Study of resonances in nuclei via CDCC analyses with CSM

Takuma Matsumoto (Kyushu Univ.)

Neutrinos Electro-Weak interactions and Symmetries (NEWS)

August 23rd, 2021

Outline

Introduction

Method

- Continuum-discretized coupled-channels method (CDCC)
- Complex-scaling method (CSM)
- Results $1^{11}Li(p,p')$ T.M., J. Tanaka, K. Ogata PTEP 123D02 (2019) $1^{12}C(\alpha, \alpha')$

Introduction

- Study of resonances is one of the most important subject in quantum systems (Atomic, Nuclear, Hadron).
- In nuclear physics, various types of resonances have been discovered, e.g., giant dipole, soft dipole, cluster resonances.

(p, p') and (α, α') reactions

- In order to investigate resonances in nuclei, (p,p') and (α,α') inelastic reactions are widely used.
- From the view of inverse kinematics, the inelastic reaction is regarded as *the breakup reaction*.

To extract properties of resonances, an accurate method of treating breakup processes is highly desired

(p, p') and (α, α') reactions

- In order to investigate resonances in nuclei, (p,p') and (α,α') inelastic reactions are widely used.
- From the view of inverse kinematics, the inelastic reaction is regarded as *the breakup reaction*.

To extract properties of resonances, an accurate method of treating breakup processes is highly desired

> Continuum-discretized coupled-channels (CDCC) with complex-scaling method (CSM)

Breakup (continuum) states

E

Continuum-Discretized Coupled-Channels (CDCC) method

(Review) Yahiro, Ogata, TM, Minomo, PTEP01A206, (2012).

 $\frac{Breakup \ reaction}{P}$ P $1 = |\psi_0\rangle\langle\psi_0| + \int dE|\psi(E)\rangle\langle\psi(E)|$

Discretization for breakup (continuum) state

$$\begin{split} \psi(E) &\to \left\{ \hat{\psi}(E_{\nu}), \nu = 1, \cdots, N \right\}, \hat{\psi}(E_{\nu}) \to 0 \\ r \to \infty \\ \left\langle \hat{\psi}(E_{\nu}) \left| \hat{\psi}(E_{\nu'}) \right\rangle = \delta_{\nu\nu'} \end{split}$$

<u>Completeness</u> (within a model space

$$1 \approx \left|\psi_{0}
ight
angle \left\langle\psi_{0}\right| + \sum_{\nu}\left|\widehat{\psi}_{\nu}
ight
angle \left\langle\widehat{\psi}_{\nu}\right|$$

Total scattering wave function

$$\Psi = \psi_0 \chi_0 + \int_0^\infty dE \psi(E) \chi(E)$$

 χ : Relative w.f. between P and T

Difficult to solve CC equation for χ

✓ $\psi(E) \rightarrow oscillating$ $r \rightarrow \infty$ ✓ E is continuous

Discretizing Method

Momentum (energy) -bin method (Average method)

$$\hat{\psi}_{\nu}(E_{\nu}) = \frac{1}{\sqrt{\Delta E}} \int_{E_{\nu} - \Delta E/2}^{E_{\nu} + \Delta E/2} \psi(E) dE$$

$$\overrightarrow{\Delta E \to 0} \quad \widehat{\psi}_{\nu}(E_{\nu}) = \psi(E_{\nu})$$

- Successful for describing scattering of two-body projectile
- Need the exact continuum wave function for *E*
- Difficult to apply to many-body scattering system

Pseudostate method

$$\hat{\psi}_{\nu}(E_{\nu}) = \sum_{i=1}^{N} \frac{C_{i}^{(\nu)}}{\varphi_{i}}$$

 $C_i^{(\nu)}$ is calculated by diagonalizing $H_{ij} = \langle \varphi_i | H | \varphi_j \rangle$

- Expand in terms of a L^2 -type basis function
- Applicable to many-body scattering system

Discretized Cross Section

Breakup cross sections calculated by CDCC are discrete in the internal energy of the projectile.

