Neutrino reactions in the nucleon resonance region

Toru Sato

RCNP, Osaka University/J-PARC branch of KEK Theory Center

Collaborators

S.X. Nakamura, H. Kamano, T.-S. H. Lee, Jia-Jun Wu (KEK-theory center collaboration Y. Hayato, M. Hirai, W. Horiuchi, S. Kumano, K. Saito, M. Sakuda)

 Rep. Prog. Phys. 80 056301,1-38 (2017), S.X. Nakamura et al. Prog. Part. Nuc. Phys. 100 1-68 (2018), L. Alvarez-Ruso et al.

Phys. Rev. **C88** 035209 1-51 (2013), H. Kamano et al. Phys. Rev. **D92** 074024 1-33 (2015), S. X. Nakamura et al.

Phys. Rev. **C67** 065201 (2003), T. Sato et al. Phys. Rev. **D86** 097503 (2012), H. Kamano et al. Phys. Rev. **D98** 073001 (2018), J. E. Sobczyk et al.

Contents

- introduction
- models of neutrino reaction in RES
- ANL-Osaka coupled channel model brief description of the formalism pion, photon, electron induced reaction neutrino reaction
- Axial vector current

- CP violation
- Mass ordering
- improve accuracy of θ_{23}

Experimentally allowed ranges for the oscillation parameters from a global fit to neutrino oscillation data. (Prog. Part. Nucl. Phys. 100(2018)1 Table 1) angle(degree), $\Delta m_{ii}^2 (eV^2)$, normal $(m_1 < m_2 < m_3)$, invertex $(m_3 < m_1 < m_2)$

	θ_{12}	θ_{13}	θ_{23}	$\Delta m_{21}^2 / 10^{-5}$	$\Delta m_{3j}^2 / 10^{-3}$	δ_{CP}
Normal	$33.56_{-0.75}^{+0.77}$	$8.46^{+0.15}_{-0.15}$	$41.6^{+1.5}_{-1.2}$	$7.50^{+0.19}_{-0.17}$	$2.524^{+0.039}_{-0.040}$	261^{+51}_{-59}
Inverted	$33.56\substack{+0.77\\-0.75}$	$8.49^{+0.15}_{-0.15}$	$50.0^{+1.1}_{-1.4}$	$7.50^{+0.19}_{-0.17}$	$-2.514\substack{+0.038\\-0.041}$	277^{+40}_{-46}

Oscillation probability $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, expanding in small quantities

$$\begin{aligned} P_{\mu e} &= s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp L}}{2}\right) + c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{21}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \\ &+ \tilde{J} \frac{\Delta_{21}}{A} \frac{\Delta_{31}}{\tilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\tilde{B}_{\mp L}}{2}\right) \cos\left(\mp \delta_{CP} - \frac{\Delta_{31}L}{2}\right), \end{aligned}$$

 $\Delta_{ij} = \Delta m_{ij}^2 L/2E, A = \sqrt{2}G_F N_e, \\ s_{ij} = \sin\theta_{ij}. \\ \\ \tilde{J} = c_{13}\sin^2 2\theta_{13}\sin^2 2\theta_{12}\sin^2 2\theta_{23}, \\ \\ \tilde{B}_{\mp} = |A \mp \Delta_{31}|$

- surpression factor $\theta_{31}, \Delta_{21} \rightarrow \text{challenging measurement}$
- matter effects violate CP \rightarrow hindering singnal of δ_{CP}
- $\bullet\,$ necessary to identify neutrino flavour and reconstruct neutrino energy \to needs a solid knowledge of neutrino interaction

HK Atmospheric neutrino and MH

T2HK and CP

ArXiv:1805.04163 HK Design Report

$$\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})} \sim -0.27 \sin \delta_{CP} + 0.09$$

Importance of SIS/DIS in the atmospheric neutrino studies

Y. Hayato, NuInt2018 (Gran Sasso)

List of currently operating and future long-baseline neutrino experiments (Prog. Part. Nucl. Phys. 100(2018)1 Table 2)

Experiment	Baseline	Peak energy	Energy range	Target	Detector	Fiducial Mass
Current:						
T2K	295 km	0.6 GeV	0.3–0.8 GeV	H_2O	WC	22.5 kton
NOvA	810 km	2 GeV	1.5–2.7 GeV	CH_2	Tracking+Calorimetry	13 kton
Future:						
T2HK	295 km	0.6 GeV	0.3–0.8 GeV	H_2O	WC	520 kton
DUNE	1300 km	2 GeV	0.6-3.3 GeV	Ār	Tracking+Calorimetry	40 kton

