Spectroscopic Study of Charmed Baryons at J-PARC

Hiroyuki NOUMI Research Center for Nuclear Physics, Osaka University Institute of Particle and Nuclear Studies, KEK

Contents:

- I. Baryon Structure with Heavy Quarks
- II. Charmed Baryon Spectroscopy
- III. New Platform of Hadron Physics at J-PARC

Hierarchy of Matter in the Universe

Matter Evolution from Quark to Hadron, Nucleus, and Neutron Star

How QCD works in Hadron?

- Effective DoF (building blocks) to describe hadrons
- Change of Hadron Properties in Matter

in describing hadrons beyond the "standard picture".

6

Hadron Physics at J-PARC

- Quasi-Particles (= Effective DoF) emerging at Low E describe hadron properties effectively.
- QP could play a role to form hadrons in early Universe.

Roles of Heavy Flavors

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$ $V_{CMI} ({}^1S_0, \overline{3}_c) = 1/2^* V_{CMI} ({}^1S_0, 1_c)$

[qq]

- Motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

8

[qq]

Schematic Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- HQ-spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

Essence of

Non-relativistic Formulation in CQM

$$H = H_0 + V_c + V_{ss} + V_{so} + V_T \dots$$

- $-H_0$: kinematic term
- $-V_c$: confinement potential
- $-V_{ss}$: spin-spin interaction
- $-V_{SO}$: spin-orbit interaction (LS force)
- $-V_T$: Tensor interaction

Coordinate: r_1, r_2, r_3 $\rho = (r_1 - r_2)/\sqrt{2}$ $\lambda = (r_1 + r_2 - 2r_3)/\sqrt{6}$ $\mu_{\rho} = m_{q}$ $\mu_{\lambda} = 3m_a m_O / (2m_a + m_O)$

Confinement

- $H = H_0 + V_c + V_{ss} + \cdots$ $\Psi \sim \psi_{\ell} \chi_s \phi_I(color) \rightarrow \text{symmetrize (anti-symm.)}$
- $V_c = k/2 \sum r_{ij}^2 \rightarrow \text{analytic} (<-> \text{Cornell potential} \sum (\frac{a}{r_{ij}} + br_{ij}))$ $\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_\lambda = \frac{3m_q m_Q}{2m_q + m_Q}, m_\rho = m_q\right)$

 $\begin{aligned} \mathbf{k} &= 0.33^2 m_{\lambda}/3, \text{ at } m_Q = 1.5 \text{ GeV}/c^2 \\ c.f. \ 1\hbar\omega_{\lambda} \sim \frac{\Lambda_c \left(\frac{1}{2}^-\right) + 2\Lambda_c \left(\frac{3}{2}^-\right)}{3} - \Lambda_c \left(\frac{1}{2}^+\right) \sim 0.33 \text{ GeV}/c^2 \text{ @charm sector} \\ 1\hbar\omega_{\rho} \sim \hbar \sqrt{3k/m_q} \sim 0.483 \text{ GeV} \text{ (independent of } m_Q) \end{aligned}$

P-wave (ρ , λ -mode excitations) isotope shift

- $H = H_0 + V_c + V_{ss} + \cdots$ $\Psi \sim \psi_{\ell} \chi_{S} \phi_{I}(color) \rightarrow \text{symmetrize (anti-symm.)}$
- $V_c = k/2 \sum r_{ii}^2$ $\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_{\lambda} = \frac{3m_q m_Q}{2m_q + m_Q}, m_{\rho} = m_q\right)$ • $V_{ss} = c_s \sum \frac{\sigma_i \cdot \sigma_j}{m_i m_i} \delta(r_{ij}) \quad \langle \chi_s | V_{ss} | \chi_s \rangle$: $\Lambda\left(\frac{1}{2}^{+}\right) = \omega_0 - 3c_s/m_q^2$ $\Sigma\left(\frac{1}{2}^{+}\right) = \omega_0 + c_s\left(\frac{1}{m_a^2} - \frac{4}{m_a m_0}\right)$ $\Sigma^*\left(\frac{3}{2}^+\right) = \omega_0 + c_s\left(\frac{1}{m_a^2} + \frac{2}{m_a m_o}\right)$
 - (S, χ^{ρ}) : "qq"-spin anti-symm. (S, χ^{λ}) : "qq"-spin symm., [qqQ]^{1/2} (S, χ^{s}) : "qqQ" spin symm.

