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Motivation

Current knowledge on particles and interactions
between them is based on the Standard Model
(SM)

According to the SM, neutrinos are extremely
weakly interacting, massless fermions

However, recent solar neutrino experiments
have proven that neutrinos have a non-zero
mass

Standard model’s perception of neutrinos is
not accurate!
What could we learn from 0νββ decay?
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Two-Neutrino Double-Beta (2νββ) Decay
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May happen, when β-decay is not energetically allowed

Allowed by the Standard Model

Measured in ≈ 10 isotopes
Half-lives of the order 1020 years or longer
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Neutrinoless Double-Beta (0νββ) Decay
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Difficulty of 0νββ Decay Searches

Challenging both experimentally...

Sketchy energy spectrum of the emitted
electrons in ββ decays 1

t
(2ν)
1/2 ≈ 1020 y, t

(0ν)
1/2 ≥ 1025 y

...and theoretically
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→ We need some detours!
1cobra-experiment.com
2J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017), updated.
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Proton-Neutron Quasiparticle Random-Phase
Approximation (pnQRPA)

Describes nuclear excitations in
odd-odd nuclei as proton-neutron
quasiparticle pairs

Relies on the nuclear mean-field

Strongly interacting fermions →
Non-interacting particles in an
external potential

Allows the use of large
single-particle bases with reasonable
computational effort

Wide excitation-energy regions in
medium-heavy/heavy nuclei

Adjustable parameters gph and gpp
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Ordinary Muon Capture (OMC)
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Z−1 Y(Jπff )

Muon initially bound on an atomic orbit is captured by the nucleus

Weak interaction process with momentum transfer q ≈ 100 MeV/c2

Similar to 0νββ decay!

Large mµ allows transitions to all Jπ states up to high energies

Both the axial vector coupling gA and the pseudoscalar coupling gP
are involved in the process
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Advantages of OMC as a Probe of 0νββ Decay

OMC leads to transitions to all Jπ

states up to high energies

Can access the intermediate states of
0νββ decay!

Previously intermediate states probed
by charge-exchange reactions

a
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Z∓1 Y ,

where (a, b) can be (p, n), (3He, t), ...

Ordinary muon capture (OMC)

µ− +A
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serves as a complimentary probe
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Advantages of OMC as a Probe of 0νββ Decay

Both OMC and 0νββ decay involve couplings gA and gp:

W (OMC) ∝ |gAMA + gVMV + gPMP|2

M(0ν) = M
(0ν)
GT (gA, gP, gM)−

(gV
gA

)2
M

(0ν)
F (gV) + M

(0ν)
T (gA, gP, gM) ,

[t
(0ν)
1/2 ]−1 = g4

AG0ν |M(0ν)|2
(
mββ

me

)2

...so if

we know the involved nuclear structure precisely enough, and
OMC rates to individual nuclear states can be measured

...we can probe gA and gp on the relevant momentum-exchange
regime for 0νββ decay
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Strength Functions - Theory Agrees with
Experiment

µ− +100 Mo(0+g.s.)→ νµ +100 Nb(Jπf )

The OMC strength distribution
in 100Nb 3 was studied at the
MuSIC beam channel at RCNP
for the first time

3I.H. Hashim et al., Phys. Rev. C 97, 014617 (2018)
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Muon Capture on 100Mo - Theory vs. Exp.

We computed the OMC strength
spectrum in 100Nb based on the
Morita-Fujii formalism 4

...and compared the obtained
spectrum with the observed one

The agreement is excellent!

Experimental vs. computed OMC
strength spectra in 100Nb 5

4M. Morita, and A. Fujii, Phys. Rev. 118, 606 (1960).
5LJ, J. Suhonen, H. Ejiri and I.H. Hashim, Phys. Lett. B 794, 143 (2019)
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Similarities of OMC and 0νββ Decay

In the above-mentioned setup
the final nucleus of OMC =
intermediate nucleus of
0νββ-decay

Same excitation-energy regions
are important

Transitions to/through
multipoles with 1 ≤ J ≤ 3
dominate both 0νββ decay and
OMC
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NMEs of
(a) A=76 and (b) A=136 triplets 6

6LJ and J. Suhonen, Phys. Rev. C 102, 024303 (2020)
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Correlations between OMC and 0νββ Matrix
Elements

Similarities between 0νββ-decay and OMC matrix elements both on
the β−β− and the β+β+ sides
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7LJ and J. Suhonen, Phys. Rev. C 102, 024303 (2020)
8LJ, J. Suhonen and J. Kotila, Front. Phys. 9, 142 (2021)
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Both OMC and 0νββ Decay are Sensitive to gpp

