NEWS DBD Hiro Ejiri Greenary Nimph 翠の精

Fundamental questions of neutrinos

- **Neutrinos are KEYs for new physics:**
- **1. Lepton number violation**
- **2.** Majorana particle v = anti v
- 3. Absolute mass scale and mass spectrum
 - **NH** $m_1 < m_2 < m_3$ **IH** $m_3 < m_1 < m_2$
- 3. Lepton sector CP phases,
- 4. Weak interactions with right-handed currents,
- 5. Susy-exchange mechanism . Majoron mediated weak process.

These fundamental questions of v are studied by nuclear $\beta\beta$ decays in nuclear femto laboratories.

Unique features of DBD

- Part. Phys. Neutrinos and weak interactions
 beyond the electro-weak standard model SM
 Majorana nature v, v, mass scale and spectrum
 Right weak current. Weak CP phases
 New mechanisms SUSY, Majoron, and others
- Exp. Low energy (a few MeV) ultra-rare (10⁻³⁶/sec)
 Ultra high luminosity 10⁸³ /cm² sec
- 3. Nucl. Phys. Nuclear matrix elements.

Sensitive to all nucleonic and non-nucleonic effects

References

- •1. Ejiri H, Suhonen J and Zuber Z 2019 Phys. Rep. 797 1
- •2. Ejiri H 2005 J. Phys. Soc Jpn. 74 2101
- •3. Vergados J, Ejiri H and Simkovic F 2012 Rep. Prog. Phys. 75 106301
- •4. Ejiri H 2019 Frontiers in Physics 10.3389/fphys. 00030
- •5. Ejiri H, 2019 J. Phys. G. Nucl. Part. Phys. 46 125202
- •5. Ejiri H 2019 MEDEX2019, AIP Conf. Proc. 2165 020007

I. Introduction to DBD

Majorana neutrinos and neutrino-less ββ decays

Experimental aspects of DBD v-mass studies.

I. Neutrino mass and DBD mass sensitivity (Dec 5th)

II. Nuclear Physics Nuclear matrix elements. (2020.)

I. Neutrino mass and DBD mass sensitivity Dec. 5th

- 1. What we learn by v-less double beta decays (DBD)
- How we identify /study Majorana nature,
- v-mass, leptor-sector phases. and DBD mechanisms

- 2. DBD rate and the v-mass sensitivity
- DBD experiments to access DBD and the v-mass

I. What we learn by v-less DBD

A. 2νββB. 0νββ,D. Μββ -

Energy spectra to select the $0\nu\beta\beta$ 2-body kinematics

L-R symmetric model : Left right weak currents

$$T^{0\nu} = G^{0\nu} |M^{0\nu}|^2 K_{\nu R},$$

$$K_{\nu R} = \left[\left(\frac{\langle m_{\nu} \rangle}{m_{e}} \right)^{2} + C_{\lambda \lambda} \langle \lambda \rangle^{2} + C_{\eta \eta} \langle \eta \rangle^{2} + C_{m \lambda} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \lambda \rangle \cos \phi_{1} + C_{m \eta} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \eta \rangle \cos \phi_{2} + C_{\eta \lambda} \langle \lambda \rangle \langle \eta \rangle \cos (\phi_{1} - \phi_{2}) \right].$$

RHC L/R weak boson mass ratio λ and mixing θ $<m>=|\Sigma m_j U_{ej}|$ $<\lambda>=(M_L/M_R)^2|\Sigma U_{ej}V_{ej}|$ $<\eta>=tan\theta_{LR}|\Sigma U_{ej}V_{ej}|$

C. Θ_{21} and E_{12} correlations to identify LHC/RHC

Fig. 4. Energy and angular correlations for the ¹⁰⁰Mo 0νββ process caused by the mass and right-handed current terms of ⟨m⟩, ⟨λ⟩ and ⟨η⟩. Top: Calculated single-β spectra. Bottom: β₁ − β₂ angular correlation coefficients α defined by W(θ₁₂) = 1 + α cos θ₁₂.⁴

 $<m>\sim 0.3 \text{ eV}, <\lambda> \sim 7 10^{-7}, <\eta> \sim 4 10^{-9}$

LIMITS ON THE MAJORANA NEUTRINO MASS AND ...