- $H = H_0 + V_c + V_{ss} + \cdots$ $\Psi \sim \psi_{\ell} \chi_s \phi_I(color) \rightarrow \text{symmetrize (anti-symm.)}$
- $V_c = k/2\sum r_{ij}^2$

$$\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_{\lambda} = \frac{3m_{q}m_{Q}}{2m_{q} + m_{Q}}, m_{\rho} = m_{q}\right)$$

$$V_{SS} = c_{S} \sum \frac{\sigma_{i} \cdot \sigma_{j}}{m_{i}m_{j}} \delta(r_{ij}) \quad \langle \chi_{S} | V_{SS} | \chi_{S} \rangle:$$

$$\Lambda\left(\frac{1^{+}}{2}\right) = \omega_{0} - 3c_{S}/m_{q}^{2}$$

$$\sum\left(\frac{1^{+}}{2}\right) = \omega_{0} + c_{S}\left(\frac{1}{m_{q}^{2}} - \frac{4}{m_{q}m_{Q}}\right)$$

$$\sum^{*}\left(\frac{3^{+}}{2}\right) = \omega_{0} + c_{S}\left(\frac{1}{m_{q}^{2}} + \frac{2}{m_{q}m_{Q}}\right)$$

$$\sum^{*}\left(\frac{3^{+}}{2}\right) = \omega_{0} + c_{S}\left(\frac{1}{m_{q}^{2}} + \frac{2}{m_{q}m_{Q}}\right)$$

$$M_{SS} = \frac{3m_{q}m_{Q}}{2m_{q} + m_{Q}}, m_{\rho} = m_{q}$$

- $H = H_0 + V_c + V_{ss} + \cdots$ $\Psi \sim \psi_{\ell} \chi_S \phi_I(color) \rightarrow \text{symmetrize (anti-symm.)}$
- $V_c = k/2\sum r_{ij}^2$

$$\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_{\lambda} = \frac{3m_q m_Q}{2m_q + m_Q}, m_\rho = m_q\right)$$

•
$$V_{SS} = c_S \sum \frac{\sigma_i \cdot \sigma_j}{m_i m_j} \delta(r_{ij}) \quad \langle \chi_S | V_{SS} | \chi_S \rangle$$
:

$$\Lambda\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) = \begin{cases} \omega_{\rho} + c_{s}\left(\frac{1}{m_{q}^{2}} - \frac{4}{m_{q}m_{Q}}\right)\left(\ell_{\rho} = 1,\chi^{\lambda}\right)\\ \omega_{\lambda} - 3c_{s}/m_{q}^{2} \qquad (\ell_{\lambda} = 1,\chi^{\rho}) \end{cases}$$

$$\Lambda\left(\frac{1}{2}^{-},\frac{3}{2}^{-},\frac{5}{2}^{-}\right) = \omega_{\rho} + c_{s}\left(\frac{1}{m_{q}^{2}} + \frac{2}{m_{q}m_{Q}}\right)\left(\ell_{\rho} = 1,\chi^{s}\right)$$

Lambda Baryons

	strange	charm	bottom			
Λ (1830, 5/2 [–])		A(2940, ??)				
$oldsymbol{\Lambda}$ (1690, ??) $oldsymbol{\Lambda}$ (1670, 1/2 [–])		$ \Lambda_{c}(2880, 5/2^{+})$	$\Lambda_{b}^{(6152)}$			
$\Lambda(1520,3/2^-)$ $\Lambda(1405,1/2^-)$ $\Sigma^*(3/2^+)$		$\frac{\Lambda_{c}(2625, 3/2^{-})}{\Lambda_{c}(2595, 1/2^{-})}$ $\sum_{c}^{*}(3/2^{+})$	$ = \frac{\Lambda_{b}(5920, 3/2^{-})}{\Lambda_{b}(5912, 1/2^{-})} $ $ = \sum_{b}^{*} (3/2^{+}) $			
∑(1/2⁺) Λ(GS)		$ \Lambda_{c}(GS)$	$\Lambda_{b}(GS)$			

non-rel. QIVI: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_{rel} +$

T. Yoshida et al., Phys. Rev. D**92**, 114029(2015)

$\Lambda, \Sigma(P, \chi)$ (ρ, λ-mode mixing w/ V_{ss})

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

$\Lambda, \Sigma(P, \chi)$ (ρ, λ-mode mixing w/ V_{ss})

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

$\Lambda, \Sigma(P, \chi)$ (ρ, λ-mode mixing w/ V_{ss})

