
"Perspective for μ⁺ /μ⁻ and e⁺/e⁻ circular colliders in particle physics"

Yoshitaka Kawashima

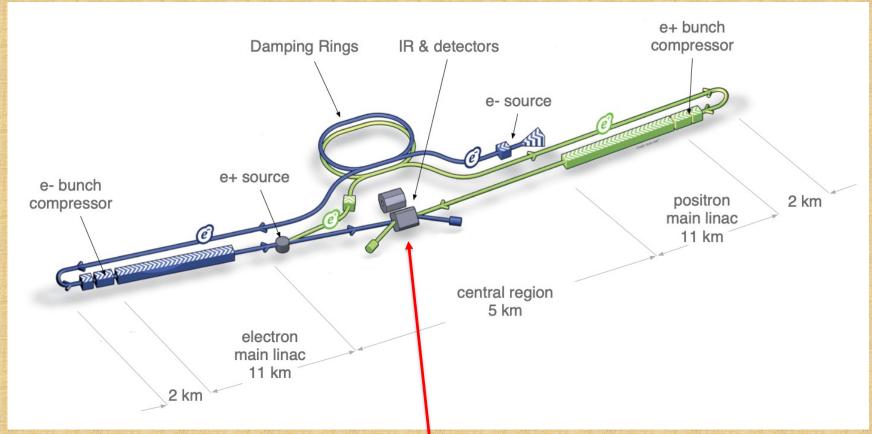
Research Center for Nuclear Physics (RCNP), Osaka University 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

Presentation at RCNP

July 22nd. 2022

I. Why did I begin to make a plan for circular colliders ?II. On muon circular collidersIII. Summary

I. Why did I begin to make a plan circular colliders ?

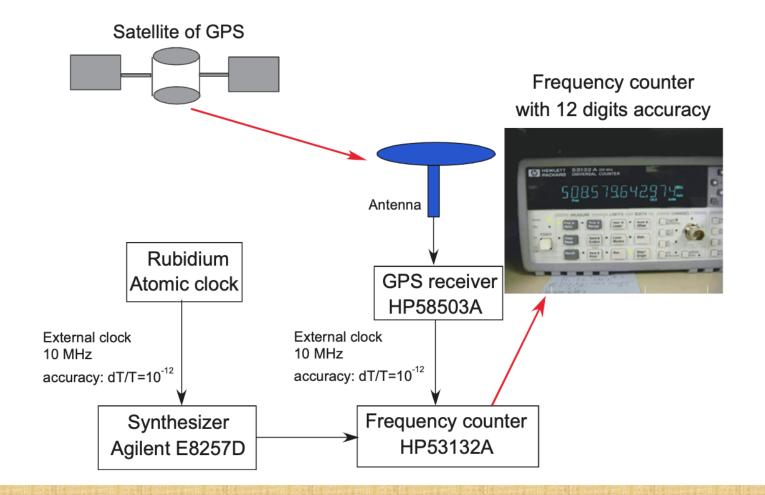

(1) I have been considering Japan's future project.
 As an example, we have proposed Φ-factory at KEK in around the end of 1980s.
 (Progress of Theoretical Physics Supplement, 119 (1995))

(2) Ten years later, the super B-factory would be closed at KEK. How about future project after the super B-factory in Japan ?

(3) One example: ILC (International Linear Collider)


 I am wondering the feasibility of the ILC project,
 because Japan Islands are always moving due to
 tidal force and seasonable change (below evidence)