• Importance of knowledge on neutrino reaction in N^*, Δ resonance and DIS region

$$N_{\mathsf{FD}}^{\alpha \to \beta}(\boldsymbol{p}_{\mathsf{reco}}) = \sum_{i} \phi_{\alpha}(E_{\mathsf{true}}) \times P_{\alpha\beta}(E_{\mathsf{true}}) \times \sigma_{\beta}^{i}(\boldsymbol{p}_{\mathsf{true}}) \times \epsilon_{\beta}(\boldsymbol{p}_{\mathsf{true}}) \times R_{i}(\boldsymbol{p}_{\mathsf{true}}; \boldsymbol{p}_{\mathsf{reco}}),$$

NuSTEC(Neutrino Scattering Theory Experiment Collaboration https://nustec.fnal.gov/)

Shallow and Deep Inelastic Scattering(Gran Sasso 2018) Neutrino-Nucleus Pion Production in the Resonance Region(Pittsburgh 2019)

• $\Delta(1232)$ region:

single pion production, $\Delta(1232)$ dominant mechansim($\nu p \rightarrow \mu^{-} \pi^{+} p$)

Beyond delta resonance:

Multi-pion(mainly 2π) production including $\eta N, K\Lambda, K\Sigma, , ,$

 N^* and Δ resonances $M_R < 2 GeV$

• Neutrino event generator (NEUT, GENIE)

mix Single-pion production (Resonance isobar model) + multi-pion(DIS)

Pion production in the resonance region

No $2\pi/3\pi$ resonances No DIS contribution to single pion production below W<2 GeV 4

C. Bronner, NuSTEC workshop pion production 2019, Pittsburgh)

Isobar model

neutrino:

RS: D. Rein, L. M. Sehgal AP133(81)
LPP: O. Lalakulich, E.A. Paschos, G. Piranlshvili, PRD74(2006)
HNV: E. Hernandez, J. Nieves, M. Valverde PRD76(2007)
R. Gonzales-Jimenes et al. PRD95,113007(2017)+Regge
pion, photon:Bonn-Gatchina, VPI/GWU, MAID, Jlab/Yerevan ...: amplitudes analysis

• Dynamical coupled channel model

Neutrino, pion, photon, electron: SL, ANL-Osaka pion, photon: Jeulich-Bonn, Dubuna-Mainz-Taipei

Isobar model:single pion production

- Rein-Sehgal model(in generators): resonance parameter from PDG + phen. non-resonant mechanism
- Valencia model(E. Hernandez, J. Nieves, M. Valverde):
 Δ(1232) + non-resonant from chiral L, unitarity correction
- Amplitudes(resonance, non-resonance) of isobar-model have to be tested against data of pion, photon, electron induced meson production reactions

Need to describe well resonant/non-resonant mechanism and unitarity

ANL-Osaka DCC model

Model developed for N^* physics: spectrum of nucleon excited states, transition form factors

- Fock-Space:isobar(N^*, Δ), Meson-Baryon ($\pi N, \eta N, K\Lambda, K\Sigma, \pi \pi N(\pi \Delta, \rho N, \sigma N)$)
- Interaction:isobar excitation and non-resonant meson-baryon interaction
- Coupled-channel(Lippmann-Schwinger)equation is solved numerically.

$$T = V + VG_0T$$

Physics included inside \boldsymbol{V}

Resonance energy, coupling constants are obtained from the pole of S-matrix:

ANL-Osaka DCC model

JLSM: B.Julia-Diaz,T.-S.H. Lee,A. Matsuyama, T. Sato PRC76,065201(2007) ANL-Osaka:PRC88,035209 (2013)

channel coupling: unitarity → amplitudes of MB channels are related signal of resonances might be enhanced at some channel(inelastic reaction) near threshold of opening channel → a few partial wave, enhanced sensitivity complex analytic structure of amplitudes $< MB | J^{\mu}_{\alpha} | N >$

$$\begin{split} J^{\mu}_{em} &= V^{\mu}_{3} + V^{\mu}_{IS} \\ J^{\mu}_{CC} &= V^{\mu}_{1+i2} - A^{\mu}_{1+i2} \quad (\Delta S = 0 \text{ current without CKM}) \\ J^{\mu}_{NC} &= V^{\mu}_{3} - A^{\mu}_{3} - 2\sin^{2}\theta_{W}J^{\mu}_{em} - \frac{1}{2}\bar{s}\gamma^{\mu}(1-\gamma_{5})s \end{split}$$

 The model is constructed by fitting available data on pion, photon, electron induced meson production reaction(two-body final state). (Recent model: H. Kamano,S.X. Nakamura,T. -S. H. Lee, TS PRC88,035209(2013)

 $\begin{array}{rcl} \pi p & \rightarrow & \pi N, \eta N, K\Lambda, K\Sigma \\ \gamma p & \rightarrow & \pi N, \eta N, K\Lambda, K\Sigma \\ ep & \rightarrow & e'\pi N \end{array}$

