047
27.17 1.329 0.040 −0.138 0.041
28.67 7.050×10−1 0.215×10−1 −0.056 0.047
30.18 9.840×10−1 0.352×10−1 0.736 0.050
31.69 8.396×10−1 0.326×10−1 0.653 0.054
33.20 3.825×10−1 0.118×10−1 0.220 0.041
34.71 1.196×10−1 0.039×10−1 −0.481 0.045
36.21 1.279×10−1 0.041×10−1 0.432 0.044
37.72 1.512×10−1 0.058×10−1 0.695 0.052
39.23 9.577×10−2 0.319×10−2 0.511 0.045
40.74 3.064×10−2 0.094×10−2 −0.013 0.041
42.24 1.287×10−2 0.040×10−2 −0.097 0.042

Continued.
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Continued.

θc.m. (degree) dσ/dΩ (mb/sr) ∆(dσ/dΩ) (mb/sr) Ay ∆Ay

43.75 2.019×10−2 0.071×10−2 0.651 0.048
45.26 1.974×10−2 0.071×10−2 0.711 0.050
46.76 9.180×10−3 0.306×10−3 0.470 0.045
48.27 2.053×10−3 0.078×10−3 −0.141 0.051



Appendix B

Relativistic impulse approximation

The analysis method to describe the reaction is essentially based on the framework of the
relativistic impulse approximation (RIA) with the relativistic Love-Franey (RLF) interaction
developed by Murdock and Horowitz (MH model) [88–90]. In this appendix, we review the
framework and formalism used in the MH model.

Since 1980s, after the success of Dirac phenomenology to explain the scattering observ-
ables, especially, polarization observables, the original RIA approach has been developed with
the microscopic description by McNeil, Ray, and Wallace [143] (MRW model). In the orig-
inal RIA, the experimental NN scattering amplitude is represented by a particular set of five
Lorentz covariant functions (Eq. (4.1)), as mentioned in Chap. 4.1.1. The functions are then
folded with the target nucleus densities to produce a first-order tρ optical potentials. This ex-
pression F of five Lorentz covariant functions is an approximated form by using an analogy
from the empirical amplitude, which is conventionally expressed in terms of the nonrelativistic
Wolfenstein amplitudes with the Pauli matrices [143].

However, the general expression of F in the two-particle Dirac space involves 44 compo-
nents of Lorentz covariants under the isospin and CPT invariance. Thus the only five functions
described in Eq. (4.1) is not sufficient to specify F , i.e., to determine the negative energy ma-
trix elements uniquely. Thus there are nontrivial assumptions involved in using Eq. (4.1) to
calculate the optical potential. In addition, the original RIA procedure does not separate the
direct and exchange contributions to the amplitudes. These contributions have different char-
acteristic dependence on the momentum transfer and energy, especially at low energies. The
original RIA model assumes that the NN interaction is unmodified by the surrounding nuclear
medium such as inside a nucleus. While this assumption is valid at high energies, the modifi-
cations from nuclear medium such as Pauli blocking are not negligible at lower intermediate
energy regions.
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Figure B.1: Meson exchange diagrams for the relativistic Love-Franey model.

“Relativistic Love-Franey NN interaction” On the basis of this original form of the NN
amplitude, the RLF NN interaction was further developed by Horowitz [88] to improve the
problems listed above.

The NN amplitude is modeled as arising from the first Born approximation for the ex-
change of a set of mesons. The parameters of the mesons were fitted to reproduce NN scatter-
ing data at several energies. From direct and exchange Feynman diagrams in Fig. B.1, the NN
amplitude for each meson is calculated straightforward. The NN-meson vertex factor from the
Feynman rules is assumed to be

gi

(
Λ2

i

q2 + Λ2
i

)
λL(i)(τ )Ii , (B.1)

where L(i) denotes the Lorentz type of the ith meson listed in Table. B.1 and Ii is its isospin (0
or 1). Then, each Lorentz invariant F L (L = S ,V, PS , T , or A) can be written as

F L(q, Ec) = i
M2

2Eckc

[
FL

D(q) + FL
X(Q)

]
, (B.2)

FL
D(q) ≡

∑
i

δL,L(i){τ0 · τ1}Ii f i(q), (B.3)