The particle-particle parameter
gpp is normally adjusted to
2νββ-decay half-life, where
possible

Adjusting gpp shifts both the
OMC and the 0νββ spectra

We could adjust gpp to OMC
giant resonance, instead?
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9

9LJ, J. Suhonen and J. Kotila, Front. Phys. 9, 142 (2021)
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OMC Matrix Elements Depend on Bound-Muon
Wave Functions

Dirac equations

{
d
dr

G−1 +
1
r
G−1 = 1

~c (mc2 − E + V (r))F−1
d
dr

F−1 − 1
r
F−1 = 1

~c (mc2 + E − V (r))G−1
,

where V (r) is the potential created
by finite-size/point-like nucleus
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[Front. Phys. 9, 142 (2021)]
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Muon Capture on Light Nuclei from First Principles

Recently, first ab initio solution
to gA quenching puzzle was
proposed for β-decay 10

Solution: missing correlations
and two-body currents from
the NSM

How about gA quenching at
high momentum transfer
q ≈ 100 MeV/c?

OMC could provide an
answer!

10P. Gysbers et al., Nature Phys. 15, 428 (2019)
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Muon Capture on 24Mg from First Principles

Muon capture matrix elements
evaluated in VS-IMSRG
framework

Hamiltonian based on the
chiral EFT
Valence-space Hamiltonian
and OMC operators decoupled
from complimentary space
with a unitary transformation
include physics missing from
the NSM: 3N forces,
two-body matrix elements,...
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Nuclear Matrix Elements for Muon Capture on 24Mg

OMC matrix elements for

µ− + 24Mg(0+g .s.)→ νµ + 24Na(Jπn )
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[L.J., T. Miyagi, J.D. Holt, J. Kotila and J. Suhonen, in preparation]
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Capture Rates on Low-Lying States in 24Na

Comparing the VS-IMSRG and nuclear shell model (NSM) results
against experimental data could shed light on the values of gA and gP

Jπi E (MeV) Rate (1/s)
Exp. USDB Vs-IMSRG USDB VS-IMSRG

4+g.s. 0.0 0.0 0.0 2 2
1+1 0.472 0.540 0.397 3 000 18 000
2+1 0.563 0.629 0.244 800 400
2+2 1.341 1.107 0.865 2 000 800
3+1 1.345 1.338 0.915 90 4
1+2 1.347 1.324 0.821 26 000 6 000

[L.J., T. Miyagi, J.D. Holt, J. Kotila and J. Suhonen, in preparation]
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0νββ-Decay Nuclear Matrix Elements

Assuming the standard light-neutrino exchange is the dominant
mechanism of 0νββ decay

[t0ν1/2]−1 = g4
AG0ν |M0ν

L |2
(
mββ

me

)2

The matrix element can be written as

M0ν
L = M0ν

GT −
(
gV
gA

)2

M0ν
F −M0ν

T

However, there seems to be something missing...
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The Contact Term
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The Contact Term - First ab initio Results

Contact term enhances the
NMEs by 12

{
5 ∼ 15% for 6He

20 ∼ 80% for 12Be

Study of the lightest
0νββ-candidate 48Ca shows a
43(7)% enhancement 13

Good news for the
experiments! [V. Cirigliano et al., Phys. Rev. Lett.

120,202001 (2018)]

12V. Cirigliano et al., PRC 100, 055504 (2019), PRL 120, 202001 (2018)
13M. Wirth, J. M. Yao and H. Hergert, arXiv:2105.05415 [nucl-th] (2021)
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Contact Terms in pnQRPA and NSM

In pnQRPA:
MS/ML ≈ 30− 80%

In NSM:
MS/ML ≈ 15− 50%
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[LJ, P. Soriano and J. Menéndez, in preparation]
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Effective Neutrino Masses

Effective neutrino masses from
combined likelihood functions of
GERDA (76Ge), CUORE
(130Te), EXO-200 (136Xe) and
KamLAND-Zen (136Xe),
method proposed in 14
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[LJ, P. Soriano and J. Menéndez, in
preparation]

14S. D. Biller, arXiv:2103.06036 [hep-ex] (2021), accepted in PRD
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Summary

OMC is a useful tool to probe 0νββ decay

Our computations managed to reproduce the observed location of
OMC giant resonance in 100Nb

We found similarities between of 0νββ decay and OMC matrix
elements

First ab initio muon-capture studies in progress

Adding a new short-range term into the 0νββ NMEs changes the
values of NMEs by ≈ 30% in NSM and by ≈ 50% in pnQRPA

If the sign of the contact term is positive, pnQRPA already reaches
the inverted-hierarchy region of neutrino masses
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Thank you!
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