Pentaquark hypernucleus and multi-quark states beyond 5

M. Yosoi, RCNP

- Motivation
- Theoretical predictions for the \(\Theta^+ \) hypernucleus
- What is the suitable reaction?
 - momentum transfer for several candidate reactions
 - ‘magic momentum’ in one baryon knockout reaction
- Experimental setup
- Summary
Motivation

- Another confirmation for the Θ^+ existence or at least existence of $S=+1$ nucleus

- Θ-N interaction: Θ-N scattering only studied through Θ-bound states → feedback to Θ^+ properties and internal structure

- Medium modification of Θ^+ very low $M^*(\Theta)$: $\Theta \rightarrow KN$, stable for the strong decay!

- Pentaquarks in neutron star
 If $U(\Theta^+)=-100$ MeV, 5% fraction of Θ in the core of compact star at $\rho=4\rho_0$ → limit of M_{nstar} is reduced
Need more reactivity in K^+-Nucleus dynamics \rightarrow more Θ^+ in K^+A?

- $t\rho$ optical potential did not explain K-A scattering and σ_R data at low energy in spite of weak K-N interaction.
- if add density dependent term

 $$t\rho \rightarrow t\rho(r) + B\rho\rho(r)$$

 good fit is taken.
- assume this ΔV_{opt} term is due to

 $$K^+nN \rightarrow \Theta^+N$$

 process, the absorption cross section is \simmb!

Gal, Friedman, PRL94,072301(2005)

FIG. 1. Data and calculations for K^+ reaction cross sections per nucleon (σ_R/A) at $p_{lab} = 488$ MeV/c are shown in the upper part. Calculated K^+ absorption cross sections per nucleon (σ_{abs}/A) are shown in the lower part; see text.
Schematic model by Miller

- Θ is treated as a nucleon vibration due to the coherent $q\bar{s}$ excitation (like giant dipole resonance)
 - $q\bar{s}$: pseudoscalar, $L=1$ (positive parity of Θ)
 - number of states: $3(\text{color}) \times 3(L_z) \times 2(u\bar{s} \text{ or } d\bar{s}) = 18$
- determine the V (interaction between $q\bar{s}$ and N) and μ (mass of $q\bar{s}$) to reproduce M_Θ
- In ΘN system, coherent cloud also interacts with another N via V
- \rightarrow Very large attractive ΘN potential
 - $U(r) \sim -490\text{MeV}$ at $\rho = \rho_0$!
Selfenergy of Θ^+ associated with decay loops

H-C. Kim et al., J. Kor. Phys. Soc.46, 393(2005)
Cabrera et al., PLB608, 231(2005)

- Selfenergy of Θ in nuclei is evaluated with decay channels
- Only with KN channel \to too weak to bind Θ
- Add $K\pi N$ channel
 \to strong attractive potential
Assume Θ is $\frac{1}{2}^+$. SU(3) antidecouplet Couplings are chosen to reproduce $N^*(1710) \to N\pi\pi$ and SU(3) symmetry
- $U(r)= -60 \sim -120$ MeV, width:
 Pauli blocking and binding \to reduce $K\pi N$ channel \to broaden, but not large
Mean field approach

QMC model: Panda et al., PRC72,058201(2005)
Ryu et al., PRC72,045206
RMF model: Zhong et al., PRC71,015206; PRC72,065212
QMF model: Shen, Toki, PRC71,065208

- Baryons in nuclear medium interact through the scalar (σ) and vector meson (ω, ρ) fields
- Coupling constants in nuclear sector ($g_\sigma^N, g_\omega^N, g_\rho^N$) and m_σ are determined to produce nuclear saturation properties
- For Θ, assume $g_\sigma^\Theta=4/3g_\sigma^N$, $g_\omega^\Theta=4/3g_\omega^N$, ($g_\rho^\Theta=0$ if $\Theta(I=0)$) because σ, ω and ρ couple only to u and d quarks
 (for Λ, $g_\sigma^\Lambda=2/3g_\sigma^N$, $g_\omega^\Lambda=2/3g_\omega^N$)
- $U = U_s + U_v \sim g_\sigma^\Theta \sigma_0 + g_\omega^\Theta \omega_0$
Mean field approach

- RMF: $U = -50 \sim -90$ MeV for the point-like Θ but -90 MeV \rightarrow -37.5 MeV for Θ as a $K\pi N$ bound state
- QMF: $U = -50$ MeV
QCD sum rule of Θ^+ in nuclear matter

Navarra et al., PLB606, 335(2005)

- Σ_s: positive and Σ_v: negative!
- But $U = \Sigma_s + \Sigma_v$ is still negative:
 $U = -40\sim -90$ MeV
 strongly depends on the value of the gluon condensate

Fig. 2. The ratio m^*_Θ/m_Θ (solid line), the vector and scalar self-energies (dotted and dashed lines, respectively) as functions of the Borel parameter M^2, for $y = 0.3$.