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

 $\Sigma(P,\chi)$ (ρ , λ -mode excitations w/ V_{ss})

Λ,Σ(1/2-) (ρ, λ-mode excitations w/ V_{ss})

CQM calculation (P-wave Sigma)

Λ,Σ(1/2-) (ρ, λ-mode excitations w/ V_{ss})

QQq

Level Structure of double-strange baryons

• λ and ρ mode excitations interchange

29

Confinement

• $H = H_0 + V_c + V_{ss} + \cdots$

 $\Psi \sim \psi_{\ell} \chi_{S}(Isospin * color) \rightarrow symmetrize (anti-symm.)$

• $V_c = k/2\sum r_{ij}^2$

$$\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_{\lambda} = \frac{3m_{Q}m_{q}}{2m_{Q} + m_{q}}, m_{\rho} = m_{Q}\right)$$

P-wave (ρ , λ -mode excitations) isotope shift

• $H = H_0 + V_c + V_{ss} + \cdots$

 $\Psi \sim \psi_{\ell} \chi_{S}(Isospin * color) \rightarrow symmetrize (anti-symm.)$

• $V_c = k/2\sum r_{ij}^2$

Ê

$$\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_{\lambda} = \frac{3m_{Q}m_{q}}{2m_{Q} + m_{q}}, m_{\rho} = m_{Q}\right)$$

$$V_{SS} = c_{S} \sum \frac{\sigma_{i} \cdot \sigma_{j}}{m_{i}m_{j}} \delta(r_{ij}) \quad \langle \chi_{S} | V_{SS} | \chi_{S} \rangle:$$

$$\Xi\left(\frac{1}{2}^{+}\right) = \omega_{0} + c_{S}\left(\frac{1}{m_{Q}^{2}} - \frac{4}{m_{q}m_{Q}}\right) \qquad (S, \chi^{\lambda}): "QQ"-\text{spin so}$$

 $\left(\frac{1}{2}\right) = \omega_0 + c_s \left(\frac{1}{m_Q^2} + \frac{1}{m_q m_Q}\right)$

"QQ"-spin symm., [QQq]^{1/2}

 (S, χ^{S}) : "QQq" spin symm.

- $H = H_0 + V_c + V_{ss} + \cdots$ $\Psi \sim \psi_{\ell} \chi_s (Isospin * color) \rightarrow \text{symmetrize (anti-symm.)}$
- $V_c = k/2 \sum r_{ij}^2$ $\omega_{\lambda,\rho} = \sqrt{3k/m_{\lambda,\rho}}, \qquad \left(m_\lambda = \frac{3m_Q m_q}{2m_Q + m_q}, m_\rho = m_Q\right)$ • $V_{ss} \sim c_s \sum \frac{\sigma_i \cdot \sigma_j}{m_i m_j} \delta(r_{ij}) \qquad \langle \chi_s | V_{ss} | \chi_s \rangle$:

$$\begin{split} \Xi\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) &= \begin{cases} \omega_{\rho} - 3c_{s}/m_{Q}^{2} & (\ell_{\rho} = 1,\chi^{\rho}) \\ \omega_{\lambda} + c_{s}\left(\frac{1}{m_{Q}^{2}} - \frac{4}{m_{q}m_{Q}}\right) & (\ell_{\lambda} = 1,\chi^{\lambda}) \end{cases} \\ \Xi\left(\frac{1}{2}^{-},\frac{3}{2}^{-},\frac{5}{2}^{-}\right) &= \omega_{\lambda} + c_{s}\left(\frac{1}{m_{Q}^{2}} + \frac{2}{m_{q}m_{Q}}\right) (\ell_{\lambda} = 1,\chi^{s}) \end{split}$$

Ξ (ρ , λ -mode excitations w/ V_{ss})

Xi Baryons

Measured Ξ (PDG)

	Threshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		三(2500)	??	1*	150?				
	$\Omega \overline{K}$ (2166)	三(2370)	??	2*	80?				Ω K~9±4
		王(2250)	??	2*	47+-27?				
		三(2120)	??	$1^*_{\Sigma \overline{K}}$	25?				
$\Sigma^*\overline{K}$ (1878)	$\Sigma \overline{K}^*$ (1983) $\Lambda \overline{K}^*$ (1908)	三(2030)	>=5/2?	3*	20 ⁺¹⁵ -5	small	~20	~80	Why ΣK ?
		三(1950)	??	3*	60+-20	seen	seen		
		三(1820)	3/2-	3*	24 ⁺¹⁵ -10	small	Large	Small	
$\Xi^*\pi$ (1665)	$\Sigma \overline{K}$ (1685)	三(1690)	??	3*	<30	seen	seen	seen	
	$\Lambda \overline{K}$ (1610)	三(1620)	??	1*	20~40?				
		Ξ(1530)	3/2+	4*	19	100			
	三元(1450)								

