Charge-exchange dipole modes of excitation in neutron-rich nuclei

Kenichi Yoshida
Kyoto Univ.

based on
KY, Phys. Rev. C96, 051302R (2017)
KY, arXiv: 2008.03947

Contents

Introduction

Nuclear responses and collective modes of excitation
Quest for excitation modes unique in neutron-rich nuclei

Theoretical framework

Density-functional theory (DFT)

Discussions

Gamow-Teller excitations in neutron-rich nuclei
Charge-exchange dipole excitations in neutron-rich nuclei

Summary

Giant resonance: typical collective mode of surface vibration

 classical and intuitive picture (Bohr's liquid drop)
$\lambda=2$: Giant Quadrupole Resonance (GQR)
$\lambda=3$: High Energy Octupole Resonance (HEOR)
strongly excited by a one-body operator, exhausts a sum-rule

$$
\begin{aligned}
& \hat{H} \rightarrow \hat{H}+f(t) \hat{F}_{\lambda} \\
& \qquad \hat{F}_{\lambda}=\sum_{\sigma, \sigma^{\prime}} \sum_{\tau, \tau^{\prime}} \int d \vec{r} r^{\lambda} Y_{\lambda}(\hat{r}) \hat{\psi}^{\dagger}(\vec{r} \sigma \tau) \hat{\psi}\left(\vec{r} \sigma^{\prime} \tau^{\prime}\right) \delta_{\sigma, \sigma^{\prime}} \delta_{\tau, \tau^{\prime}}
\end{aligned}
$$

scalar, isoscalar nucleus as a whole

Photo-nuclear responses $\left(\gamma, \gamma^{\prime}\right),(\gamma, n),(\gamma, 2 n),(\gamma, p) \ldots$

the most famous collective vibration: the Isovector Giant Dipole Resonance (GDR) the first vibrational mode observed in nuclei: (p,y) 1939, (p, f) 1947, G-T picture 1948

$$
\hat{F}_{1}^{0}=\sum_{\sigma} \sum_{\tau \tau^{\prime}} \int d r r Y_{1}(r) \hat{\psi}^{\dagger}(r \sigma \tau)\langle\tau| \tau_{0}\left|\tau^{\prime}\right\rangle \hat{\psi}\left(r \sigma \tau^{\prime}\right)
$$

CDFE:
Center for Photonuclear Exp. Data

Nuclear structure information in GDR

two-hump structure

Figure 6-21 Photoabsorption cross section for even isotopes of neodymium. The experimental data are from P. Carlos, H. Beil, R. Bergère, A. Lepretre, and A. Veyssière, Nuclear Phys. A172, 437 (1971). The solid curves represent Lorentzian fits with the parameters given in Table 6-6.

Microscopic description of GDR

KY, T. Nakatsukasa, PRC83(2011)021304R

Nuclear deformation in GDR

IV dipole operator: $r Y_{1 K}(\hat{r}) \tau_{z}$

arbitrary heavy nuclei now calculable thanks to HPC

Collective modes revealed by nuclear responses

rich variety of excitation modes associated with S, T, L, and N
vibration in spin-space, isospin-space, real-space, and gauge-space and coupling/mixing among them

$$
\begin{aligned}
& \hat{F}_{L}=\sum_{\sigma \sigma^{\prime}} \sum_{\tau \tau^{\prime}} \int d r r^{L} Y_{L}(\hat{r}) \hat{\psi}^{\dagger}(r \sigma \tau)\left\{\begin{array}{ll}
\langle\sigma| 1\left|\sigma^{\prime}\right\rangle \\
\langle\sigma| \sigma\left|\sigma^{\prime}\right\rangle
\end{array}\right\}\left\{\begin{array}{l}
\langle\tau| 1\left|\tau^{\prime}\right\rangle \\
\langle\tau| \tau\left|\tau^{\prime}\right\rangle
\end{array}\right\} \hat{\psi}\left(r^{\prime} \sigma^{\prime} \tau^{\prime}\right) \\
& \quad \begin{array}{l}
\text { scalar isoscalar } \\
\text { vector isovector }
\end{array} \\
& \quad \hat{\psi}^{\dagger} \hat{\psi}^{\dagger}, \hat{\psi} \hat{\psi} \text { types }
\end{aligned}
$$

influenced by many-body correlations: magnetism, deformation, superfluidity deformation in spin-space/real-space/gauge-space
in neutron-rich nuclei
imbalanced Fermi levels: deformation in isospin-space ("isomagnetism")

Quest for collective modes unique in neutron-rich nuclei

 neutron-skin structure
neutron-skin excitation modes

GDR

Pygmy DR

Frequency
S. Goriery, PLB436(1998)10 impact on the neutroncapture rate during the rprocess nucleosynthesis
K. Ikeda, in INS Report (1988)

Mysterious PDR

theoretical cals. tell us:
PDR appears in neutron-rich nuclei systematically collectivity depends on a nucleus, and a model employed structure has the nature of IS/IV, toroidal, two-phonon...