TABLE III. Limits on the effective Majorana neutrino mass and right-handed weak current parameters with 90(68)% C.L. from the $0 \nu \beta \beta$ decay of ¹⁰⁰Mo for the recent calculation of nuclear matrix element.

	$\langle m_{\nu} \rangle$ (eV)	$\langle\lambda\rangle~(10^{-6})$	$\langle \eta \rangle$ (10 ⁻⁸)
QRPA ^{&}	4.8(3.5)	4.7(3.3)	2.4(1.9)
QRPA ^b	2.1(1.5)	3.6(2.5)	2.6(1.9)
QRPA SU(3) °	2.4(1.7)	3.2(2.2)	2.7(2.0)
RQRPA ^d	2.5(1.8)		
RQRPA °	2.8(2.0)		
^a Reference [28]. ^b Reference [27]. ^c Reference [29]. ^d Reference [4]. ^e Reference [30].			

H. Ejiri , N. Kudomi et al ELEGANT PR C 63 2001 065501 100Mo tracking detector

Left handed currents Exchanges : light v mass, heavy v-mass, Susy Same kinematics; E & 0 distribution **Different isotopes/states** with different $Q_{\beta\beta}$, $M^{0\nu}$ to identify **1.** $0\nu\beta\beta$ peak/BG and 2. light-v, SUSY $M^{0v} = M(m) + M(SUSY)$ J. Vergados PR 361 02 λ_{111} $^{\prime} < 2 \sim 3 \ 10^{-5}$ A. Faessler, et al PRD 77 (2008) 113012

Neutrino mass and neutrino matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} C_{12}C_{13} & C_{13}S_{12} & S_{13}e^{-i\delta} \\ -S_{12}C_{23} - C_{12}S_{23}S_{13}e^{i\delta} & C_{12}C_{23} - S_{12}S_{23}S_{13}e^{i\delta} & S_{23}C_{13} \\ S_{12}S_{23} - C_{12}C_{23}S_{13}e^{i\delta} & -C_{12}S_{23} - S_{12}C_{23}S_{13}e^{i\delta} & C_{23}C_{13} \end{pmatrix} U_p \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U_p = \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0\\ 0 & e^{i\alpha_2/2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $\Delta m^{2} (ATM) = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}$ $\Delta m^{2} (SUN) = (7.65 \pm 0.13 - 0.20) \times 10^{-5} \text{ eV}^{2}$ $\tan^{2} \theta_{12} = 0.452 \pm 0.035 - 0.033 \sin^{2}2\theta_{23} > 0.94$ $\sin^{2}2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$

v-mass spectrum

 $\langle \mathbf{m}_{v} \rangle = |\Sigma \ \mathbf{U}_{i}^{2} \ \exp(i \ \phi_{i}) \ \mathbf{m}_{i}| \qquad \phi_{\iota} = \alpha_{2} - \alpha_{1},$ is given by using $\mathbf{U}_{i} \ \Delta \mathbf{m}_{S}, \ \Delta \mathbf{m}_{A}$ given by v oscillations

Vergados Ejiri Somkovic RPP 2012

$$T^{0\nu} = G^{0\nu} |M^{0\nu}|^2 |\langle m_{\nu} \rangle|^2.$$
(19)

The effective mass $\langle m_v \rangle$ is expressed using the mixing coefficients and the Majorana phases as

$$\langle m_{\nu} \rangle = \left| \sum_{i} |U_{ei}|^{2} m_{i} \mathrm{e}^{\mathrm{i}\alpha_{i}} \right|,$$

$$= |C_{12}^{2} C_{13}^{2} m_{1} + C_{13}^{2} S_{12}^{2} m_{2} \mathrm{e}^{\mathrm{i}\phi_{2}} + S_{13}^{2} m_{3} \mathrm{e}^{\mathrm{i}\phi_{3}}|,$$

$$(20)$$

where $\phi_2 = \alpha_2 - \alpha_1$ and $\phi_3 = -\alpha_1 - 2\delta$ are the phases for $|m_2\rangle$ and $|m_3\rangle$ with respect to $|m_1\rangle$. They are either 0 or π in the case of CP conservation.

