Present Status of Low Temperature Detector for Neutrino-less ββ Decay

Sei Yoshida Department of Physics, Osaka University

NEWS2020 December 22nd, 2020 @ Online

Detector E-Resolution

Widely used radiation detector

□ Scintillator

(例) NaI(Tl) Scintillator Scintillation photons 4.2 x 10⁴ photons/MeV Resolution (ΔE @1 MeV) ~ several tens keV

Semiconductor

Ionization

(例) HPGe detector Dn Electron-hole pair E_{gap}~2 eV → 5 x 10⁵ pairs/MeV Resolution (△E @1 MeV) 2~3 keV

Energy resolution is determined by statistical fluctuation of quantum (and fano-factor).

How about $\operatorname{Phonon}\nolimits ?$

At 1 K under thermal equilibrium, mean energy of phonons $k_B T \sim 80 \ \mu eV$ At Debye temperature ~ 100 meV

➔ Phonon detector (Bolometer)

- Calorimetric measurement of heat signals <u>at mK temperatures</u>

 - Good Energy resolution ; expected.
- Choice of thermometers to measure temperature increase
 - Thermistors (NTD Ge)
 - TES (Transition Edge Sensor)
 - MMC (Metallic Magnetic Calorimeter)
 - KID (Kinetic Inductance Device)
 - etc.

CUORE, CUPID (some options)

Light detector, CRESST

AMORE, LIMINEU

CALDER

NTD-Ge as Temperature Sensor

Properties of NTD-Ge

- Doped semiconductors
 - Neutron transmuted doped (NTD) Ge thermistors
- Readout: (cold) JFET
- High resolution + High linearity + Wide dynamic range + Absorber friendly
- Require very low bias current (sensitive to micro-phonics and electromagnetic interference), **Slow response**

MMC as Temperature Sensor

Properties of MMC

- Paramagnetic alloy in a magnetic field
 - Au:Er(300-1000 ppm), Ag:Er(300-1000 ppm)
 - \rightarrow Magnetization variation with temperature
- Readout: SQUID
- High resolution + High linearity + Wide dynamic range + Absorber friendly + No bias heating + <u>Relatively fast</u>
- More wires & materials needed for SQUIDs and MMCs

Scintillating Bolometer

- The technique (scintillating bolometer) was already established,
 - CRESST-II (CaWO₄), LUMINEU, Lucifer, CUPID, AMoRE (CaMO₄)

- Simultaneous measurement both heat and scintillation enables to identify the particle types (a/ß particle ID)
- It is possible to reject alpha decay events, also β-a sequential events

→ Chance to achieve "BG free measurement"

Bolometer Detector for Ovßß study

> COURE Experiment ; Running experiment

CUORE

Info. from official website https://cuore.lngs.infn.it/

- Site : Gran Sasso (Italy) ~3600 m.w.e
- Target : 741 kg TeO₂ (~206 kg 130 Te), 988 crystals in 19 towers
 - Natural abundance of $^{130}\text{Te};$ 34 %, $Q_{\beta\beta}$ = 2528 keV
- Temperature Sensor : NTD-Ge Thermistor
- Operated at ~10 mK. Energy resolution ~0.2% FWHM

	Cuoricino	CUORE-0	CUORE	
¹³⁰ Te mass (kg)	11	11	206	
Background (c/keV/kg/y) @ 2528 keV	0.17	0.05	0.01	
E resolution (keV) FWHM @ 2615 keV	7	5-6	5	Excellent ΔE
〈m_{ββ}〉 (meV) @ 90% C.L.	300-710	200-500	40-90	

History

Cuoricino 2003–2008 11 kg ¹³⁰Te

CUORE; ton-scale @mK facility

Cryogenics **93**, 56-65 (2018).

- Powerful dilution refrigerator
 - cooling power: 5 µW at 10 mK
- Precooled by 4 pulse tubes
- Cryogenic stages and loads:
 - 13 tonnes < 4 K
 - 5 tonnes < 50 mK
 - 1500 kg @ 10 mK (detectors + materials)
- Experimental volume ~1 m³
- Cooldown time ~ 1 month
- External Shielding:
 - 18 cm polyethylene + 2 cm borated material
 - 30 cm lead

Results of CUORE

- Data taking started in Spring 2017
 - ~ 1000 kg x year exposure of Te
- First result from CUORE-0 dataset:
 - 372.5 kg x year
 - Likelihood model

• flat continuum (BI) + ⁶⁰Co (rate + position)

• No evidence for $0\nu\beta\beta$ decay

 $T_{1/2}^{0\nu} > 3.2 \times 10^{25} ~{\rm yr}~(90\%\,{\rm C.I.})$

 Interpretation in context of light Majorana neutrino exchange

 $m_{\beta\beta} < 75 - 350 \,\mathrm{meV}$

Phys. Rev. Lett. 124, 122501 (2020)