- the model is extended for γn H. Kamano,S.X. Nakamura,T.-S. H. Lee,TS PRC94 015291 (2016)
- Axial vector current: $g_A^{NN^*}$ from $g_\pi^{NN^*}$ assuming PCAC and dipole form factor.
 - \rightarrow Neutrino:S. X. Nakamura,H. Kamano, TS,PRD92 07402(2015)

T. Sato (Osaka U.)

Neutrino reaction in RES

Pion, photon and Electron induced reaction (DCCmodel)

Total cross section of pion induced reaction

pi N \rightarrow pi pi N reaction

ANL-Osaka Partial-Wave Amplitudes (PWA) H.Kamano, T.-S. Lee, S.X. Nakamura, T.Sato, arXiv:1909.11935v1 (Right: H. Kamano Baryon2010)

ANL-Osaka Partial-Wave Amplitudes (PWA) H.Kamano, T.-S. Lee, S.X. Nakamura, T.Sato, arXiv:1909.11935v1

Total cross section of p(e, e')

T. Sato (Osaka U.)

• $\gamma N\Delta$ transition form factors are determined from the angular distribution of pion. G_M (main term) sensitive to $\frac{d\sigma_T}{d\Omega_{\pi}} + \epsilon \frac{d\sigma_L}{d\Omega_{\pi}}$, $G_E: \frac{d\sigma_T T}{d\Omega_{\pi}}$, $G_C: \frac{d\sigma_L T}{d\Omega_{\pi}}$

T. Sato (Osaka U.)

Neutrino reaction in RES

Oct. 24 2019 RCNP 22 / 40

Neutrino induced reaction

$d\sigma/dW E_{\nu} = 2GeV$

T. Sato (Osaka U.)

Oct. 24 2019 RCNP 24 / 40

- $\Delta(1232)$ gives most important contribution for all channels.
- qualitative test of model on W dependence.

J. Sobczyk, E. Hernandez, S.X. Nakamura, J. Nieves, T. Sato PRD98(2018)073001

- Re-analyzed ANL/BNL data, C. Wilkinson et al. PRD90
- ANL-Osaka DCC, PRD92, Hernandez, Nieves, Valverde PRD76

Caution on $\sigma(\nu N)$ of ANL/BNL data extracted from $\sigma(\nu d)$. About $10 \sim 30\%$ correction due to FSI effects should be corrected S. Nakamura, H. Kamano, T. Sato PRD99,031301(R)(2019)

Angular distribution of pion

Anuglar distribution of pion is sensitive to the interference among partial waves

$$\langle Y_{lm} \rangle = \frac{\int d\Omega_{\pi} Y_{lm}^* \frac{d\sigma}{dW d\Omega_{\pi}}}{\int d\Omega_{\pi} Y_{00}^* \frac{d\sigma}{dW d\Omega_{\pi}}}$$

 $< Y_{lm} >$ ANL-Osaka Model (preliminary) ($\bar{\nu}p \rightarrow \mu^+ p\pi^-$, $E_{\nu} = 20 GeV$)

Data:NPB343 (1990)D. Allasia et al T. Sato (Osaka U.)

total cross section $(\sigma_p + \sigma_n)/2E_{\nu}$

ANL-Osaka model(W < 2.1 GeV, $Q^2 < 3 GeV^2$ (preliminary), nucleon)

Note: in this model, strangeness, charm production is not included.

J. A. Formaggioand G. P. Zeller, Rev. Mod. Phys. 84(2012) 1307

T. Sato (Osaka U.)

Axial Vector Current

How good our Axial vector current?

- $Q^2 = 0$: data of πN elastic, total cross section
- $Q^2 \sim 1 2 GeV^2$: Parton model
- Adler's sum rule

$$1 = [g_A(Q^2)]^2 + \int_{\nu_{th}}^{\infty} [W^A_{2,n}(\nu,Q^2) - W^A_{2,p}(\nu,Q^2)] d\nu$$

F_2^{CC} and pi-N cross section ($Q^2 = 0$)

Axial Vector current F_2^{CC} (total cross section) at $Q^2=0$

• Description of axial vector current at $Q^2 = 0$ is consistent with pion scattering data.