IH in case of small m_3 <m> ~ m(ATM) (1-sin² 2 $\theta_{12} sin^2 \alpha_{12})^{\frac{1}{2}}$

 $\theta_{12} \sim 34 \text{ deg}$ $\theta_{13} \sim 8.5 \text{ deg.}$. Phase difference $\phi_2 = \alpha_{12} = \text{to be measured}$. $0-\pi/2$: m= 50-15 meV need $\Delta m \sim 5$ meV, and NME $\Delta M \sim 15$ % to get the phase difference $\pi/4$

NH in case of small m_1 <m> ~ m(Sun) (sin² θ_{12}) m(ATM) (sin² θ_{13}) exp(-2 α_2) = 1.5 -4 meV

Phase difference α_2 : m= 4-1.3 meV need $\Delta m \sim$ meV, and NME $\Delta M \sim 15$ % to get the phase α_2

$\langle \mathbf{m}_{v} \rangle = |\Sigma \mathbf{U}_{i}^{2} \exp(i \phi_{i}) \mathbf{m}_{i}| \phi_{2} = \alpha_{2} - \alpha_{1}, \phi_{3} = -\alpha_{2} - 2\delta$ is given by using $\mathbf{U}_{i} \Delta \mathbf{m}_{S}, \Delta \mathbf{m}_{A}$ given by v oscillations.

J. Vergados, H. Ejiri, F. Simkovic, Rep. Prog. Phys. 75 (2012) 106301. H. Ejiri, J. Phys. Soc. Jpn. 74 (2005) 2101. Why DBD : $\sigma \sim 10^{-83}$ cm² T $\sim 10^{-36}$ /sec A femto (10⁻¹⁵cm) nuclear collider Luminosity L $\sim 10^{76}$ /cm² /sec = 3 10⁻³⁶/cm² /y

3 ton 10³⁰ nutrons with 1/3 light velocity in a bahn area

Cross section = 10 ⁻⁸³ cm² in case of IH 20 meV M=2

III DBD mass sensitivity and DBD exps to access the v-mass

Key Elements for DBD $T^{0v} = G^{0v} [Mm]^2 m = light Majorana v mass$ **Experiment gives** a limit or a value for [M m] or $M \leftrightarrow m$ if M or m is known $T^{0v} = [m/m_0]^2$ $m_0 = unit mass to give 1 /ton year$ $=k/[M (G^{0v})^{1/2}]$ ~ 20-40 meV (2/M)

(T)⁻¹= $(m/m_0)^2$ Rate /t y m=m₀ = k/M M=NME In case of M=2 : Ton scale is required, 2n ,isobar ?

Key Elements for DBD m_m = Neutrino mass to be detected. Signal > BG $\overline{T^{0v}} \overline{NT} = [m_m/m_0]^2 \overline{NT} > (BG)^{1/2} = (BNT)^{1/2}$ **NT**= Isotope ton and year B = BG/ton year $\mathbf{m}_{\mathbf{m}} = \mathbf{m}_{\mathbf{0}} \mathbf{d}$ d=2 [B/NT]^{1/4} detector sensitivity, $\varepsilon \sim 0.5$ $m_m = 2 m_0 [B/NT]^{1/4}$ in case of $\varepsilon = 0.5$ $m_0 = k/M = 20, M = 2, B = 1, NT = 16, m_m = 20 meV$

Why Nuclear Matrix element M

- **1. Get v-mass** $m = [1/M] [T_{1/2} G]^{-1/2}$
- 2. Detector mass sensitivity $m = k m_0 / M [B/N]^{1/4} m_0$ for S=1/ty
- **M** = **NME**, **B**=**B**G/ty **N**=**I**sotope mass ton
- M Factor 3 in M is equivalent to
- Factors 100 less in BG or 100 more in N tons
- **3. Theoretical M: factor 10 uncertainty**
- Need experimental input to M

NMEas are very sensitive to nuclear models and parameters

Experimental imputs are crucial, NEXT NEWS in Jan

Hadronic (Δ, π) *

Effect on low $\beta\beta 0^+ - 0^+$ $P(\Delta)^2 \sim (10^{-2})^2 \sim 10^{-4}$

*Pontecorvo; Haxton, Stephenson, Kotani Doi.

$$M^{0\nu} = \left[\frac{g_A^{eff}}{g_A}\right]^2 \left[M_M^{0\nu}(GT) + M_M^{0\nu}(T)\right] + \left[\frac{g_V}{g_A}\right]^2 M_M^{0\nu}(F),$$

 $g_A^{eff}/g_A = 0.5$ leads to reductions 0.25 for M(GT), 0.4 for M^{0v}, 0.16 for DBD rate, ~40 for detector mass

