NEWS on Ordinary Muon Capture and Double Beta Decay

Lotta Jokiniemi

University of Barcelona, Spain

RCNP NEWS Colloquim, 24.06.2021

ΙϹϹͶͿ

UNIVERSITATDE BARCELONA

Outline

Introduction

Ordinary Muon Capture as a Probe of 0 uetaeta Decay

tende sind des

- What Have We Learned So Far?
- What's Next?

3 New Term into the 0 uetaeta-Decay NMEs

4) Summary

- Current knowledge on particles and interactions between them is based on the Standard Model (SM)
- According to the SM, neutrinos are extremely weakly interacting, massless fermions
- However, recent solar neutrino experiments have proven that neutrinos have a non-zero mass
 - Standard model's perception of neutrinos is not accurate!
 - What could we learn from $0
 u\beta\beta$ decay?

Two-Neutrino Double-Beta ($2\nu\beta\beta$) **Decay**

$$^{A}_{Z} \mathbf{X}_{N} \rightarrow ^{A}_{Z+2} \mathbf{Y}_{N-2} + 2e^{-} + 2\bar{\nu}_{e}$$

- Transition runs through 1^+ virtual states of the intermediate nucleus $Z_{+1}^A X'_{N-1}$
- May happen, when β -decay is not energetically allowed
- Allowed by the Standard Model
- Measured in pprox 10 isotopes
 - Half-lives of the order 10²⁰ years or longer

L. Jokiniemi (UB)

Neutrinoless Double-Beta ($0\nu\beta\beta$) Decay

$$^{A}_{Z} \mathrm{X}_{N} \rightarrow^{A}_{Z+2} \mathrm{Y}_{N-2} + 2e^{-1}$$

- Transition runs through all J^{π} virtual states of the intermediate nucleus $_{Z+1}^{A} \mathbf{X'}_{N-1}$
- Requires that the neutrino is a Majorana particle, meaning its own antiparticle
- Violates the lepton-number conservation law by two units

•
$$\frac{1}{t_{1/2}^{(0\nu)}} \propto |\frac{m_{\beta\beta}}{m_e}|^2$$
, $m_{\beta\beta} = \sum_i^{\text{light}} U_{ei}^2 m_i$

Difficulty of $0\nu\beta\beta$ Decay Searches

Challenging both experimentally ...

Sketchy energy spectrum of the emitted electrons in $\beta\beta$ decays ¹

$$t_{1/2}^{(2
u)}pprox 10^{20}\,\,{
m y},\qquad t_{1/2}^{(0
u)}\ge 10^{25}\,\,{
m y}$$

 \rightarrow We need some detours!

¹cobra-experiment.com

²J. Engel and J. Menéndez, *Rep. Prog. Phys.* **80**, 046301 (2017), updated.

L. Jokiniemi (UB)

NEWS on OMC and $0\nu\beta\beta$

 \ldots and theoretically

Matrix elements of $0\nu\beta\beta$ decays ²

Proton-Neutron Quasiparticle Random-Phase Approximation (pnQRPA)

- Describes nuclear excitations in odd-odd nuclei as proton-neutron quasiparticle pairs
- Relies on the nuclear mean-field
 - Strongly interacting fermions → Non-interacting particles in an external potential
- Allows the use of large single-particle bases with reasonable computational effort
 - Wide excitation-energy regions in medium-heavy/heavy nuclei
- Adjustable parameters $g_{\rm ph}$ and $g_{\rm pp}$

Woods-Saxon -based mean field potentials for protons and neutrons.