How to calculate the continuuous breakup cross section

Smoothing Method

\square Expansion of $\psi(E)$ in terms of a set of $\hat{\psi}_{\nu}(E_{\nu})$

T-matrix to continuum state $T(E) = \langle \psi(E)\chi^{(-)}|V|\Psi^{(+)} \rangle$ $= \sum_{\nu} \langle \psi(E)|\hat{\psi}_{\nu}(E_{\nu})\rangle \langle \hat{\psi}_{\nu}(E_{\nu})\chi^{(-)}|V|\Psi^{(+)} \rangle$ $= \sum_{\nu} \langle \psi(E)|\hat{\psi}_{\nu}(E_{\nu})\rangle \langle \hat{\psi}_{\nu}(E_{\nu})\chi^{(-)}|V|\Psi^{(+)} \rangle$ Smoothing factor T-matrix to discretized states $\approx \hat{T}_{\nu}(E_{\nu})$ $\approx \sum_{\nu} f_{\nu}^{*}(E)\hat{T}_{\nu}(E_{\nu})$ • Need the exact continuum wave function for E

• Difficult to apply to many-body scattering system

Deuteron breakup into *n* and *p* <u>⁶Li breakup into d and α</u> d-state (J=17, L=15) d-state (*J*=43, *L*=43) **Pseudo-state** (b) (C) **PS** (real-range) Average PS (complex-range)-0.1 Av 0.2 | S(k) |² [fm] Resonant region Av: 30 states 0.1 PS: 6 states 0^L ^{1.5} k [fm⁻¹] 0.5 k [fm⁻¹] Average method **Pseudostate method** $f_{\nu}(E) = \begin{cases} \sqrt{\Delta E} & E_{\nu} - \frac{\Delta E}{2} \le E \le E_{\nu} + \frac{\Delta E}{2} \\ 0 & otherwise \end{cases}$ \checkmark Consistent with Average method ✓ Useful for discretization including

resonance

(review) S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006) Complex-scaling method

Resonant state

$$\psi_{\text{res}}(E_{\text{res}})$$
 $E_{\text{res}} = E_R - i\frac{\Gamma}{2}$
 $\psi_{\text{res}}(E_{\text{res}}) \rightarrow e^{ikr}$
 $r \rightarrow \infty$

(Only outgoing wave)

Complex-scaling method (CSM)

Complex-scaling operator $U(\theta)$

 $U(\theta)f(r)=e^{i3/2\theta}f\bigl(re^{i\theta}\bigr)$

$$\psi_{\rm res}^{\theta}(E_{\rm res}) \to e^{ikr\cos\theta} e^{-kr\sin\theta} \to 0$$
$$r \to \infty \qquad \left(\tan\theta > \frac{k_I}{k_R}\right)$$

Resonant states can be treated the same way as <u>a bound state</u>.

Scattering state

 $\psi(E)$ E is real.

 $\psi(E) \to e^{-ikr} - Se^{ikr}$ $r \to \infty$ (Incoming wave + outgoing wave)

(Incoming wave + outgoing wave)

(review) S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006) Complex-scaling method

Resonant state

$$\psi_{\text{res}}(E_{\text{res}})$$
 $E_{\text{res}} = E_R - i\frac{\Gamma}{2}$
 $\psi_{\text{res}}(E_{\text{res}}) \xrightarrow{}_{r \to \infty} e^{ikr}$

 $(\underline{Only outgoing wave})$

Complex-scaling method (CSM)

Complex-scaling operator $U(\theta)$ $U(\theta)f(r) = e^{i3/2\theta}f(re^{i\theta})$ $\psi_{res}^{\theta}(E_{res}) \rightarrow e^{ikr\cos\theta}e^{-kr\sin\theta} \rightarrow 0$ $r \rightarrow \infty$ $\left(\tan\theta > \frac{k_I}{k_R}\right)$

Resonant states can be treated in the same way as <u>a bound state</u>.

Scattering state

(review) S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006) Complex-scaling method

Resonant state

$$\psi_{\rm res}(E_{\rm res}) \qquad E_{\rm res} = E_R - i\frac{\Gamma}{2}$$

 $\psi_{\rm res}(E_{\rm res}) \rightarrow e^{ikr}$

(Only outgoing wave)
$$r \to \infty$$

Complex-scaling method (CSM)

Complex-scaling operator $U(\theta)$

 $U(\theta)f(r) = e^{i3/2\theta}f\left(re^{i\theta}\right)$

$$\psi_{\rm res}^{\theta}(E_{\rm res}) \to e^{ikr\cos\theta} e^{-kr\sin\theta} \to 0$$
$$r \to \infty \qquad \left(\tan\theta > \frac{k_I}{k_R}\right)$$

Resonant states can be treated the same way as <u>a bound state</u>.