FL
X(Q) ≡ (−1)T

∑
i

BL(i),L{τ0 · τ1}Ii f i(Q), (B.4)

f i(q) ≡
g2

i

q2 + m2
i

(
Λ2

i

Λ2
i + q2

)2

− i
ḡ2

i

q2 + m̄2
i

(
Λ̄2

i

Λ̄2
i + q2

)2

, (B.5)

where D and X denote the direct and exchange terms as shown in Fig. B.1, q and Q are
direct and exchange three-momentum transfers. Ec and kc are the total energy and relative
momentum in the nucleon-nucleon cm system. BL(i),L is the (L(i), L) component of the Fierz
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Table B.1: Dirac matrix types

L λL

S (scalar) 1
V (vector) γµ

PS (pseudoscalar) γ5

A (axial-vector) γ5γµ

T (tensor) σµν

transformation matrix:

BL,L′ =
Tr(λLλL′λLλL′)

[Tr(λL′λL)]2 , (B.6)

=
1
8



2 2 1 −2 2
8 −4 0 −4 −8

24 0 −4 0 24
−8 −4 0 −4 8
2 −2 1 2 2





S
V
T
A

PS


. (B.7)

The coupling constant, mass and cut-off parameter for i-th meson denoted by gi, mi, and Λi

are fitted to the free NN amplitudes at several different laboratory energies [88]. The full set
of parameters can be found in Ref. [88, 89]. T is the total isospin of the two-nucleon system,
thus

FL(pp) = FL(T = 1), (B.8)

FL(pn) =
1
2

[
FL(T = 0) + FL(T = 1)

]
, (B.9)

are used to get pp and pn scattering amplitudes, respectively.
The form of NN amplitudes in Eq. (4.1) is completely local. No factors of a momen-

tum dotted int a gamma matrix appear explicitly. However, as the energy is decreased, the
NN amplitudes cannot neglect the exchange nonlocalities implied by a pion with pseudovec-
tor coupling. It is known that the pseudoscalar term of Eq. (4.1) should be replaced by the
pseudovector invariant

F PSγ5
(0)γ

5
(1) → −F PV

6qγ5
(0)

2M

6qγ5
(1)

2M
. (B.10)

to give meaningful results at lower energies. Note that this is not a exact medium modification
different from such a Pauli blocking effect.
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“tρ optical potential in the MH model” The first-order Dirac optical potentials for the
spherical nuclei are produced by folding NN amplitude with the target densities:

UL(r; E) = UL
D(r; E) + UL

X(r; E), (B.11)

UL
D(r; E) ≡ −4πip

M

∫
dr′ρL(r′)tL

D(|r′ − r|; E), (B.12)

UL
X(r; E) ≡ −4πip

M

∫
dr′ρL(r′, r)tL

X(|r′ − r|; E) j0(p|r′ − r|), (B.13)

where tL
D(|r|; E) are Fourier transforms of tL

D(q; E) ≡ (iM2/2Eckc)FL
D(q) and similarly for the

exchange pieces tL
X(Q; E). The nuclear densities ρL(r) are expressed as sums over the occupied

nuclear levels:

ρL(r′, r) ≡
occ∑
α

Ūα(r′)λLUα(r), (B.14)

where Uα is a single particle four-component wave function in state α, and the relativistic
Hartree approximation is applied to obtain Uα. For the exchange term, non-local densities
ρL(r′, r) are approximated as

ρL(r′, r) ≈ ρL

(
1
2

(r′ + r)
) (

3
|r′ − r|kF

)
j1(|r′ − r|kF), (B.15)

where ρV((r′ − r/2)) = 2k3
F/3π

2.
For a spin-zero nucleus, the only nonzero densities are scalar, vector, and tensor densities

with λT = σ0i in Eq. (B.14). The optical potential takes the form

Uopt = US + γ0UV − 2iα · r̂UT . (B.16)

The tensor contribution is found to be small and will be negligible. Thus the optical potential
has only scalar and vector contributions.

For laboratory energy around 200 MeV, it is necessary to correct the optical potentials
for medium modifications from Pauli blocking. These can be approximated by performing a
Dirac-Brueckner calculation with a local-density approximation as follows:

UL(r; E)→
[
1 − a(E)

(
ρV(r)
ρ0

)2/3
)]

UL(r; E). (B.17)

where ρ0 = 0.1934 fm−3. In the present work, we have further modified the RLF NN inter-
action with the density-dependent terms described as Eqs. (4.4), (4.5) to explain the various
medium effects. Since the Pauli blocking effect is also included to our modification, we have
not used the correction of Eq. B.17 introduced by Horowitz.