Outline

1 Introduction

2 Ordinary Muon Capture as a Probe of $0\nu\beta\beta$ Decay

ten de sind des

- What Have We Learned So Far?
- What's Next?
- **3** New Term into the $0
 u\beta\beta$ -Decay NMEs
- 4) Summary

Ordinary Muon Capture (OMC)

$$\mu^- + {}^{\mathcal{A}}_{Z} \operatorname{X}(J_i^{\pi_i}) \to \nu_{\mu} + {}^{\mathcal{A}}_{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

- Muon initially bound on an atomic orbit is captured by the nucleus
- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$ • Similar to $0\nu\beta\beta$ decay!
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_A and the pseudoscalar coupling g_P are involved in the process

Advantages of OMC as a Probe of $0\nu\beta\beta$ Decay

- OMC leads to transitions to all J^π states up to high energies
 - Can access the intermediate states of $0\nu\beta\beta$ decay!
- Previously intermediate states probed by charge-exchange reactions

$$a_{z}a + A_{Z}X \rightarrow a_{z\pm 1}b + A_{Z\mp 1}Y,$$

where (a, b) can be (p, n), $({}^{3}\mathrm{He}, t)$, ...

• Ordinary muon capture (OMC)

$$\mu^- +^{\mathcal{A}}_{Z} X \to \nu_{\mu} +^{\mathcal{A}}_{Z-1} Y$$

serves as a complimentary probe

 $0^{+} \xrightarrow{A \atop Z X} 0^{\mu} 0^{\nu\beta\beta} \xrightarrow{A \atop V} 0^{\mu} 0^{\mu}$

Advantages of OMC as a Probe of $0\nu\beta\beta$ Decay

• Both OMC and $0\nu\beta\beta$ decay involve couplings g_A and g_p :

$$W^{(OMC)} \propto |g_{\rm A}M_{\rm A} + g_{\rm V}M_{\rm V} + g_{\rm P}M_{\rm P}|^2$$

$$M^{(0
u)} = M^{(0
u)}_{
m GT}(g_{
m A}, g_{
m P}, g_{
m M}) - \left(rac{g_{
m V}}{g_{
m A}}
ight)^2 M^{(0
u)}_{
m F}(g_{
m V}) + M^{(0
u)}_{
m T}(g_{
m A}, g_{
m P}, g_{
m M}) \; ,$$

$$[t_{1/2}^{(0\nu)}]^{-1} = \frac{g_{\rm A}^4}{g_{\rm A}} G_{0\nu} |M^{(0\nu)}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

…so if

- we know the involved nuclear structure precisely enough, and
- OMC rates to individual nuclear states can be measured

...we can probe $g_{\rm A}$ and $g_{\rm p}$ on the relevant momentum-exchange regime for $0\nu\beta\beta$ decay

Outline

1 Introduction

2 Ordinary Muon Capture as a Probe of $0\nu\beta\beta$ Decay

tendesine des

• What Have We Learned So Far?

- What's Next?
- **3** New Term into the 0
 uetaeta-Decay NMEs
- 4) Summary

Strength Functions - Theory Agrees with Experiment

$$\mu^- + {}^{100} \operatorname{Mo}(0^+_{g.s.}) \to \nu_\mu + {}^{100} \operatorname{Nb}(J^\pi_f)$$

 The OMC strength distribution in ¹⁰⁰Nb ³ was studied at the MuSIC beam channel at RCNP for the first time

³I.H. Hashim et al., Phys. Rev. C 97, 014617 (2018)

Muon Capture on ¹⁰⁰Mo - Theory vs. Exp.

- We computed the OMC strength spectrum in ¹⁰⁰Nb based on the Morita-Fujii formalism ⁴
- ...and compared the obtained spectrum with the observed one
 - The agreement is excellent!

Experimental vs. computed OMC strength spectra in $^{100}\,\rm Nb$ 5

⁴M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).

⁵LJ, J. Suhonen, H. Ejiri and I.H. Hashim, *Phys. Lett. B* **794**, 143 (2019)

L. Jokiniemi (UB)

Similarities of OMC and $0\nu\beta\beta$ Decay

- In the above-mentioned setup the final nucleus of OMC = intermediate nucleus of $0\nu\beta\beta$ -decay
- Same excitation-energy regions are important
- Transitions to/through multipoles with $1 \le J \le 3$ dominate both $0\nu\beta\beta$ decay and OMC

Cumulative $0\nu\beta\beta$ -Decay and OMC NMEs of (a) A=76 and (b) A=136 triplets ⁶

⁶LJ and J. Suhonen, *Phys. Rev. C* **102**, 024303 (2020)