Detectors to access the IH mass

Enrichment k $m=2m_0 k^{-1/2} (B/NT)^{1/4}$ B=1/ty T=5 y $m_0=20$ meV, IH 20 meV

5 % 300 ton is equivalent to 90 % 1 ton

N ton and m meV in T=5 year Y=3 counts, B=0

N ~ 1 to cover IH and N~100 for NH even BG=0

N for M=2 T=5 year BG=1 /ty B=0.01 / t y

If B is 10 times larger, N should be 10 times more

DBD 0νββ NMEs and DBD mass sensitivity

 $m = k [m_0] [B/N]^{\frac{1}{4}}$

$M^{0v} = k^2 M(QRPA) \sim 2$, $m_0 = 18 \text{ meV} \quad \epsilon \sim 0.5$

NME versus N Isotope and B (BG) for IH=16 meV T=5 y exp.

 ⁷⁶Ge
 M~2
 N/B~100
 N~10 t B~0.1 /t y

 Se,Mo
 M~2
 N/B~10
 N~30 t B~0.3 / t y

 Xe
 M~1
 N/B=100
 N~30 t B~0.3 / t y

Limits on [Mass \times NME] < k/T _{1/2}

To reach IH mass = 16 meV, factor 20 and 12.5 in mass and 1.6 10⁵ and 2.4 10⁴ in NT/B

Detectors to access the IH mass Isotope Ton Centrifulgal separation Ge, Se, Mo, Xe Sub.ton Laser separation Nd **BG** per ROI= Energy resolution **B** < 0.1/t y Ge **R**=0.1 % B < 1 / t y Bolometer R=0.5 % NME M= 2-1 Ge, Mo, Te, Xe

Solar and $2\nu\beta\beta$ BG

Ejiri Elliott Phys, Rev, C 95 055501 2017

Lig. Scintilator B~ 1/R / t y R is concentration % Ejiri Zuber 2016 J. Phys. G. 43 045201

Isotope	$\beta\beta(2\nu) \tau_{1/2}$ years	Q _{ρρ} MeV	S _t (SNU)	B _{SB} events/t y	B _{2ν} events/t y
⁸² Se ¹⁰⁰ Mo ¹⁵⁰ Nd ⁷⁶ Ge 1 ¹³⁰ Te ¹³⁶ Yo 2	$9.2 \times 10^{19} [17]$ $7.1 \times 10^{18} [17]$ $8.2 \times 10^{18} [17]$ $.93 \times 10^{21} [18]$ $6.9 \times 10^{20} [17]$	2.992 3.034 3.368 2.039 2.528	368 539 524 6.3 33.7	4.42 0.11 0.12 0.03 0.48 0.55	0.15 1.56 1.00 0.005 0.01

Possible DBD detector with IH mass 20 meV Yes Majorana and IH and mass No Dirac or NH

m= k m₀ /M [B/N] ¹/₄ m₀ for S=1/ty M = NME=g_A²M(QRPA) B=BG/ty N=Isotope mass ton

m ₀	In case M	BG/t y	N ton /5y	Isotope A
40	2	0.1	3	Ge 76
20	1.5	1	6	Se 82
20	2	1	2	Mo 100
20	1-2	1	30-2	Xe 136

Search for the rare peak/events among huge BGs

Very low energy very rare evets and multi mechanisms

- I Energy sum spectrum E=E(β1)+E(β2) with good E resolution Find 0vββ peak (discovery potential) for lepton number 2
 Huge single β BG peak in ROI (region of interest)
 - Two DBD isotopes to avoid accidental coincidence with BG peak

II Two beta E and angle correlations (like ELEGANT, MOON)
 Identify β1 and β2, left-handed / right-handed currents
 One DBD isotope suggested by I sum spectrum

What to do: Concentration of DBD powers **1.** Enriched isotopes k>80 % multi-tons **Centrifugal separation 2.** E resolution < 1 % to avoid $2\nu\beta\beta$ and solar and single-β BG 3. Select two isotopes, one from Se/Mo and one from Te/Xe to identify the peak. 4. Experimental studies of NMEs with p~80 MeV/c by (³He,t) and (μ ,xn) CERs **5. R&D** for MOON/ELEGANT for 2 β and L/R.

Thanks for your attension