The Dirac equation for the projectile is finally expressed as{
−iα·∇ + UV(r; E) + β

[
M + US (r; E)

]}
U0(r) = EU0(r), (B.18)
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where E is the total nucleon-nucleus center-of-mass projectile energy, M is its rest mass, and
U0 is the incident projectile wave function. Note that the Coulomb potential is included in
UV . The Coulomb potential used in this model is assumed to be a uniform spherical charge
distribution of radius R = r0A1/3, where r0 ≈ 1.25 fm.

To solve the Dirac equation of Eq. (B.18), in the calculations of the MH model the wave
function is first separated into its upper and lower two-component wave functions and the
Dirac equations rewritten as two coupled, first-order differential equations: (σ·p)v0(r) + (UV + M + US )u0(r) = Eu0(r)

(σ·p)u0(r) + (UV − M − US )v0(r) = Ev0(r)
, (B.19)

U0(r) =

 u0(r)
v0(r)

 , αi = γ0γi

 0 σi

σi 0

 , β = γ0

 1 0
0 −1

 . (B.20)

The lower component v0 is then eliminated, leading to a single second-order differential equa-
tion for the upper components. At this moment this equation contains local, spin-orbit, and
nonlocal Darwin potentials, but the nonlocality can be removed by rewriting the upper wave
function as

u0(r) ≡ A1/2(r; E)χ0(r), (B.21)

A(r; E) ≡ 1 +
US (r; E) − UV(r; E)

E + M
. (B.22)

Then the equation for the new two-component function χ0(r), that is, Schrödinger-like equa-
tion becomes

(−∇2 + Vc + Vsoσ·l + VDarwin)χ0(r) = (E2 − M2)χ0(r), (B.23)

where the nonrelativistic energy-dependent optical potentials are

Vc(r; E) ≡ 2MUS + 2EUV + (US )2 − (UV)2, (B.24)

Vso(r; E) ≡ − 1
rA
∂A
∂r
, (B.25)

VDarwin(r; E) ≡ − 1
2r2A

∂

∂r

(
r2∂A
∂r

)
+

3
4A2

(
∂A
∂r

)2

. (B.26)





Appendix C

Equation of state of nuclear matter

Liquid drop model The study to understand the many-body properties of nuclei or nuclear
matter has started since 1930s by Bethe and von-Weizäcker [144, 145] who developed the
macroscopic semi-empirical mass formula of nuclei using the liquid-drop model (LDM):

E(N,Z) = −aV A + aS A2/3Bsurf + aC
Z2

A1/3 BCoul, (C.1)

aV = a1(1 − κV I2), (C.2)
aS = a2(1 − κS I2), (C.3)

where A = N + Z, the assumptions has been made that the nuclear matter in the interior is
uniform and incompressible so that the radius of a spherical nucleus is proportional to A1/3. a1

is the binding energy of symmetric nuclear matter and I = (N−Z)/A. The term κV proportional
to I2 is included in order to describe the dependence of the bulk binding energy on the neutron
excess, but Eq. (C.2) in the simple form has no shape dependence. Eq. (C.3) is the surface
energy term, which is analogy to Eq. (C.2). Bsurf and BCoul are the factors related to the nuclear
deformation.

Droplet model One specific approach to extending the LDM is called the droplet model
(DM). Myers and Swiatecki [146–148] developed the LDM model, which is extended to one
higher order in the expansion parameters A−1/3 and I2. Different from LDM, the extensions
includes the general expression of nuclear incompresiibility and density distributions. The
energy by DM is expressed as

E(N,Z; shape) =
[
−a1 + Jδ̄2 − 1

2
Kε̄2 +

1
2

Mδ̄4
]

A +
[
a2 +

9
4

J2

Q
δ̄2

]
A2/3Bsurf

+a3A1/3Bcurv + c1Z2A−1/3BCoul − c2Z2A1/3Bred

−c5Z2BW − c3Z2A−1 − c4Z4/3A−1/3, (C.4)
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where

δ̄ =
I + 3

16
c1
Q ZA−2/3BV

1 + 9
4

J
Q A−1/3Bsurf

, (C.5)