L. Jokiniemi (UB)

Correlations between OMC and $0\nu\beta\beta$ Matrix Elements

• Similarities between $0\nu\beta\beta$ -decay and OMC matrix elements both on the $\beta^{-}\beta^{-}$ and the $\beta^{+}\beta^{+}$ sides

⁷LJ and J. Suhonen, *Phys. Rev. C* **102**, 024303 (2020) ⁸LJ, J. Suhonen and J. Kotila, *Front. Phys.* **9**, 142 (2021)

L. Jokiniemi (UB)

Both OMC and $0\nu\beta\beta$ Decay are Sensitive to g_{pp}

- The particle-particle parameter $g_{\rm pp}$ is normally adjusted to $2\nu\beta\beta$ -decay half-life, where possible
- Adjusting $g_{\rm pp}$ shifts both the OMC and the $0\nu\beta\beta$ spectra
 - We could adjust g_{pp} to OMC giant resonance, instead?

Dependence of OMC and $0\nu\beta\beta$ -decay matrix elements with $J^{\pi}=2^+$ on $g_{\rm pp}$ ⁹

⁹LJ, J. Suhonen and J. Kotila, *Front. Phys.* **9**, 142 (2021)

L. Jokiniemi (UB)

OMC Matrix Elements Depend on Bound-Muon Wave Functions

Dirac equations

$$\begin{cases} \frac{d}{dr}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{d}{dr}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

where V(r) is the potential created by finite-size/point-like nucleus

[Front. Phys. 9, 142 (2021)]

 Bethe-Salpeter (B-S) approx.

$$G_{-1}(r) = 2(\alpha Z m'_{\mu})^{\frac{3}{2}} e^{-\alpha Z m'_{\mu} r}$$
$$F_{-1}(r) = 0$$

OMC matrix elements with $J^{\pi} = 2^+$ with different wave functions

L. Jokiniemi (UB)

24.06.2021 18 / 32

OMC Matrix Elements Depend on Bound-Muon Wave Functions

Dirac equations

$$\begin{cases} \frac{d}{dr}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1} \\ \frac{d}{dr}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1} \end{cases}$$

 Bethe-Salpeter (B-S) approx.

$$\boxed{\begin{array}{c} G_{-1}(r) = 2(\alpha Z m'_{\mu})^{\frac{3}{2}} e^{-\alpha Z m'_{\mu} r} \\ F_{-1}(r) = 0 \end{array}}$$

where V(r) is the potential created

Finite-size effect: $W(fs) \approx \left(\frac{Z_{eff}}{Z}\right)^4 W(pl)$

[Front. Phys. 9, 142 (2021)]

OMC matrix elements with $J^{\pi} = 2^+$ with different wave functions

24.06.2021 18 / 32

Outline

tende sind de

Muon Capture on Light Nuclei from First Principles

- Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay ¹⁰
 - Solution: missing correlations and two-body currents from the NSM
- How about $g_{\rm A}$ quenching at high momentum transfer $q \approx 100 \text{ MeV/c?}$
 - OMC could provide an answer!

¹⁰P. Gysbers *et al.*, *Nature Phys.* **15**, 428 (2019)

L. Jokiniemi (UB)

Muon Capture on ²⁴Mg from First Principles

- Muon capture matrix elements evaluated in VS-IMSRG framework
 - Hamiltonian based on the chiral EFT
 - Valence-space Hamiltonian and OMC operators decoupled from complimentary space with a unitary transformation
 - include physics missing from the NSM: 3N forces, two-body matrix elements,...

Nuclear Matrix Elements for Muon Capture on ²⁴Mg

• OMC matrix elements for

$$\mu^{-} + {}^{24}\mathrm{Mg}(0^+_{g.s.}) \rightarrow \nu_{\mu} + {}^{24}\mathrm{Na}(J^{\pi}_n)$$

[L.J., T. Miyagi, J.D. Holt, J. Kotila and J. Suhonen, in preparation]

Capture Rates on Low-Lying States in ²⁴Na

• Comparing the VS-IMSRG and nuclear shell model (NSM) results against experimental data could shed light on the values of g_A and g_P