Scintillating Bolometer for Ovßß study

- > CUORE and CUPID
- > AMoRE
- > Development of CaF₂ Scinti.-Bolometer

CUORE Upgrade : CUPID

Tommy O'Dnell, Talk in DBD18

- CUPID (CUORE Upgrade with Particle ID)
 - Option1: Scintillating-Bolometer(Zn⁸²Se / Li₂¹⁰⁰MoO₄)
 - Option2: TeO₂ + Light-detector (PI by Cherenkov photon)
- LMO crystal
 - ¹⁰⁰Mo (Q-value: 3034 keV)

CUPID-Mo Prototype

- Enrichment to ~97%
- Seminal R&D from LUMINEU project
- Possible to grow large, high purity, high optical quality LMO crystals

Eur. Phys. J. C (2017) 77:785

Main crystal, Ge wafer cryogenic light detector readout by NTDs

CUORE Upgrade : CUPID-0

S

- CUPID (Cuore Upgrade with Particle ID)
 - Option1: Scintillating-Bolometer (Zn⁸²Se / Li₂¹⁰⁰MoO₄)
 - Option2: TeO₂ + Light-detector (PI by Cherenkov photon)

Luca Pattivina, Talk in DBD18

Q-value: 2998 keV

Zn⁸²Se

- CUPID-0 Se demonstrator now operating at LNGS
- 26 bolometers (24 enr. + 2 nat) arranged in 5 towers 10.5 kg of ZnSe O-shape PTFE
 - 5.17 kg of ⁸²Se $\rightarrow N_{\beta\beta}$ = 3.8×10²⁵ $\beta\beta$ nuclei

CUORE Upgrade : CUPID

- CUPID (Cuore Upgrade with Particle ID)
 - Option1: Scintillating-Bolometer (Zn⁸²Se / Li₂¹⁰⁰MoO₄)
 - Option2: TeO₂ + Light-detector (PI by Cherenkov photon)

Tommy O'Dnell, Talk in DBD18

- TeO_2 + Cherenkov photon
 - Q-value: 2527 keV
 - R&D to discriminate electron/alpha events based on Cherenkov light
 - Low threshold bolometric light detectors
 - Light detector thermometry (standard NTD-Ge)
 - TES and KIDs are being investigated

Phys. Rev. C 97 032501 2018

CUORE Upgrade : CUPID Tommy O'Dnell, Talk in Neutrino2020

- CUPID (Cuore Upgrade with Particle ID)
 - Option1: Scintillating-Bolometer (Zn⁸²Se / Li₂¹⁰⁰MoO₄)
 - Option2: TeO₂ + Light-detector (PI by Cherenkov photon)
- Baseline target isotope is ¹⁰⁰Mo embedded in LiMoO₄ scintillating bolometers

Parameter	CUPID Baseline	10 ³
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	Cuoricino + CUORE-0 + CUORE limit (Te), PRL 2018
Detector mass (kg)	472	102
100 Mo mass (kg)	253	CUORE sensitivity (Te)
Energy resolution FWHM (keV)	5	Inverted hierarchy
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	
Containment efficiency	79%	
Selection efficiency	90%	
Livetime (years)	10	Normal hierarchy
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \mathrm{~y}$	1
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} { m y}$	
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	
		- 10^{-1} 1 10 10^2 $m_{\text{lightost}} \text{ (meV)}$

Proposed Design of CUPID

AMOREAdvanced Mo based Rare process Experiment *Yong-Hamb Kim, LTD-17@Kurume & talk in TAUP2019*

- Site: YangYang Underground (Korea, Depth 700m)
- Detector: ⁴⁰Ca¹⁰⁰MoO₄ Scinti-Bolometer
 - ⁴⁰Ca (expensive, delivery problem)

→ Another Crystal ?, Li or Na

- ββ Isotope: ¹⁰⁰Mo (Q = 3034 keV, 9.63%)
 - using enriched ¹⁰⁰Mo, and ⁴⁰Ca (depleted ⁴⁸Ca)
- Phonon sensor: MMC
 - Fast time response; ~ mili-sec. rising
 - Decay constant (thermalized) ~100 msec
 - Excellent PI & ΔE

AMoRE-Polot -2018

- 1.9 kg of ¹⁰⁰Mo
- target sensitivity $T^{0v_{1/2}} > 3 \times 10^{24}$ year,
- m_{ββ} < 300~900 meV

AMoRE-I 2019 ~

• 6.1 kg, 10⁻³ cts/(keV·kg·y)、70-140 meV

Status of AMoRE Experiment

First Results from the AMoRE-Pilot

The European Physical Journal C 79, 791 (2019)