A. Tamii et al., PRL107(2011)062502

T. Inakura et al., PRC84(2011)021302R

Collective modes revealed by nuclear responses

rich variety of excitation modes associated with S, T, L, and N
vibration in spin-space, isospin-space, real-space, and gauge-space and coupling/mixing among them
influenced by many-body correlations: magnetism, deformation, superfluidity deformation in spin-space/real-space/gauge-space
charge-exchange modes have a strong impact on the nuclear weak processes:
β-decay, $\beta \beta$-decay, lepton capture, charged-current v-scattering...
application to astrophysics and fundamental physics
ex., β-decay rates of hundreds/thousands of exotic nuclei for r-process

Quest for collective modes unique in neutron-rich nuclei

 in charge-exchange channel\checkmark Low-frequency negative parity modes analog of pygmy dipole resonance? neutron-skin excitation modes?
\checkmark Strongly collective Gamow-Teller GR?
carrying large strength

$$
S_{-}-x_{+}=3(N-Z)
$$

\checkmark "Super allowed" GTGR in heavier nuclei?
H. Sagawa et al., PLB303(1993)215
in light nuclei close to the neutron drip line

many p-h excitations possible

Density-functional theory (DFT)

practical and versatile method for many-body problems

Hohenberg-Kohn (1964) >33,500 citations energy-density functional

$$
E[\rho]=\langle\Psi| \hat{H}|\Psi\rangle
$$

ground state

$$
\begin{aligned}
E_{\mathrm{gs}} & =\inf _{\rho} E[\rho] \\
& =E\left[\rho_{\mathrm{gs}}\right]
\end{aligned}
$$

Kohn-Sham DFT

gs density

$$
\rho_{0}(\vec{r})=\left\langle\phi_{\mathrm{KS}}\right| \psi^{\dagger}(\vec{r}) \psi(\vec{r})\left|\phi_{\mathrm{KS}}\right\rangle
$$

gs density

$$
\rho_{0}(\vec{r})=\left\langle\Psi_{0}\right| \psi^{\dagger}(\vec{r}) \psi(\vec{r})\left|\Psi_{0}\right\rangle
$$

both systems give the same density

Kohn-Sham DFT

$$
\begin{aligned}
E[\rho] & =T_{\mathrm{s}}[\rho]+E_{\mathrm{ext}}[\rho]+E_{\mathrm{H}}[\rho]+E_{\mathrm{x}}[\rho]+E_{\mathrm{c}}[\rho] \\
& =T_{\mathrm{s}}[\rho]+F[\rho]
\end{aligned}
$$

non-interacting system w/one-body potential

$$
H=T+\int d \vec{r} v_{\mathrm{s}}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r})
$$ one-body problem

$$
\begin{aligned}
& \left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+v_{\mathrm{s}}[\rho]\right\} \phi_{i}=\epsilon_{i} \phi_{i} \quad \rho_{0}(\vec{r})=\sum_{i}\left|\phi_{i}(\vec{r})\right|^{2} \\
& T_{\mathrm{s}}[\rho]=\sum_{i}\left\langle\phi_{i}\right|-\frac{\hbar^{2} \nabla^{2}}{2 m}\left|\phi_{i}\right\rangle=\sum_{i} \epsilon_{i}-\int d \vec{r} \rho(\vec{r}) v_{\mathrm{s}}[\rho] \quad v_{\mathrm{s}}[\rho]=-\frac{\delta T_{\mathrm{s}}[\rho]}{\delta \rho}
\end{aligned}
$$

fully-interacting system
Hohenberg-Kohn variation principle

$$
v_{\mathrm{s}}[\rho]=\frac{\delta F[\rho]}{\delta \rho}
$$

$$
\frac{\delta E}{\delta \rho}=0 \quad \frac{\delta T_{s}[\rho]}{\delta \rho}+\frac{F[\rho]}{\delta \rho}=0 \quad \rho_{0}(\vec{r})
$$