J_i^{π}	E (MeV)			Rate (1/s)	
	Exp.	USDB	Vs-IMSRG	USDB	VS-IMSRG
$4_{g.s.}^{+}$	0.0	0.0	0.0	2	2
$\check{1}_1^+$	0.472	0.540	0.397	3 000	18 000
2^{+}_{1}	0.563	0.629	0.244	800	400
2^{+}_{2}	1.341	1.107	0.865	2 000	800
3^{\mp}_{1}	1.345	1.338	0.915	90	4
$1^{\hat{+}}_2$	1.347	1.324	0.821	26 000	6 000

[L.J., T. Miyagi, J.D. Holt, J. Kotila and J. Suhonen, in preparation]

Outline

tende sind des

$0\nu\beta\beta$ -Decay Nuclear Matrix Elements

• Assuming the standard light-neutrino exchange is the dominant mechanism of $0\nu\beta\beta$ decay

$$[t_{1/2}^{0\nu}]^{-1} = g_{\rm A}^4 G_{0\nu} |M_{\rm L}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

• The matrix element can be written as

$$M_{
m L}^{0
u} = M_{
m GT}^{0
u} - \left(rac{g_{
m V}}{g_{
m A}}
ight)^2 M_{
m F}^{0
u} - M_{
m T}^{0
u}$$

However, there seems to be something missing...

PHYSICAL REVIEW LETTERS 120, 202001 (2018)

Editors' Suggestion Featured in Physics

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4} ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Nikhef, Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands ³Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France ⁴Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

(Received 1 March 2018; revised manuscript received 28 March 2018; published 16 May 2018)

Within the framework of chiral effective field theory, we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.

The Contact Term - First ab initio Results

• Contact term enhances the NMEs by ¹²

 $\begin{cases} 5\sim 15\% \ \mbox{for} \ ^6{\rm He} \\ 20\sim 80\% \ \mbox{for} \ ^{12}{\rm Be} \end{cases}$

- Study of the lightest $0\nu\beta\beta$ -candidate ⁴⁸Ca shows a 43(7)% enhancement ¹³
 - Good news for the experiments!

[V. Cirigliano et al., Phys. Rev. Lett. 120,202001 (2018)]

¹²V. Cirigliano et al., PRC **100**, 055504 (2019), PRL **120**, 202001 (2018)
 ¹³M. Wirth, J. M. Yao and H. Hergert, arXiv:2105.05415 [nucl-th] (2021)

L. Jokiniemi (UB)

NEWS on OMC and $0\nu\beta\beta$

24.06.2021 27 / 32

Contact Terms in pnQRPA and NSM

In pnQRPA: $M_{\rm S}/M_{\rm L} \approx 30-80\%$ In NSM: $M_{
m S}/M_{
m L} pprox 15-50\%$

[LJ, P. Soriano and J. Menéndez, in preparation]

Effective Neutrino Masses

- Effective neutrino masses from combined likelihood functions of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe), method proposed in ¹⁴
- Middle bands correspond to the computed values of $M_{\rm L}^{(0\nu)}$, upper bands to $M_{\rm L}^{(0\nu)} - M_{\rm S}^{(0\nu)}$ and the lower bands to $M_{\rm L}^{(0\nu)} + M_{\rm S}^{(0\nu)}$

[LJ, P. Soriano and J. Menéndez, in preparation]

¹⁴S. D. Biller, arXiv:2103.06036 [hep-ex] (2021), accepted in PRD

Outline

tende sind des

- OMC is a useful tool to probe 0
 uetaeta decay
- Our computations managed to reproduce the observed location of OMC giant resonance in ¹⁰⁰Nb
- We found similarities between of $0\nu\beta\beta$ decay and OMC matrix elements
- First ab initio muon-capture studies in progress
- Adding a new short-range term into the $0\nu\beta\beta$ NMEs changes the values of NMEs by $\approx 30\%$ in NSM and by $\approx 50\%$ in pnQRPA
- If the sign of the contact term is positive, pnQRPA already reaches the inverted-hierarchy region of neutrino masses

L. Jokiniemi (UB)

NEWS on OMC and $0\nu\beta\beta$

24.06.2021 32 / 32