9 January 2007 LEPS2-WS@RCNP
Summary of the theoretical predictions for $\Theta^+(1/2^+)$

- Miller’s schematic model: $U(\Theta^+)< -100$ MeV
- Hadronic SU(3) approach: $U(\Theta^+)= -60$–-120 MeV
 (selfenergy associated with KN and $K\pi N$ decays)
- Mean field theory
 RMF model: $U(\Theta^+)= -37.5$–-90 MeV
 QMF model: $U(\Theta^+)$~-50 MeV
- QCD sum rule: $U(\Theta^+)= -40$–-90 MeV

All give sufficiently large attractive potentials to bind Θ^+ in nucleus, but what is the bridge between different models?
What is the suitable reaction for producing Θ^+ hypernucleus?

- Elementary one-nucleon or two-nucleon process can produce Θ^+ with reasonable cross sections
- Two-body reaction process is preferable to the missing mass spectroscopy
- Momentum difference between the produced Θ^+ and the recoil nucleus should be small
 \rightarrow small momentum transfer q in Lab system
- Small background (BG) process or some BG reduction methods should exist:
 \rightarrow coincidence with backward decay products
Momentum transfer in \((K^+, \pi^+\)) reaction

\((\Theta^+\) has still not been found in \(p(K^+, \pi^+)X\))

- not small \(q\)
- but possible for \(\Theta^+\) bound nucleus

Use

\[M(\Theta^+) = 1535\ \text{MeV}\]
Calculated spectra of $^{12}\text{C}(K^+,\pi^+)^{11}\text{B}_0$ reaction

Nagahiro et al., PLB620,125(2005)

$V(r) = -60$ MeV

$V(r) = -120$ MeV
Momentum transfer in \((\gamma,K^+)\) reaction

\[(\Theta^+ \text{ has been found in } 'n'(\gamma,K^+)X \text{ at LEPS})\]

- large \(q\)
- not good for \(\Theta^+\) bound nucleus

\[\gamma + A \rightarrow K^- + \Theta^+(A-1)\]

\[(\theta_K = 0^\circ)\]

\[S_n = E_B(\Theta)\]
Momentum transfer in \((\gamma, \Lambda(1116))\) reaction

\((\Theta^+ \text{ has still not been found in } d(\gamma, \Lambda)X \quad (\Lambda \rightarrow p\pi^-))\)

- very small \(q\)
- magic momentum around 1670 MeV
Momentum transfer in $\gamma, \Lambda^*(1520)$ reaction

(Θ^+ has been found in $d(\gamma, \Lambda^*)X$ at LEPS ($\Lambda^* \rightarrow pK^-$))

• small q, especially, above 2 GeV

• magic momentum around 3220 MeV (higher than LEPS energy)
Momentum transfer in \((K^+, p)\) reaction

\((\Theta^+ \text{ has not been searched in } d(K^+, p)X)\)

- small \(q\), even at 1400 MeV (1.8 GeV/c)
- magic momentum around 270 MeV
- should be done at J-Parc!

\[
K^+ + A \rightarrow p + \Theta^+ \cdot (A-2) \\
(\theta_p = 0^\circ) \\
S_d = E_B(\Theta)
\]
Comment on $\gamma d \rightarrow \Theta^+ \Lambda^* (1520)$

if K^+ is on shell ($m_K^2 = \varepsilon_K^2 - \vec{p}_K^2$) and
Θ is produced only at the formation energy
$((\varepsilon_n + \varepsilon_K)^2 - (\vec{p}_n + \vec{p}_K)^2 = M_\Theta^2)$
⇒ calculate p_n dependence of
the Θ^+ production rate

$\gamma d \rightarrow pp\pi$

p_p (slow p) distribution
Multi-quark state beyond 5
-- 8 quark dibaryon candidate --

- If a Θ^+N bound state is found, it could be a candidate of exotic 8 quark state
- e.g.) 3He(γ,Λ^*)2H$_\Theta$ or 3He(γ,Σ^+)${}^2[n\Theta]$
Detector setup

- Good missing mass resolution and acceptance for forward going $\Lambda(\rightarrow p\pi^-)$, $\Lambda^*(\rightarrow pK^-)$ [if possible, $\Sigma^+(\rightarrow p\pi^0, n\pi^+)$]
- Coincidence measurement with decay products, especially, at backward angles, which have relatively low momentum
Summary

• Pentaquark hypernucleus is interesting and important for another confirmation of Θ^+ and the study of the ΘN interaction.

• Several theoretical model calculations predict the existence of bound Θ^+ states, although the mutual relations between different models are not clear.

• Momentum transfer for the Θ^+ production process is small in one baryon knockout reactions at forward angles like (γ,Λ), (γ,Λ^*), and (K^+,p).

• Suggest an idea of adding a small solenoid to detect the backward decay products in addition to the E949 detector. (any detailed study has not been done yet.)