Kohn-Sham DFT

$$
\begin{aligned}
E[\rho] & =T_{\mathrm{s}}[\rho]+E_{\mathrm{ext}}[\rho]+E_{\mathrm{H}}[\rho]+E_{\mathrm{x}}[\rho]+E_{\mathrm{c}}[\rho] \\
& =T_{\mathrm{s}}[\rho]+F[\rho]
\end{aligned}
$$

non-interacting system w/one-body potential

$$
H=T+\int d \vec{r} v_{\mathrm{s}}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r})
$$ one-body problem

$$
\begin{aligned}
& \left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+v_{\mathrm{s}}[\rho]\right\} \phi_{i}=\epsilon_{i} \phi_{i} \quad \rho_{0}(\vec{r})=\sum_{i}\left|\phi_{i}(\vec{r})\right|^{2} \\
& T_{\mathrm{s}}[\rho]=\sum_{i}\left\langle\phi_{i}\right|-\frac{\hbar^{2} \nabla^{2}}{2 m}\left|\phi_{i}\right\rangle=\sum_{i} \epsilon_{i}-\int d \vec{r} \rho(\vec{r}) v_{\mathrm{s}}[\rho] \quad v_{\mathrm{s}}[\rho]=-\frac{\delta T_{\mathrm{s}}[\rho]}{\delta \rho}
\end{aligned}
$$

fully-interacting system
Hohenberg-Kohn variation principle

$$
v_{\mathrm{s}}[\rho]=\frac{\delta F[\rho]}{\delta \rho} \quad \text { KS potential }
$$

$$
\frac{\delta E}{\delta \rho}=0 \quad \frac{\delta T_{s}[\rho]}{\delta \rho}+\frac{F[\rho]}{\delta \rho}=0 \quad \longrightarrow \rho_{0}(\vec{r})
$$

W. Kohn and L. J. Sham, PR140(1965)A1133 correlation

$$
\begin{aligned}
E[\rho] & =T_{\mathrm{s}}[\rho]+E_{\mathrm{ext}}[\rho]+E_{\mathrm{H}}[\rho]+E_{\mathrm{x}}[\rho]+E_{\mathrm{c}}[\rho] \\
& =T_{\mathrm{s}}[\rho]+F[\rho]
\end{aligned}
$$

non-interacting system w/one-body potential

$$
H=T+\int d \vec{r} v_{\mathrm{s}}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r})
$$ one-body problem

$$
\begin{aligned}
& \left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+v_{\mathrm{s}}[\rho]\right\} \phi_{i}=\epsilon_{i} \phi_{i} \quad \rho_{0}(\vec{r})=\sum_{i}\left|\phi_{i}(\vec{r})\right|^{2} \\
& T_{\mathrm{s}}[\rho]=\sum_{i}\left\langle\phi_{i}\right|-\frac{\hbar^{2} \nabla^{2}}{2 m}\left|\phi_{i}\right\rangle=\sum_{i} \epsilon_{i}-\int d \vec{r} \rho(\vec{r}) v_{\mathrm{s}}[\rho] \quad v_{\mathrm{s}}[\rho]=-\frac{\delta T_{\mathrm{s}}[\rho]}{\delta \rho}
\end{aligned}
$$

KS potential
Hartree-Fock potential

$$
v_{\mathrm{s}}[\rho]=\frac{\delta F[\rho]}{\delta \rho}
$$

$$
\text { without correlation } \frac{\delta E_{\mathrm{c}}[\rho]}{\delta \rho}
$$

DFT for dynamics and excitations: TDDFT

E. Runge and E. K. U. Gross, PRL52(1984)997

$$
\rho(\vec{r}, t) \Leftrightarrow v_{\mathrm{ext}}(\vec{r}, t) \Leftrightarrow \Psi(\vec{r}, t)
$$

$$
A[\rho]=\int_{t_{0}}^{t_{1}} d t\langle\Psi[\rho]| i \partial_{t}-H(t)|\Psi[\rho]\rangle \quad \longrightarrow \quad \frac{\delta A}{\delta \rho}=0
$$

for practical calculation time-dependent Kohn-Sham time-dependent Hartree-Fock

$$
\text { linear-response } \quad \hat{H} \rightarrow \hat{H}+f(t) \hat{F}_{\lambda}
$$

$$
\rho(\vec{r}, t)=\rho_{0}(\vec{r})+\delta \rho(\vec{r}) e^{-i \omega t}+\mathrm{cc}
$$

$$
\delta \rho(\mathbf{r})=\int d \mathbf{r}^{\prime} \chi_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left[\frac{\delta^{2} E[\rho]}{\delta^{2} \rho} \delta \rho\left(\mathbf{r}^{\prime}\right)+f\left(\mathbf{r}^{\prime}\right)\right]
$$