- ^{48depl}.Ca¹⁰⁰MoO₄ Crystals (1.9 kg)
- Exposure ; 111 day x kg

Particle ID : Highly resolving

Not only Heat/Light ratio, but also <u>timing</u> <u>properties</u> of signal

Yong-Hamb Kim, LTD-17@Kurume & talk in DBD18

T_{1/2} > 9.5 × 10²² year (90% C.L.) 1.1 × 10²⁴ year (by NEMO-3) 1.4 × 10²⁴ year (by CUPID-Mo)

Future Prospects of AMoRE

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Mass [kg]	1.9	~6.1	~200
Channels	12	36	~1000
BKG goal [ckky]	0.01	0.001	0.0001
Sensitivity [year]	~10 ²⁴	~10 ²⁵	~5×10 ²⁶
Sensitivity [meV]	380 to 640	120 to 200	17 to 29
Location	Y2L	Y2L	Yemilab
schedule	2017 to 2018	2019~	2021~

JINST 15 C08010 (2020)

Development for Ca Bolometer

Future development for CANDLES project

⁴⁸Ca for $\beta\beta$ Isotope

Background Candidates for Ca-Bolometer

CaF₂ Scintillating Bolometer

• History of CaF₂ Scintillating Bolometer R&D

Year	1992	1997	2017
Purpose	DBD	DM	DBD
Crystal	CaF₂ (Eu) (Eu :0.01~0.07%)	CaF ₂ (Eu) (Eu :0.30%±0.08)	CaF ₂ (pure)
Mass	2.5 g	300 mg	312 g
Sensor	NTD-Ge	NTD-Ge	MMC
Light detector	Si-PD	Ge wafer	Ge wafer

- Unique points of our R&D
 - Undoped CaF₂ crystal
 - \bullet Radio-pure crystal is available \leftarrow developed by CANDLES project

1 Our R&D

- Large light output at low temperature
- MMC (Metallic Magnetic Calorimeter) as sensors

Development for CaF₂ Scinti.-Bolometer

- Collaborative research with Korean colleague Yong-Hamb Kim (IBS & KRISS) Minkyu Lee (KRISS) Inwook Kim Do-Hyoung Kwon Hyejin Lee Hye-Lim Kim
- Sub-Group of CANDLES (Osaka)
 Konosuke Tetsuno
 Xialoang Lee
 Saori Umehara
 Tadafumi Kisimoto
 - Sei Yoshida

CaF₂ Scintillating Bolometer Setup

Signals from CaF_2 Bolometer

• The decay time ; ~ 8ms, ~ 200 msec

CaF₂(pure) Scintillating Bolometer

- Problem
 - UV scintillation of CaF₂ is absorbed on Au-deposit for heat signal. There is position dependence of scintillation absorption. → make worse E-resolution.

Resolution and Discrimination

- The rising/decay time of signal depend on particles.
- define PSD parameter
 - Heat/Light ratio
 - Rising/Decaying time of both signals

Position dependence

Evaluated ideal energy resolution without position dependence

Position dependence of Light Signal

- CaF₂(pure) crystal has a conduction band at 8~ 10 eV in addition to 4~5 eV [Ref.].
- Large amount of VUV light (120 ~ 160 nm) may be emitted in the case of α-particles, having a large energy loss density. In the CaF2 crystal, the attenuation length of VUV light is about 5 mm, so VUV is detected only in the event near the LD.

[Reference] J. Birth et al., Phys. Rev. B41.3291

Prospects for the development

- Improving E-resolution of $CaF_2(pure)$ scintillating bolometer
 - Radio-pure CaF₂(pure) crystal had been developed.
 - Doping Eu may affect phonon propagation in CaF₂ crystal.
- New trial in the next step
 - CaF₂(pure) crystal with multi-phonon detector.
 - high-precision position information

- Bolometric measurement of temperature increase is promising technique to obtain good energy resolution, down to ~ several keV at ~MeV region.
- Scintillating bolometer has; good particle identification
- Experiments are on going
 - CUORE \rightarrow CUPID
 - AMoRE
- Scintillating bolometer of undoped CaF₂ was firstly demonstrated, and evaluated performance of detector.
 - $\Delta E(\sigma) = 1.8 \% @ \sim 5 MeV$, not good due to position dependence.
 - PID ~5 σ separation (undoped CaF₂) , 10 σ (CaF₂(Eu))
 - $\Delta E(\sigma) = 0.18 \% @ \sim 5 MeV w/o position dependence$
- We will start to develop Ca bolometer in Osaka.
 - using NTD-Ge, first \rightarrow another sensor.

In Future

- To explore normal ordering region, down to ~ several meV, multiton scale scintillating bolometer facility will be required.
 - Cooling power of dilution refrigerator, ~ several mW@100 mK
 - Increasing number of crystal ; ~ a few to several 1000 crystals
 - readout sensors → readout cables ; 10000 of cables ?
- Very important to reduce incoming heat flow to cold stage.
 - Multiplex readout system should be developed for reducing number of readout cables (heat flow) by frequency domain readout system.