✓ Most of spins/parities have NOT been determined yet.
 ✓ Why the Ξ* -> πΞ decay seems to be suppressed?
 ✓ expected to reflect QQq configuration.
Xi Baryons

Qss

$\Omega(S,P)$ (ρ, λ-mode excitations w/ V_{ss}) when m_q=m_s

Omega Baryon

Measured Ω (PDG)

		JP	rati ng	Width [MeV]	→ΞK (1)	→Ξ*K (2)	→ΞK* (3)	→ΞKπ (4)	→Ωππ (5)	
Threshold	Ω(2470)	??	2*	72+-33					seen	LASS (113MK-,11GeV/c) (290+-90)/(5) nb
E0K*- 2109	Ω(2380)	??	2*	26+-23		<0.44 to (4)	0.5+-0.3 to (4)			Xi Beam
E0*K- 2024	Ω(2250)	??	3*	55+-18		0.7+-0.2 to (4)		Seen		Xi Beam LASS (113MK-, 11GeV/c) (630+-180)/(2) nb
Ωπ0π0 1942	Ω(2012)	?-	3*	6.4 ^{+2.5} _ _{2.0} +-1.6	1.2+-0.3 (=Ξ0/Ξ-)	<0.119 /(1)				->E*K dominant if E*K mol?
ΞΟΚ- 1811	Ω(1672)	3/2+	4*	-						
(2/10 1807)	✓ Mosi	tof	snin	s/pari	ties/de	cav bro	anches	have	vet to	be determined.

✓ Most of spins/parities/decay branches have yet to be determined
✓ What the production Ξ* -> Ω*K and Ω* decay modes tell us
Ω*'s internal structure.

Charmed Baryon Spectroscopy

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- ✓ Production and Decay reflect [qq] correlation in Excited Y_c^*
- ✓ C.S. DOES NOT go down at higher *L* when q_{eff} >1 GeV/c.

S.H. Kim, A. Hosaka, H.C. Kim, and HN, PTEP, (2014) 103D01, S.H. Kim, A. Hosaka, H.C. Kim, and HN, Phys.Rev. D92 (2015) 094021

Revisit the Regge Theory

 shows the typical s-dependence of binary reaction cross sections at the large s region;

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s (p_{\pi}^{cm})^2} \left| \left\langle f \left| T \right| i \right\rangle \right|^2 \left\langle f \left| T \right| i \right\rangle = g_1 g_2 \Gamma(-\alpha(t)) (s/s_0)^{\alpha(t)}$$

- Regge trajectory: $\alpha(t) = \alpha(0) \gamma[\sqrt{T} \sqrt{t-T}]$
- scale parameter s_0 :

s at the threshold energy of the reaction AB \rightarrow CD (*In Kaidalov's Model: $s_0^{2(\alpha_D * (0)-1)} = s_{CD}^{\alpha_p(0)-1} * s_{CD}^{\alpha_{J/\psi}(0)-1}$

 $s_{AB} = (\Sigma m_i)_A * (\Sigma m'_j)_B, m_i$:transversal masses of the consituent quark)

Amplitude

$$\begin{split} P_{K}^{\mathsf{R}}(s,t) &= \binom{1}{e^{-i\pi\alpha_{K}(t)}} \binom{s}{s_{K}}^{\alpha_{K}(t)} \Gamma[-\alpha_{K}(t)]\alpha_{K}', \\ P_{K^{*}}^{\mathsf{R}}(s,t) &= \binom{1}{e^{-i\pi\alpha_{K^{*}}(t)}} \binom{s}{s_{K^{*}}}^{\alpha_{K^{*}}(t)-1} \Gamma[1-\alpha_{K^{*}}(t)]\alpha_{K^{*}}', \\ P_{\Sigma}^{\mathsf{R}}(s,u) &= \binom{1}{e^{-i\pi\alpha_{\Sigma}(u)}} \binom{s}{s_{\Sigma}}^{\alpha_{\Sigma}(u)-\frac{1}{2}} \Gamma[\frac{1}{2}-\alpha_{\Sigma}(u)]\alpha_{\Sigma}', \end{split}$$