RPA-like equation

$$
\begin{gathered}
\delta \rho=\frac{\chi_{0}}{1-\chi_{0} v_{\mathrm{res}}} f=\chi_{\mathrm{RPA}} f \\
v_{\mathrm{res}}=\frac{\delta^{2} E[\rho]}{\delta^{2} \rho}
\end{gathered}
$$

Skyrme-energy-density functional

Kohn-Sham(-Bogoliubov-de Gennes)+proton-neutron LR-TD(S)DFT w/Skyrme EDF "Skyrme-Hartree-Fock(-Bogoliubov)+proton-neutron (Q)RPA"

$$
\begin{aligned}
\text { EDF } E=\int d \mathbf{r} \mathscr{H}(\mathbf{r}) \quad & \text { Energy density: } \mathcal{H}=\mathcal{H}_{\text {kin }}+\mathcal{H}_{\text {Skyrme }}+\mathcal{H}_{\mathrm{em}} \\
& \text { Skyrme energy density: } \mathcal{H}_{\text {Skyrme }}=\sum_{t=0,1} \sum_{t_{3}=-t}^{t}\left(\mathcal{H}_{t t_{3}}^{\text {even }}+\mathcal{H}_{t t_{3}}^{\text {odd }}\right)
\end{aligned}
$$

```
\mathcal{H}
```

$\mathcal{H}_{t t_{3}}^{\text {odd }}=C_{t}^{s} \mathbf{s}_{t t_{3}}^{2}+C_{t}^{\Delta s} \mathbf{s}_{t t_{3}} \cdot \Delta \mathbf{s}_{t t_{3}}+C_{t}^{T} \mathbf{s}_{t t_{3}} \cdot \mathbf{T}_{t t_{3}}+C_{t}^{\nabla s}\left(\nabla \cdot \mathbf{s}_{t t_{3}}\right)^{2}+C_{t}^{j} \mathbf{j}_{t t_{3}}^{2}+C_{t}^{\nabla j} \mathbf{s}_{t t_{3}} \cdot \nabla \times \mathbf{j}_{t t_{3}}$
residual interaction for charge-changing channel:

$$
v_{\text {res }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{\delta^{2} E}{\delta \rho_{1}\left(\mathbf{r}_{1}\right) \delta \rho_{1}\left(\mathbf{r}_{2}\right)} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+\frac{\delta^{2} E}{\delta \vec{s}_{1}\left(\mathbf{r}_{1}\right) \delta \vec{s}_{1}\left(\mathbf{r}_{2}\right)} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2}
$$

Strongly collective GTR in n-rich nuclei

KY, PTEP2013, 113D02
energy shift due to RPA correlations

$$
\bar{E}=\frac{\int_{0}^{\infty} \omega S(\omega) d \omega}{\int_{0}^{\infty} S(\omega) d \omega}
$$

Strongly collective GTR in n-rich nuclei

KY, PTEP2013, 113D02
energy shift due to RPA correlations

superallowed GT resonance is unlikely to appear

Impact of low-lying GT states on beta-decay rates

S. Nishimura et al., PRL106(2011)052502
 KY, PTEP2013, 113D02

Isovector dipole excitations

electric (spin non-flip) dipole

$$
\hat{F}_{1 K}=\sum_{\sigma, \sigma^{\prime}} \sum_{\tau, \tau^{\prime}} \int d \vec{r} r Y_{1 K}(\hat{r}) \hat{\psi}^{\dagger}(\vec{r} \sigma \tau) \hat{\psi}\left(\vec{r} \sigma^{\prime} \tau^{\prime}\right) \delta_{\sigma, \sigma^{\prime}}\langle\tau| \tau_{\mu}\left|\tau^{\prime}\right\rangle
$$

spin dipole $(\lambda=0,1,2)$

$$
\hat{F}_{1 K}^{\lambda}=\sum_{\sigma, \sigma^{\prime}} \sum_{\tau, \tau^{\prime}} \int d \vec{r} r\left[Y_{1} \otimes \sigma\right]_{K}^{\lambda} \hat{\psi}^{\dagger}(\vec{r} \sigma \tau) \hat{\psi}\left(\vec{r} \sigma^{\prime} \tau^{\prime}\right)\langle\tau| \tau_{\mu}\left|\tau^{\prime}\right\rangle
$$

charge-exchange channel:

$$
\begin{array}{lll}
\mu=+1 & \psi_{\nu}^{\dagger} \psi_{\pi} & (\mathrm{n}, \mathrm{p}) \text { type, } \beta+\text { decay } \\
\mu=-1 & \psi_{\pi}^{\dagger} \psi_{\nu} & (\mathrm{p}, \mathrm{n}) \text { type, } \beta \text { - decay }
\end{array}
$$