• Parton Picture(Isospin-symmetry, neglect *s*)

$$F_2^{EM} = \frac{x}{2} \left(\left[\left(\frac{2}{3}\right)^2 u_p + \left(\frac{1}{3}\right)^2 d_p \right] + \left[\left(\frac{2}{3}\right)^2 u_n + \left(\frac{1}{3}\right)^2 d_n \right] \right) = x \frac{5}{18} (u+d)$$

$$F_2^{CC} = \frac{x}{2} (d_p + d_n)(1+1) = x(u+d) = \frac{18}{5} F_2^{EM}$$

Hadron picture

$$\begin{array}{ll} F_2^{EM} & \sim & \sum_f |< f |V_3 + V_{IS}|N > |^2 \\ F_2^{CC} & \sim & \sum_f [|< f |V_{1+i2}|N > |^2 + |< f |A_{1+i2}|N > |^2] \end{array}$$

• Electromagnetic structure function of proton

Does DCC model describe boundary between RES and DIS ?

• Charged Current $[F_{2p}^{CC} + F_{2n}^{CC}]/2$

- Missing Strength in higher W region
- \bullet around $W\sim 2GeV, Q^2=1\sim 2GeV^2$, $F_2^{CC}\sim |V|^2.$
- Question on Quark-Hadron duality in neutrino reaction PRC 75 015202(2007), Lalalulich et al.

 $\Delta(1232)$: Left Electron Scattering(EM), Right Neutrino reaction(CC)

PRC75,015205(2007)(EM), PRC67,65201 (2003)(CC)

Example of transition form factors $N^*(1/2, 1/2^+)$

 Vector(EM): Helicity amplitudes extracted from the residue of partial wave amplitude(DCC-model) at resonance pole (figure from H. Kamano)

Axial Vector (Quark model)

PRC75,065203 (2007) D. Barquilla-Cano, A.J. Buchmann, E. Hernandez

T. Sato (Osaka U.)

Neutrino reaction in RES

$$A^\lambda_A(Q^2) = A^\lambda_A(0) \times \frac{A^\lambda_V(Q^2)}{A^\lambda_V(0)} \quad \text{except} \ \ P_{33}$$

Modify Q^2 dependence of axial N-'bare' resonance form factor. (Meson cloud part is not modified)

preliminary

T. Sato (Osaka U.)

Parity Violating Asymmetries

Parity violating asymmetry of $d(\vec{e}, e')$ reaction

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = -\frac{Q^2 G_F}{\sqrt{24\pi\alpha}} \frac{N}{D}$$

$$N = \cos^2 \frac{\theta}{2} W_2^{\gamma Z} + \sin^2 \frac{\theta}{2} [2W_1^{\gamma Z} + (1 - 4\sin^2 \theta_W) \frac{E_e + E'_e}{M_N} W_3^{\gamma Z}]$$

$$D = \cos^2 \frac{\theta}{2} W_2^{em} + \sin^2 \frac{\theta}{2} W_1^{em}$$

~

The PVDIS Collaboration PRC91 045506 (2015) ($E_e = 4.867 GeV, \theta = 12.9^o$)

T. Sato (Osaka U.)

Neutrino reaction in RES

https://www.phy.anl.gov/theory/research/anl-osaka-pwa

- Resonance parameters(Pole position, residue, helicity amplitudes)
- Partial wave amplitudes $\pi, \gamma, \gamma^* N \to \pi N, \eta N, K\Lambda, K\Sigma$ and $\pi N \to \sigma N, \rho N, \pi \Delta$
- Tables of Structure functions $W_i(W,Q^2)$ for EM,CC,NC

$$\frac{d\sigma}{d\Omega_{l'}dE_{l'}} = \frac{G_F^2 C_\alpha^2 |\mathbf{p}_l| E_l}{2\pi^2} \left[2W_1 \sin^2 \frac{\chi}{2} + W_2 \cos^2 \frac{\chi}{2} + \frac{W_3}{M_N} \left((E_\nu + E_l) \sin^2 \frac{\chi}{2} - \frac{m_l^2}{2E_l} \right) + \frac{m_l^2}{M_N^2} W_4 \sin^2 \frac{\chi}{2} - \frac{m_l^2}{M_N E_l} W_5 \right]$$

 $C_{\alpha} = V_{ud}^2/(1+Q^2/m_W^2) \ [C_{\alpha} = 1/(1+Q^2/m_Z^2)]$ for CC [NC]. $\cos \chi = |\mathbf{p}_l|/E_l \cos \theta_l$

- ANL-OSAKA DCC model is extended to describe weak meson production reaction up to W < 2 GeV.
- $\bullet\,$ Neutrino induced single pon production in N^*,Δ resonance region is studied using ANL-Osaka model.

 $\label{eq:comparison} Comparison with Neutrino event generators (NEUT, GENIE, NuWro, ...) and other models will be very useful.$

 Model of axial vector current is examined. At Q² = 0, DCC model reproduce πN data. Comparison with PDF at high Q², suggests need for more strength at high W region. Improvement of axial transition form factors is important. PV asymmetry, in principle, gives information of axial vector current.