Production Cross Section

S.H. Kim, A. Hosaka, H.C. Kim, and HN PRD92, 094021(2015)

46

Production Rate:

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

1. Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

 q_{eff} ~1.4 GeV/c A~0.4 GeV ([Baryon size]⁻¹)

2. Population shared among HQ-spin multiplet

$$J_{BM} - s_{HQ} : J_{BM} + s_{HQ} = L : L + 1$$

 t-channel D* Reggeon at a forward angle

S. H. Kim, et al., PTEP, 2014, 103D01(2014) 3. Spectroscopic Factor ("ud" configulation)

$$\gamma$$
=1/2 for Λ_c 's, =1/6 for Σ_c 's

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

T. Yoshida et al., Phys. Rev. D**92**, 114029(2015)

LHCb data in Λ_c^*

- J. High Energ. Phys. (2017) 2017
- $D^0 p$ invariant mass in $\Lambda_b \rightarrow D^0 p \pi^ -\Lambda_c(2940)$: known • likely 3/2-, (acceptable 1/2, 7/2) $-\Lambda_c(2880)$: known • 5/2+ confirmed $-\Lambda_c(2860)$: new • likely 3/2+, D-wave (L=2) resonance?
- Questions arise;
 - Is $\Lambda_c(2940)$ an L=3 state (λ mode)?
 - Are $\Lambda_c(2880)$ and $\Lambda_c(2860)$ *LS* partners of L=2 (λ modes)?
- Production rates in $p(\pi^-, D^{*-})Y_c^*$ will give answer.

Λ (2880) likely to be $\lambda \rho$ mode?

H. Nagahiro et al., PRD95 (2017) no.1, 014023

• P-wave transition seems to be suppressed in

 $\Lambda_c(2880)^{\frac{5}{2}+} \to \Sigma_c^*(2520)^{\frac{3}{2}+} + \pi(0^-).$

- It would be forbidden only in the case of $J_{BM}^P = 3^+$: "5/2-" state have large widths.
- $\Lambda_c(2880)^{\frac{3}{2}+}$ is likely to be a $\lambda\rho$ mode ($\lambda=1$, $\rho=1$) state.

Λ _c (2880) 5/2+	λλ	λρ	ρρ	Σ _c *(2520) 3/2+
color		Asymm		
Isospin		Symm. (I=1)		
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2	Symm. 1 Symm, 0
Lambda orbit	2	1	0	0
J _{BM} ^P	2+	1+, 2+, <mark>3+</mark>	2+	1+

To be confirmed by measuring the prod. ratio 54

Lambda_b(6146/6152) Phys. Rev. Lett. 123, 152001

- A new doublet Λ_b^* states decaying into $\Lambda_b \pi^+ \pi^-$ have been observed.
 - $-M_{\Lambda_b(6146)} = 6146.17 \pm 0.33 \pm 0.22 \pm 0.16 \text{ MeV}$
 - $-M_{\Lambda_b(6152)} = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16$ MeV
 - $-\Gamma_{\Lambda_b(6146)} = 2.9 \pm 1.3 \pm 0.3 \text{ MeV}$
 - $-\Gamma_{\Lambda_b(6146)} = 2.1 \pm 0.8 \pm 0.3 \text{ MeV}$
- They are likely to be λ -mode with L=2...
- Λ_b (6146) dominantly decays to Σ_b ?
 - Similar to the case of $\Lambda_c(2880, 5/2^+)$

* Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* - pD)/\Gamma(\Lambda_c^* - \Sigma_c \pi)$.

Hint in $R(NK)/R(\pi\Sigma)$

PDG Data

- Decay ratios in known hyperons SUGGEST the λ/ρ mode states
- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

New Platform of Hadron Physics at J-PARC

Hadron Physics at High-p BL

- Baryon Spectroscopy
 - $p(\pi^{-}, D^{*-})Y_{c}^{*}$ (E50)
 - p(K⁻,K^{*})Ξ^{*}, p(K⁻,K⁺K^{*})Ω^{*} (LoI:KEK/J-PARC-PAC 2014-4)
 - Search for D_{30} Dibaryon State in $pp \rightarrow \pi^{-}\pi^{-}D_{30}$ (E79)
 - $p(\pi^-, K^*)\Lambda(1405)$ at large *s*, *t* (to be proposed)
- Hadron Tomography
 - Exclusive DY, $\pi^- p \rightarrow \mu^- \mu^+ n$ (LoI: KEK/J-PARC-PAC 2019-7)
- For Strangeness Nuclear Physics
 - Λp Scattering for the study of high-dense nuclear matter (LoI: KEK/J-PARC-PAC 2020-08)
- For Neutrino Physics
 - Hadron Production for neutrino beams