Electric dipole excitations in neutron-rich Ca, Ni, and Sn isotopes

> Ca: $N=28-56$
> Ni: $N=50-66$
> Sn: $N=82-110$

KY, Phys. Rev. C96, 051302R (2017)

Low-lying dipole excitation: shell effect

summed strength in low-energy

$-1 \hbar \omega_{0}$ excitation

$$
\operatorname{vg}_{9 / 2} \rightarrow \pi f_{7 / 2} \quad \operatorname{vd}_{5 / 2} \rightarrow \pi p_{3 / 2} \quad \mathrm{vf}_{7 / 2} \rightarrow \pi d_{5 / 2}
$$

Charge-exchange dipole excitations in n-rich nuclei

\checkmark cross-shell $(N \rightarrow N \pm 1)$ excitation for negative-parity excitation neutrons are weakly bound

$$
1
$$

protons are deeply bound: low-lying $\left(-1 \hbar \omega_{0}\right)$ mode protons are in the continuum: pygmy

Impact of low-lying dipole states on beta-decay rates

KY, PRC100(2019)024316

M. T. Mustonen, J. Engel, PRC93(2016)014304

Shell effect (purely quantal) determines the β-decay half-life.

Microscopic approach is necessary.

Dipole excitations in deformed nuclei

${ }^{24} \mathrm{Mg},{ }^{40} \mathrm{Mg}$
Nd and Sm isotopes with shape changes

KY, arXiv: 2008.03947

Isovector dipole excitations in deformed nuclei

${ }^{24} \mathrm{Mg} \quad \mathrm{SkM}{ }^{*}$
Isospin symmetry
degeneracy for μ for $N=Z$ nuclei w/o the Coulomb int.
broken by the Coulomb int.

$$
\begin{aligned}
& \left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{r}}=9.0 \mathrm{fm}^{2} \\
& \left\langle\mathrm{r}^{2}\right\rangle_{\pi}=9.2 \mathrm{fm}{ }^{2} \\
& \qquad S_{-}-S_{+} \propto N\left\langle r^{2}\right\rangle_{\nu}-Z\left\langle r^{2}\right\rangle_{\pi}
\end{aligned}
$$

Shape deformation effect K-splitting

Evolution of deformation in charge-exchange dipole resonance

K-splitting appears $N \geq 86$
shoulder structure seen in spherical sys.
K-splitting is distinguishable from the shoulder ??

Evolution of deformation in charge-exchange dipole resonance

$\mu=-1$
K-splitting appears $N \geq 86$
shoulder structure depends on the EDF
splitting is proportional to deformation

Charge-exchange dipole resonance at neutron-drip line

K-splitting
$-1 \hbar \omega_{0}$ excitation
analog-pygmy resonance
pygmy resonance KY, PRC80(2009)044324
K. Wang et al, PRC96(2017)031301

Spin-dipole resonance in deformed nuclei

deformation effect in ${ }^{154} \mathrm{Sm}$ is not clear strengths are fragmented even in ${ }^{144} \mathrm{Sm}$

Spin-dipole resonance in deformed nuclei

H. Akimune et al., NPA569(1994)245c deformation effect in ${ }^{154} \mathrm{Sm}$ is not clear strengths are fragmented even in ${ }^{144} \mathrm{Sm}$

${ }^{5000}{ }^{15 t} \mathrm{Sm}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ Reaction at 450 MeV

Summary

\checkmark Low-lying dipole state appears uniquely in very neutron-rich nuclei
$-1 \hbar \omega_{0}$ excitation
\checkmark strong shell effect
\checkmark high impact on the beta-decay rate
\checkmark emergence of analog-PDR below giant resonance
loosely-bound neutrons with low-angular momentum play an important role
$\checkmark K$-splitting is generic in IV dipole resonance in deformed nuclei

A further application of nuclear DFT for nuclear weak processes is in progress

Roles of the first-forbidden transitions