Scattering state

New Smoothing Method

Complex-scaled Green's function (CSGF)

$$1 \approx \left|\phi_{0}^{\theta}\rangle\langle\tilde{\phi}_{0}^{\theta}\right| + \left|\phi_{res}^{\theta}\rangle\langle\tilde{\phi}_{res}^{\theta}\right| + \sum_{i} \left|\phi_{i}^{\theta}\rangle\langle\tilde{\phi}_{i}^{\theta}\right|$$

ECR

$$\frac{1}{E - H + i\epsilon} = U^{-\theta} \frac{1}{E - H^{\theta} + i\epsilon} U^{\theta} = \sum_{\nu} U^{-\theta} |\phi_{\nu}^{\theta}\rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \tilde{\phi}_{\nu}^{\theta} | U^{\theta}$$
Complex values

Differential cross section

$$\begin{aligned} \frac{d\sigma}{dE} &= \int |T(E')|^2 \delta(E - E') dE' \\ &= -\frac{1}{\pi} \operatorname{Im} \langle \Psi^{(+)} | V | \chi \rangle \frac{1}{E - H + i\epsilon} \langle \chi | V | \Psi^{(+)} \rangle \\ &= -\frac{1}{\pi} \operatorname{Im} \sum_{n,n'} \langle \Psi^{(+)} | V | \chi \hat{\psi}_n \rangle \langle \hat{\psi}_n | \frac{1}{E - H + i\epsilon} | \hat{\psi}_{n'} \rangle \langle \hat{\psi}_{n'} \chi | V | \Psi^{(+)} \rangle \\ &= -\frac{1}{\pi} \operatorname{Im} \sum_{\nu,n'} \langle \Psi^{(+)} | V | \chi \hat{\psi}_n \rangle \langle \hat{\psi}_n | \frac{1}{E - H + i\epsilon} | \hat{\psi}_{n'} \rangle \langle \hat{\psi}_{n'} \chi | V | \Psi^{(+)} \rangle \\ &= -\frac{1}{\pi} \operatorname{Im} \sum_{\nu} \sum_{n,n'} T_n^{\dagger} \langle \hat{\psi}_n \left[U^{-\theta} | \phi_{\nu}^{\theta} \rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \tilde{\phi}_{\nu}^{\theta} | U^{\theta} | \hat{\psi}_{n'} \rangle T_{n'} \\ &= -\frac{1}{\pi} \operatorname{Im} \sum_{\nu} \sum_{n,n'} T_n^{\dagger} \langle \hat{\psi}_n \left[U^{-\theta} | \phi_{\nu}^{\theta} \rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \tilde{\phi}_{\nu}^{\theta} | U^{\theta} | \hat{\psi}_{n'} \rangle T_{n'} \\ &= \operatorname{CSGF} \\ \end{aligned}$$

Differential cross section

New smoothing method is easily applicable to many-body scattering systems.

Resonant Contribution

Differential cross section

$$\frac{d\sigma}{dE} = -\frac{1}{\pi} \operatorname{Im} \sum_{\nu} \sum_{n,n'} \widehat{T}_{n}^{\dagger} \langle \widehat{\psi}_{n} | U^{-\theta} | \phi_{\nu}^{\theta} \rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \phi_{\nu}^{\theta} | U^{\theta} | \widehat{\psi}_{n'} \rangle T_{n'}$$

Extended completeness

Non-resonant states

$$1 \approx |\phi_0^{\theta}\rangle \langle \tilde{\phi}_0^{\theta}| + |\phi_{res}^{\theta}\rangle \langle \tilde{\phi}_{res}^{\theta}| + \sum_i |\phi_i^{\theta}\rangle \langle \tilde{\phi}_i^{\theta}|$$

Resonant state

Separate contribution for resonant state and non-resonant states

$$\begin{split} \frac{d\sigma}{dE} &= -\frac{1}{\pi} \operatorname{Im} \sum_{n,n'} \hat{T}_{n}^{\dagger} \langle \hat{\psi}_{n} | U^{-\theta} | \phi_{res}^{\theta} \rangle \frac{1}{E - E_{res}^{\theta}} \langle \tilde{\phi}_{res}^{\theta} | U^{\theta} | \hat{\psi}_{n'} \rangle T_{n'} \\ & \text{Resonant contribution} \\ &+ \sum_{i} \sum_{n,n'} \hat{T}_{n}^{\dagger} \langle \hat{\psi}_{n} | U^{-\theta} | \phi_{\nu}^{\theta} \rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \tilde{\phi}_{\nu}^{\theta} | U^{\theta} | \hat{\psi}_{n'} \rangle T_{n'} \\ & \text{Non-resonant contribution} \end{split}$$

Resonant Contribution

Differential cross section

 \boldsymbol{E}

⁶He

Extended completeness

The CDCC with CSM is useful for investigating resonances via breakup cross sections.