ε̄ = [−2a2A−1/3Bsurf + Lδ̄2 + c1Z2A−4/3BCoul]/K, (C.6)

and the constants ci (i = 1, 2, 3, 4, 5) are

c1 =
3
5

e2

r0
, c2 =

c2
1

336

(
1
J
+

18
K

)
,

c3 =
5
2

c1

(
b
r0

)2

, c4 =
5
4

c1

(
3

2π

)2/3

,

c5 =
1

64
c2

1

Q
. (C.7)

The quantities Bcurv, Bred, BV and BW are the curvature correction to the surface energy, the
interior and surface corrections due to the Coulomb forces, respectively. The coefficients J, Q,
and r0 in Eq. (C.4) are analogous to the LDM coefficients κV , κS , and aC of Eq. (C.1). Three
new coefficients K, L, and M are the incompressibility, the dependence of the incompressibility
on neutron excess, and the higher order coefficient in asymmetry I, respectively.

Mean field approach In the late 1960s, microscopic theoretical studies of the nuclear many-
body system were pioneered by Brueckner et al. [149]. Since then, many theoretical models
such as the microscopic many-body approach, the effective-field theory, and the phenomeno-
logical mean-field approach, have been developed by using various bare or effective, two-body
or three-body interactions.

The phenomenological approach, in particular, the Skyrme-Hartree-Fock and the relativis-
tic mean-field models are the most successful approaches to describe the macroscopic prop-
erties of finite nuclei and/or nuclear matter. In these theoretical approaches, the energy per
nucleon of infinite nuclear matter is also described as a function of the density ρ and isospin
asymmetry δ in an analogous fashion to LDM or DM expression. It can be expanded in a
series of δ as

E
A

(ρ, δ) ≡ E(ρ, δ) = E0(ρ) + S2(ρ)δ2 + S4(ρ)δ4 + O(δ6) (C.8)

E0(ρ) = E(ρ, 0) (C.9)

S2(ρ) =
1
2!
∂2E(ρ, δ)
∂δ2

∣∣∣∣∣∣
δ=0

(C.10)

S4(ρ) =
1
4!
∂4E(ρ, δ)
∂δ4

∣∣∣∣∣∣
δ=0

. (C.11)

where E0(ρ) is the energy per nucleon of symmetric nuclear matter. The second-order term
S2(ρ) ≡ S(ρ) is known as the so-called nuclear symmetry energy. The higher-order O(δ4)
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terms are very small and often neglected. Therefore, the energy per nucleon of pure neutron
matter (δ = 1) is approximately written as

E(ρ, 1) ≈ E(ρ, 0) + S(ρ). (C.12)

In order to understand the properties of the pure neutron matter such as a neutron star, we first
need to know the EOS of symmetric nuclear matter and the symmetry energy.

The symmetric EOS E0(ρ) around the saturation can be characterized by an equilibrium
density of ρsat ' 0.15 fm−3, an energy per nucleon of E0 ≡ E0(ρsat) ' −16 MeV, and a pressure
of P = ρ2dE0/dρ = 0. Thus, the symmetric EOS E0(ρ) around the saturation density is
expanded up to the fourth-order in density as

E0(ρ) = E0 +
K0

2!
ε2 +

J0

3!
ε3 +

I0

4!
ε4 + O(ε5), (C.13)

where ε = (ρ − ρsat/3ρsat) and the first-order coefficient of ε vanishes at saturation defined by
P = 0. The coefficient K0 is the so-called incompressibility of symmetric nuclear matter.

The symmetry energy S(ρ) and the fourth-order coefficient S4(ρ) in Eq. (C.8) are similarly
expanded around the saturation density as

S(ρ) = S(ρsat) + Lsymε +
Ksym

2!
ε2 +

Jsym

3!
ε3 +

Isym

4!
ε4 + O(ε5) (C.14)

S4(ρ) = S4(ρsat) + Lsym,4ε +
Ksym,4

2!
ε2 +

Jsym,4

3!
ε3 +

Isym,4

4!
ε4 + O(ε5), (C.15)

where Lsym(,4), Ksym(,4), Jsym(,4), and Isym(,4) are the slope, curvature, third-order, and fourth-order
coefficient of symmetry energy S(ρ) (S4(ρ)). The pressure of symmetry energy Lsym, which
is strongly correlated with the neutron skin thickness of heavy asymmetric nuclei, does not
vanish unlike the symmetric EOS.