R&D Works

- Particle Identification (Osaka/Kyoto/Tohoku/RIKEN...)
 - Timing counters
 - T-Zero (Osaka): Cherenkov type ~50 ps
 - Resistive Plate Chamber (RCNP/ELPH/Taiwan/Kyoto/JAEA/Tsukuba): Large Size~60 ps
 - Ring Image Cherenkov Detector
 - BeamRICH/RICH (Tohoku/KEK/Osaka/Kyoto/RIKEN/...)
 - Muon ID (Academia Sinica)
- Trackers (Tohoku/RCNP/RIKEN...)
 - SciFi Tracker (Focal Plane/Beam/Scattered particle)
 - DC (Forward, Barrel)
- High-speed DAQ system (RCNP/Tohoku/Taiwan/KEK/RIKEN...)
 - PC cluster-based DAQ scheme
 - Flexible "trigger": not only (π^-, D^*) but also $(K^-, K^*),...$

Time Zero Counter

- Hodoscope w/ Cherenkov Radiator for a Beam Rate: 60 M/spill (30 MHz)
 - -X-shape to cancel position dependence by taking mean time
 - $-\sigma$ <50 ps at 3-5 MHz

By T. Akaishi, K. Shirotori et al.

Measured Performance for MIPs

Resistive Plate Chamber

- TOF meas. for Scattered Particles
 - -Developed in LEPS

 $-\sigma$ ~60 ps

By N. Tomida, H. Ohnishi et al.

Expected PID performance w/ TOF vs Mom.

Fiber Tracker

By K. Shirotori et al.

- Faster Responding Trackers are needed for a Beam Rate: 60 M/spill (30 MHz)
 - Focal plane: XUV 1 set w/ ϕ 1mm fiber
 - Beam Trackers: XUV 2 sets w/ ϕ 0.5mm fiber
 - Scattered Particle Trackers : in Fabrication

Drift Chamber

- Barrel DC (Side DC) for backward-emitted, low mom. particles
 - -Two arms are ready and waiting for FEEs.
- Front/Forward DC for Forward-emitted particles
 - -To be prepared
 - -still missing pieces for better redundancy

High-speed DAQ system

Streaming DAQ(~50 GB/spill)

Demonstration of High-speed DAQ

40 CPUs and 256 GB Memories

Demonstration of High-speed DAQ

Ring Image CHerenkov detector

By T. Yamaga

- High-momentum PID
 - Mom. range: 2-16 GeV/c
- \Rightarrow Hybrid RICH
 - Aerogel + $C_4 F_{10}$ gas
 - MPPC detector plane
 - Spherical mirror

- Design Performances
 - Efficiency: ~99%
 - Wrong PID: 0.10~0.14%
 - \Rightarrow Background level \times 1.05

Beam RICH: test w/ electron@LEPS

Hit pattern on detector plane

Number of MPPC hits (# of photons) : Aerogel thickness dependence

- 1 MPPC hit = 1 p.e.
- Poisson fitting
- $V_{ov} = 54.0 V (+3.0V)$
- Background: Side band of TOF

• 30 ns rough time gate

2500 2000

1500

1000

※1 p.e. Vth operation of MPPC has been confirmed.

18422

4.581 2.194

16726

4.931

2.307

40 mm

50 mm

Entries Mean

Std Dev

Entries

Cherenkov angle resolution: Aerogel thickness dependence

- $V_{ov} = 54.0 V (+3V)$
- Gaussian fitting resolution:
- Expected performance achieved: $\sigma_{\theta_c} \sim 2.5 \text{ mrad}$
 - \Rightarrow # of MPPCs can be double

XAerogel is sufficiently transparent up to 100 mm.

Summary

- A heavy quark plays an inert particle in a hadron and is quite helpful to investigate internal motions and/or correlations of quarks.
 - Excitation Energy, Production Rate, and Decay Branching Ratio
- We conduct charmed baryon spectroscopy by means of missing mass technique at the J-PARC high-momentum beam line, where the intense pion beams up to 20 GeV/c will be delivered.
 - New platform of hadron physics will be covered owing to the general purpose spectrometer