Present Status from
the Experimental Study of
Neutral Kaon Photoproduction
around Threshold Region
at Tohoku-LNS

Masashi Kaneta
for the NKS2 collaboration
Department of Physics, Tohoku University
Introduction
Physics Motivation

• Investigation of strangeness production mechanism
 – Threshold region of production
 • No resonance decay
 – Good for comparison with models
 – Give theoreticians base data to address
 » coupling constant
 » resonance contribution
 – Small cross-section, i.e. high statistics data is required
 – Neutral channel in strangeness photo-production
 • Past experiments studied by K^+ production until 2002
 • Not enough data of differential cross-section of
 $\gamma+n \rightarrow K^0 + \Lambda(\Sigma^0)$
The Experiment

• The experiment of neutral kaon spectrometer at LNS-Tohoku
 - The first generation (NKS)
 • Used TAGX spectrometer of INS and successfully done in 2004
 - C target results: nucl-ex/067022 submitted to PLB
 - Liquid D$_2$ target results: will be submitted soon
 • Some weak points were found
 - No coverage on forward region
 - No Stereo wire in Chambers
 - The second generation of the experiment, NKS2
 • Constructed in 2004-2006 from scratch
 • Commissioning run
 - Mar., Jun., and Sep 2006 by Carbon target
 • The data taking with LD2 target
 - First data: Nov/2-Nov/11
 - more data taken in Nov/28-Dec/11
 - will be taken in Jan/15-29, Feb/13-26

results from this data set will be shown today
The NKS2 Collaboration

- **Department of Physics, Tohoku University**

- **Laboratory of Nuclear Science, Tohoku University**

- **Department of Electrical and Electric Engineering, Akita University**
 - A. Sasaki

- **Department of Electrical Engineering, Ichinoseki National College of Technology**
 - O. Konno
Tagged Photon Beam at LNS-Tohoku

- 200 MeV electron beam from LINAC
- 1.2 GeV Stretcher-Booster Ring
- Neutral Kaon Spectrometer 2
- Sweep magnet
- Photon tagging system

Masashi Kaneta, Tohoku Univ.
Tagged Photon Beam at LNS-Tohoku

- **Photon beam**
 - Electron beam on carbon wire
 - Tagged by electron which has energy loss
 - $E_\gamma = 0.8-1.1$ GeV
 - from 1.2 GeV electron beam
 - 6 MeV coverage per tagging counter
Photo of NKS2

Masashi Kaneta, Tohoku Univ.
Recent Results

from Nov/2-11 run
(3.2×10^{11} events)
Particle Identify (PID)

Opening angle cut
\[-0.9 < \cos \phi < 0.8\]
is required to reduce $e^+ e^-$

Red : proton region
Blue : pion region

Note:
There is a ghost between pion and proton due to shift of TOF, that is, the calibration is not perfect yet....
• Decay vertex is reconstructed from trajectories of positive and charged particle pair

This distribution is projected on beam axis direction

Opening angle cut

-0.9 < \cos \phi < 0.8

is required
Invariant Mass ($\pi^+\pi^-$)

- **cut A**: K^0_S candidate
- **cut B**: Λ candidate

We can see Lambda peak after applying cut B to all entries. The signal-to-noise (S/N) ratio increased after the cut. There are 3.2×10^{11} tagged photon events.

Masashi Kaneta, Tohoku Univ.
Invariant Mass ($\pi^- p$)

Number of counts

Zoom in

Invariant mass of $\pi^- p$ [GeV/c^2]

Number of counts

Invariant mass of $\pi^- p$ [GeV/c^2]
Summary
Summary

• The first data taking with liquid D$_2$ target in new spectrometer NKS2
 - all detectors become to be ready
 - no problem in liquid deuteron target system
 - \sim100 K^0_S and \sim300 Λ from run of Nov/2-11

• We have and will have more data
 - Nov/28-Dec/11 run have about 3 times data more than Nov/2-11
 - Two sets of the beam time in Jan and Feb.
 - two weeks in each
 - Total statistics will be ten times in this fiscal year
 - Some progresses will be shown in the next JPS meeting

• What is the next?
 - K^0_S and Λ coincidence measurement
 - three tracks requirement on/off-line
 - new vertex chamber to increase acceptance in vertical direction