NEWS seminar, August 23rd, 2019, RCNP

Review on Sterile Neutrino Experiments

Tatsushi Shima

Research Center for Nuclear Physics, Osaka University, Japan

- 1. Property of Sterile Neutrino (v_s)
- 2. Experimental evidences of v_s Accelerator experiment, Source experiment, Reactor experiment
- 3. Cosmological constraint
- 4. Summary

1. Property of Sterile Neutrino

Active neutrino; Q=0, T₃=-1/2, Y_W=+1 SU(2) × U(1)_Y doublet with charged leptons \rightarrow normal weak interaction $v_{T} \leftrightarrow v_{R}^{C}$ by CP transform

Sterile neutrino; Q=0, $T_3=0$, $Y_W=0$ SU(2) × U(1)_Y singlet

 \rightarrow no coupling with W, Z, couple with Higgs only

 $v_R \leftrightarrow v_L^C$ by CP transform

Mass term

Standard model;

$$\psi_L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}, \quad \psi_R = e_R$$

$$L_m = g\left(\overline{\psi}_L \phi \psi_R + \overline{\psi}_R \phi^{\dagger} \psi_L\right) = \frac{g}{\sqrt{2}} \left(\overline{vee} + H\overline{ee}\right) \text{, where } \phi \text{ is a Higgs field.}$$

Dirac mass with right-handed neutrino;

$$L_D = \frac{1}{2} m_D g \left(\overline{\nu}_R v_L + \overline{\nu}_L v_R \right) = \frac{1}{\sqrt{2}} h_v \left\langle \phi_0 \right\rangle \overline{\nu}_D v_D , \quad v_D \equiv v_L + v_R$$

Majorana mass;

$$L_{M} = \frac{1}{2} m_{M} \left(\vec{v}_{L} v_{L} + \vec{v}_{L} v_{R}^{C} \right) = \frac{1}{2} m_{M} \vec{v}_{M} v_{M}$$
$$v_{L}^{C} = v_{R} , v_{R}^{C} = v_{L} , v_{M} \equiv v_{L} + v_{R}^{C} = v_{M}^{C}$$

Sterile neutrino

- introduced to solve anomalies in short baseline
 v-oscillation experiments
- singlet fermion of gauge interactions \rightarrow right-handed v
- beyond SM, beyond minimal GUT like SU(5)
- sensitive to only gravity, but affects v-oscillations
- possible candidate of cold or warm dark matter

Z-boson decay width@LEP

S. Schael et al., Phys. Rept. 427, 257 (2006)

2. Experimental evidences of v_s

Exp.	v source	Signal	Significance	E _v [MeV]	L [m]
LSND	μ Decay-At- Rest	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	3.8σ	40	30
MiniBooNE	π Decay-In- Flight	$\nu_{\mu} \rightarrow \nu_{e}$	3.4σ		600
		$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	2.8σ	800	
		Combined	3.8σ		
Ga	e capture	$v_e \rightarrow v_x$	2.7σ	<3	10
Reactors	Beta decay	$\bar{v}_e \rightarrow \bar{v}_x$	3.0σ	3	101-2

Neutrino oscillation (short-baseline limit) $\frac{L[m]}{E_{\nu}[MeV]} \sim 1$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \\ v_{\varsigma} \\ \bullet \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \bullet \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \bullet \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \bullet \\ U_{S1} & U_{S2} & U_{S3} & U_{S4} & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ \bullet \end{pmatrix}$$

Flavor eigenstate

Mass eigenstate

$$m_{4} \gg m_{1,2,3} , \quad U_{S4} \sim 1 \gg U_{e\mu\tau,4}$$

$$P(v_{e} \rightarrow v_{\mu}) = -4 \sum_{i=1,2,3} \left(U_{e4}^{*} U_{\mu4} U_{ei} U_{\mu i}^{*} \right) \sin^{2} \frac{\left(m_{4}^{2} - m_{i}^{2} \right) L}{4E_{v}} \sim 4 \left| U_{e4} \right|^{2} \left| U_{\mu4} \right|^{2} \sin^{2} \frac{\Delta m_{4}^{2} L}{4E_{v}}$$

LSND (Liquid Scintillator Neutrino Detector)

A. Aguilar et al., Phys. Rev. D64, 112007 (2001).

DAR v_e ; 10.58×10¹³ /cm²

Liquid Scintillation Detector

Spatial resolution; Δ =20cm (rms) Fiducial volume; S=14.8m², L=6.90m \rightarrow V=102m³

Electron-like events; energy/angular distributions

Oscillation parameter (as of 2001)

MiniBooNE (Mini Booster Neutrino Exp. @FNAL)

New Experiment@FNAL

ICARUS + MicroBooNE + LAr1 \rightarrow Better discrimination of e⁻, π^0 and single γ

Triple LAr @ FNAL goal

50 GeV

Linac

J-PARC

Neutrino

Hadron Exp. Facility

J-PARC Sterile Neutrino Search using vs from J-PARC Spallation Neutron Source (E56)

JSNS² collaboration

Spokesperson; T. Maruyama (KEK)

