Status of the Belle II experiment and ML applications to the particle physics experiments

2022/3/24 M. Iwasaki Osaka-City U., Osaka-City U. NITEP, Osaka U., RCNP, Osaka U., IDS

Contents

1. Belle II experiment

- 1-1 Introduction
- 1-2 Operation status + recent results on CKM

2. Application of ML to the Collider Exp.s

- 2-1 Accelerator tuning using ML
- 2-2 DNN with low-level data
- 2-3 Data reduction based on the sparse sampling

Skip if time is short

Produces huge amount of BB mesons pairs on the Y(4s) resonance

4

Produces huge amount of BB mesons pairs on the Y(4s) resonance

"Luminosity frontier experiment"

Low energy experiment indirectly probing high energy using <u>high statistics data</u>

Production of <u>B Mesons</u>

Hadron collider:

- Production of b hadrons in strong interaction
- → Vertexing

B factory:

- $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$
- Known properties of events and B mesons
- > Unique opportunities

(Past)B-factory in KEK Japan

In 1999 – 2010, KEKB/Belle accumulated ~800 million BB pairs, and

observe the CP violation in the B meson sector

→Confirm the prediction of the Kobayashi-Maskawa theory

SuperKEKB project

The observed CP violation is too small to explain the number of surviving matter particles in the current universe

→ It is important to search for the new laws of physics (= hidden laws of physics in the early universe)

KEKB has been upgraded to SuperKEKB for more precise experiment to probe the early universe

Design luminosity of the SuperKEKB accelerator x30 of the KEKB's world record to accumulate high statistics of 50ab⁻¹ data →Probe > O(TeV) energy scale

Key of SuperKEKB \rightarrow "High statistics data"

Key of SuperKEKB \rightarrow "High statistics data"

Strategies for increasing Luminosity

Three Key factors for a factor of ~30 gain

Collision with very small spot-size beams

Strategies for increasing Luminosity

SuperKEKB acc.

衝突する付近でのビームの広がり(横からみた図)

1/20 Beam size x 1.5 beam current → 30 times higher Luminosity

To get the higher luminosity, KEKB was upgraded to SuperKEKB

Belle I to Belle II

K. Akai

Bellell Experiment

and the

1km

Mt. Tsukuba

SuperKEKB Accelerator

Belle II Detector

Injector Linac

Bellell Experiment Huge amount of elementary particles are produced

SuperKEKB Acc. Circum. length 3km

Belleff Experiment

Bellell Detector 7.7m(W) x 7.2m(D) x 7.9m(H)

Belle II Detector

7.7m(W) x 7.2m(D) x 7.9m(H)

K_L and muon detector

Resistive Plate Counter (barrel outer layers) Scint. + WLSF + MPPC (end-caps , inner 2 barrel)

EM Calorimeter CsI(TI), waveform sampling

Electron beam

(7GeV)

Trigger

Up to 30kHz

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

Central Drift Chamber

He(50%):C2H6(50%), small cells, long lever arm, fast electronics

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

Positron beam (4GeV)

TDR: arXiv:1011.0352

Belle II Vertex Detector: VXD

VXD = PXD + SVD

PXD : PiXel Dector

DEPFET(DEPleted p-channel FET) 2 Layers (r =<u>14</u>, 22mm)

SVD : Silicon Vertex Detector

DSSD (Double Sided Silicon Strip) 4 Layers (r = 38, 80, 115, <u>140 mm</u>)

Belle II VXD covers r = 14mm - 140mm area

BelleI : SVD only (4 layers DSSD r=20 – 88 mm)

20 \rightarrow 14mm x2 better impact parameter resolution (14/20)² 19

Belle II Vertex Detector: VXD

Installed in 2018.

PXD 1st layer and 2 ladders of 2nd layer

SVD 4 layers

News: In 2022-23, do a long shutdown (LS1) and replace with a 2-layer PXD.

Geography of the International Belle II collaboration

Youth and potential: There are ~330 graduate students in Belle II 21

Japanese Participation

2nd largest group in Belle II

172 members from 16 institutes

Chiba, Hiroshima, IPMU, KEK, Kitasato, Nagoya, Nara-WU, Niigata, NPC, Okinawa, Osaka-City, Toho, Tohoku, Tokyo-Met., U. Tokyo, Yamagata

Japanese Contribution

1-2: Operation Status + Recent Results

First collision after 5.5 years construction

First hadronic event

SuperKEKB Status

smaller than KEKB

SuperKEKB Status

Data Taking Status

Commissioning run in 2018

Physics run Started 2019

Collected 0.3 ab⁻¹ so far

BaBar : 0.5 ab⁻¹ Belle : 1.0 ab⁻¹

Belle II Physics

CKM Parameters

Cabibbo-Kobayashi-Maskawa (CKM) matrix

- Three generation of quarks.
- Each element (V_{qq}) describes mixing of quacks via weak interaction in Standard Model (SM).

V_{qq}'

CKM Parameters

- In SM, CP violation arises via a non-zero phase of the CKM matrix.
- Precise measurement on UT angles and sides is a good test on SM.

Time Dependent CP Violation

Time Dependent CP Violation

Time Dependent CP Violation

Vertexing and Tagging performance

→ We'll show the D lifetime measurements and Tagging performance first

D Lifetime measurements

Reconstruction of Undetected Particles

Full reconstruction of B_{tag} decay in >5000 decay chains with MVA tool.

 \rightarrow New Full Event Interpretation (FEI) package for Belle II 30-50% higher tagging efficiency with same purity, than the Belle version (FR)

Time Dependent Mixing asymmetry (not CPV)

World average: 0.5065 ± 0.0019 ps⁻¹

Result compatible with world average

Belle II

37

2022 (x6 more data)

Preliminary V_{xb} Measurements

Further measurements

- Exclusive $B \rightarrow \rho \ell \nu$
- Inclusive $B \rightarrow X_{u}e\nu$
- Exclusive $B^- \rightarrow D^0 \ell \nu$ arXiv:2110.02648
- Inclusive $B \rightarrow \chi \ell \nu$ arXiv:2111.09405

Semileptonic Decays

Projection of Integrated Luminosity delivered by SuperKEKB