Separate contribution for resonant state and non-resonant states

$$\begin{split} \frac{d\sigma}{dE} &= -\frac{1}{\pi} \operatorname{Im} \sum_{n,n'} \widehat{T}_{n}^{\dagger} \langle \widehat{\psi}_{n} \big| U^{-\theta} \big| \phi_{res}^{\theta} \rangle \frac{1}{E - E_{res}^{\theta}} \langle \widetilde{\phi}_{res}^{\theta} \big| U^{\theta} \big| \widehat{\psi}_{n'} \rangle T_{n'} \\ & \text{Resonant contribution} \\ &+ \sum_{i} \sum_{n,n'} \widehat{T}_{n}^{\dagger} \langle \widehat{\psi}_{n} \big| U^{-\theta} \big| \phi_{\nu}^{\theta} \rangle \frac{1}{E - E_{\nu}^{\theta}} \langle \widetilde{\phi}_{\nu}^{\theta} \big| U^{\theta} \big| \widehat{\psi}_{n'} \rangle T_{n'} \\ & \text{Non-resonant contribution} \end{split}$$

Analysis of ${}^{11}\text{Li}(p, p')@6\text{MeV}$

T.M., J. Tanaka, K. Ogata PTEP 123D02 (2019)

Recent experiment of ¹¹Li

Measurement of the ¹¹Li(p, p') reaction at 6 MeV/nucleon with high static and high resolution has been performed, and a low-lying excited state of ¹¹Li has clearly been identified. J. Tanaka et al., Phys. Lett. B774, 268 (2017).

The purpose of this work is to analyse the reaction by using the CDCC with CSM.

¹¹Li Three-body model

Gaussian Expansion Method

E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

Three-body Hamiltonian

S. Saito, Prog. Theor. Phys. 41 (1969), 705

$$H = T_r + T_y + V_{nn} + V_{nc} + V_{nc} + V_{nnc}$$

Gaussian basis functions

$$\phi_{\mathrm{Im}}(r, y) = \sum_{c=1}^{3} \sum_{n \neq \lambda} A_{n \neq \lambda}^{(c)} \varphi_{n \ell}(r_{c}) \varphi_{j \lambda}(y_{c}) \Big[\Big[Y_{\ell}(\Omega_{r}) \otimes Y_{\lambda}(\Omega_{y}) \Big] \otimes S \Big]_{\mathrm{Im}}$$

¹¹Li Three-body model

Resonance in ¹¹Li

✓ Two-neutron halo nuclei (S_{2n}=0.37 MeV)
 ✓ Borromean structure

J. Tanaka et al., Phys. Lett. B 774, 268 (2017).

◆ The contribution of the dipole resonance dominates the low-lying peak. →possibility of the resonance
 ◆ The width of the low-lying peak is reproduced by taking into account non-resonant components.

Wave Function of ¹¹Li Resonance

Probability of ¹⁰Li resonance in ¹¹Li

TM, J. Tanaka, and K. Ogata, Prog. Theor. Exp. Phys. Vol. 2019, Issue 12, 123D02

Borromean Feshbach Resonance

- ✓ 12 C has many resonances
- ✓ Validity of the CDCC analysis with CSM for a system with many resonances

Resonances in ¹²C $^{12}C = \alpha + \alpha + \alpha$ 0 1_{1}^{-} -1 Im (E) [MeV]-2 © 1₂[−]

 $\theta = 15^{\circ}$

10

 $\operatorname{Re}(E)$ [MeV]

Ŀ

5

□ 1₃

20

15

-3

-4

-5 0

${}^{12}C(\alpha, \alpha')@E_{\alpha} = 386 \text{ MeV}$

• CDCC

M. Itoh et al., Phys. Rev. C 84, 054308 (2011).

Breakup cross section to 0^+ & 1^-

✓ 0^+_3 , 1⁻₂ and 1⁻₃ have a large decay width

 \checkmark Peak positions of energy spectrum are consistent with the resonant energy.

- ✓ The peak positions of the cross section are higher than the corresponding resonant energies about 200 keV.
- ✓ The peak position of the cross section is not always the same value as the resonant energy.

Summary

- CDCC with CSM is useful for investigating resonances via breakup cross sections.
- We analyze ${}^{12}C(\alpha, \alpha')$ and ${}^{11}Li(p, p')$ reactions by CDCC with CSM.
- The resonance of ¹¹Li is interpreted as a bound state of ¹⁰Li + n system, that is, a *Borromean Feshbach resonance*.
- For the analysis of ¹²C, the peak position of the cross section is not always the same value as the resonant energy.