The coefficients in Eqs. (C.13), (C.14), and (C.15), namely, E0, K0, J0, I0, S(ρsat), Lsym,
Ksym, Jsym, Isym, S4(ρsat), Lsym,4, Ksym,4, Jsym,4, and Isym,4, characterize the EOS of asymmetric
nuclear matter, especially, its density dependence around the saturation density. Among these
coefficients, E0, K0, and S(ρsat) have been well understood from recent theoretical and experi-
mental studies. However, others are still less certain and their predictions widely differ among
many mean-field models.

Isospin dependence of saturation properties By using these coefficients, the evolution
of the saturation properties such as the saturation density, the binding energy per nucleon, and
the incompressibility can be described as a function of the isospin asymmetry δ. The saturation
point is defined as

∂E(ρ, δ)
∂ρ

∣∣∣∣∣
ρ=ρsat(δ)

= 0, (C.16)
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where the saturation density ρsat(δ) is derived from Eqs. (C.8), (C.13), (C.14), (C.15):

ρsat(δ) =
1 − 3Lsym

K0
δ2 +

3KsymLsym

K2
0

−
3Lsym,4

K0
−

3J0L2
sym

2K3
0

 δ4 + O(δ6)
 ρsat,0, (C.17)

where ρsat,0 is redefined as the saturation density of symmetric nuclear matter. The binding
energy per nucleon at saturation density Esat(δ) ≡ E(ρsat(δ), δ) is also expressed up to fourth
order in δ as

Esat(δ) = E0 + S(ρsat,0)δ2 +

S4(ρsat,0) −
L2

sym

2K0

 δ4 + O(δ6). (C.18)

The incompressibility of asymmetric nuclear matter is generally defined as

K(ρ, δ) = 9
∂P(ρ, δ)
∂ρ

= 18ρ
∂E(ρ, δ)
∂ρ

+ 9ρ2∂
2E(ρ, δ)
∂δ2

= 18
P(ρ, δ)
ρ
+ 9ρ2∂

2E(ρ, δ)
∂δ2 , (C.19)

where P(ρ, δ) is the pressure of asymmetric nuclear matter and can be expressed as

P(ρ, δ) = ρ2∂E(ρ, δ)
∂ρ

. (C.20)

Therefore, the incompressibility of asymmetric nuclear matter at saturation Ksat(δ) ≡ K(ρsat(δ), δ)
where P(ρsat(δ), δ) = 0, is given by

Ksat(δ) = 9ρsat(δ)
∂2E(ρ, δ)
∂ρ2

∣∣∣∣∣∣
ρ=ρsat(δ)

(C.21)

= K0 +

(
Ksym − 6Lsym −

J0

K0
Lsym

)
δ2

+

(
Ksym,4 − 6Lsym,4 −

J0Lsym,4

K0

+
9L2

sym

K0
−

JsymLsym

K0
+

I0L2
sym

2K2
0

+
J0KsymLsym

K2
0

+
3J0L2

sym

K2
0

−
J2

0 L2
sym

2K3
0

 δ4 + O(δ6). (C.22)

Figures C.1 and C.2 show several typical theoretical calculations for the EOS of asymmet-
ric nuclear matter, namely, the non-relativistic SHF model using SIII, the RMF model using
TM1, the non-relativistic BHF calculation using AV18 interaction with or without three-body
force, and the relativistic DBHF calculation. It can be seen that the saturation point changes
depending on the isospin asymmetry.
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Figure C.1: The EOS of asymmetric nuclear matter from the Skyrme-Hartree-Fock (left panel)
and relativistic mean-field (right panel) model calculations. The solid curves correspond to
proton-to-neutron ratios of 0, 0.2, 0.4, 0.6, 0.8, and 1 (from top to bottom). Taken from [150].

Figure C.2: Same as Fig. C.1 from non-relativistic Brueckner-Hartree-Fock calculations
with or without three-body force (left and middle windows) and from the relativistic Dirac-
Brueckner-Hartree-Fock calculations (right window). Taken from [150].
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[72] A. Carbone, G. Colò, A. Bracco, L.-G. Cao, P. F. Bortignon, F. Camera, and O. Wieland,
Phys. Rev. C 81, 041301 (2010).

[73] B. A. Brown, G. Shen, G. C. Hillhouse, J. Meng, and A. Trzcińska, Phys. Rev. C 76,
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