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵, Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁶, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, K. K. Joo¹⁰, J. Jordan⁶, S. K. Kang¹¹, T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹², J. Y. Kim¹⁰, S. B. Kim¹³, W. Kim¹⁴, K. Kuwata⁴, E. Kwon¹³, I. T. Lim¹⁰, T. Maruyama^{*15}, S. Meigo⁵, S. Monjushiro¹⁵, D. H. Moon¹⁰, T. Nakano¹, M. Niiyama¹⁶, K. Nishikawa¹⁵, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁵, S.J.M. Peeters¹⁷, H. Ray¹⁸, C. Rott¹⁹, K. Sakai⁵, S. Sakamoto⁵, H. Seo¹³, S. H. Seo¹³, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu²⁰, F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁵, T. Torizawa⁷, J. Waterfield¹⁷, R. White¹⁷, M. Yeh²¹, and I. Yu¹⁸

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soonasil University, Scoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN ⁵ J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwangju Institute of Science and Technology, Gwangju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Chonnam National University, Gwangiu, 61186, KOREA ¹¹School of Liberal Arts, Scoul National University of Science and Technology, Seoul, 139-743, KOREA ¹²Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹³Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁴Department of Physics, Knungpook National University, Daenu 41566, KOREA ¹⁵High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁶Department of Physics, Kyoto University, Kyoto, JAPAN 17 Department of Physics and Astronomy, University of Susser, Brighton, UK ¹⁸University of Florida, Gainesville, FL, 32611, USA ¹⁹Department of Physics, Sungkyunkwan University, Gyeong Gi-do, KOREA ²⁰University of Alabama, Tusculoosa, AL, 35487, USA ²¹Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

57 collaborators from Japan, Korea, US, UK

http://research.kek.jp/group/mlfnu/

Time profile of neutrino beam

- Pulse width; 80ns ×2 (double pulses, 540ns interval)
- Repetition rate; 25Hz
- v from decay-at-rest µ ;
 well separated from
 beam pulse

\rightarrow low background

Detector

Gd-loaded liq. scintillator or/and Cherenkov, 25 ton \times 2, detecting

 $\overline{v_e} + p \rightarrow n + e^+ \text{ (prompt)}$ $n + {}^{157}Gd \rightarrow {}^{158}Gd + \gamma \text{ (delayed; Q~8MeV, } \tau_{cap} \sim 30 \mu \text{s)}$ (253000b@thermal)

Prompt; $t_e = 1 \sim 10 \mu s$, $E_e = 20 \sim 60 MeV$ Delayed; $t_{\gamma} = 1 \sim 100 \mu s$, $E_{\gamma} = 7 \sim 12 MeV$

 \rightarrow Delayed coincidence

Merits of JSNS²

Neutrino beam

	Facility	Beam Pow. [MW]	Rep. Rate [Hz]	Pulse Width [ns]	Duty Factor
JSNS ²	J-PARC/MLF	1	25	620	1.55e-5
LSND	LANL/LAMPF	0.8	120	6e+5	0.072
KARMEN	RAL/ISIS	0.16	50	430	2.15e-5

--- $\Phi_v \sim 10 \times \text{KARMEN}$ S/N > 1000×LSND

Detector

	Туре	Mass [t]	L [m]
JSNS ²	Gd-LS PSD	50	24
LSND	LS	167	30
KARMEN	LS + Gd coating	56	17.7

 \rightarrow Prof. Ejiri's talk

 $L \sim a$ few m

Energy deposit vs Rise time

	K α_1 [keV]	L [keV]
Ga	9.252	1.1
Ge	9.886	1.19

$\Delta E/E(FWHM) \sim 10\%@10 keV...$

⁵⁰ Direct signals of more energetic electrons can be distinguished with rise times.

However, it is difficult to distinguish signals from the excited Ge atoms ...

Reactor experiments

 $\overline{\nu}_e \rightarrow \nu_S$

3. Cosmological constraint

- > Scale factor; $a(t) \rightarrow \text{DOF}$ of fermion gas $\rightarrow N_{\text{eff}}$
- > Dark matter density; $\Omega_{V} \rightarrow \sum_{i} m_{i}$

Observables

- Unisotropy of Cosmic Microwave Background (CMB)
- Large-scale structure (LSS), galaxy formation
- Big-bang nucleosynthesis (BBN)

J. Hamann et al., J. Physics: Conf. Ser. 375 (2012) 032003

CMB+LSS (combined dta; WMAP, ACBAR, BICEP, QuAD, SDSS, Union-2, HST)

J. Hamann et al., J. Physics: Conf. Ser. 375 (2012) 032003

BBN; D+⁴He

Solid; $\tau_n = 878.5s$ Black; BBN only Dashed; $\tau_n = 885.7s$ Red; with CMB+LSS

4. Summary

- Sterile neutrino can be naturally introduced in GUTs beyond minimal SU(5).
- It can be Majorana type $\rightarrow 0\nu\beta\beta$
- Short-baseline experiments suggest $\Delta m^2 \sim 1 eV^2$ and $sin^2 2\theta = 10^{-3} 10^{-2}$ (but not all).
- Many new experiments with accelerator neutrinos are planned or on-going.
- Cosmological constraint is important as complementary one.
 → PLANCK data A.M. Knee, D. Contreras, D. Scott,
 J. Cosm. Astr. Phys., July2019