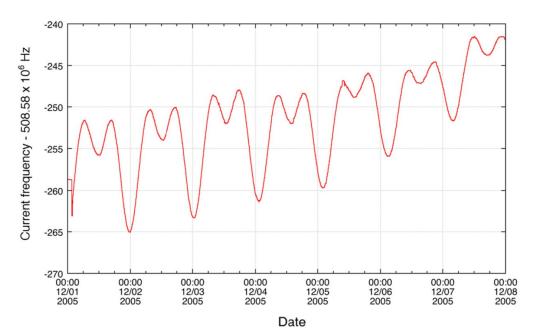
ILC collision area



ILC project requires ~nm accuracy at the area of collision point

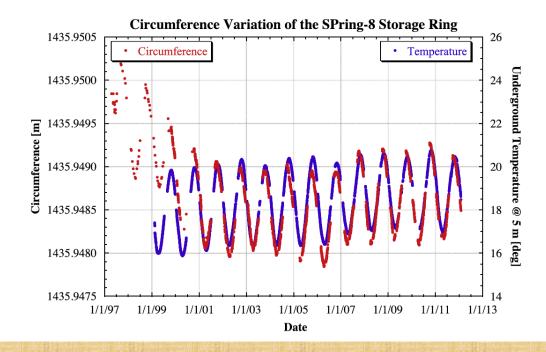
* I joined a big project in Japan in 1990.
* I was in charge of RF system for the SPring-8 (*Super Photon Ring 8 GeV*).

The fundamental frequency (508.58 MHz) at SPring-8


Beam orbit correction method (Changing the frequency)

Ideal orbit

Vacuum 7 chamber


Storage ring

< Top view >

Tidal force Movement rate : ~0.1nm/(5min.58cm)

Seasonable change

The paper is available :

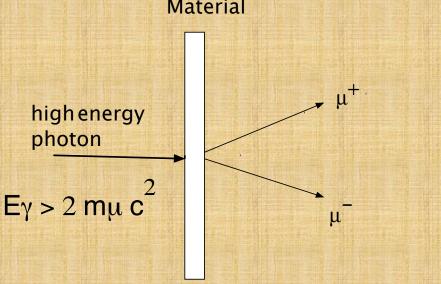
Nuclear Instruments and Methods in Physics Research <u>A 701 (2013) 243-248</u>

Our data is negative against the ILC project.

(4) I have been considering a new project instead of ILC in Japan. It is a muon collider.
In the muon collider, synchrotron radiation loss is very small. The ring of B-factory is available for future project.

Synchroton radiation loss for heavier particles than an electron

$$\frac{dP}{dt} = (2.8779 \times 10^{-1})(\frac{1}{mc^2})^4 (\frac{E^4}{\rho^2})[eV/s].$$


Synchrotron radiation loss for an electron

$$\frac{dP}{dt} = (\frac{2}{3})r_0(\frac{m_ec^2}{c^3})(\frac{B_T}{3.336\times E})^2c^4(\frac{E}{mc^2})^4 = 3.793\times 10^{11}\cdot B_T^2\cdot E^2[GeV/s] = 4.22\times 10^{12}\cdot \frac{E^4}{\rho^2}[eV/s].$$

For example: Let's consider B-factory ring, ~ 3km Energy loss due to synchrotron radiation <u>Beam energy : 100 GeV</u> (i) for a muon : 10.13 eV/turn (ii) for an electron : 18.5 GeV/turn II. On muon circular colliders How to produce so many muon pairs? **Common method:** weak decay processes through pions and kaons decays.

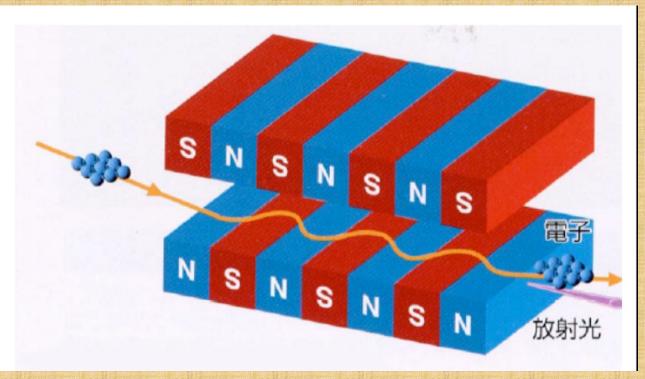
* I have calculated the number of muon pair production with high energy photons.

* My idea is to make use of photons to produce muon pairs.

Material


In order to produce high energy photons, I make use of inverse Compton process. After long calculation time, I obtained a simple formula.

(*Reference : Proceedings of FLS2006, Hamburg, Germany*)


$$E_{\gamma}' = 4\gamma^2 \cdot \varepsilon$$

γ :Lorents factor for electron (2 GeV)
ε : Photon energy before collision

Electron Incident photon: ε Inverse Comton photon E'γ Incident photon angle : 0 degree Inverse Compton photon angle : -180 degrees Accelerators complex to obtain high energy photons (The director of RCNP, Nakano-san, gave me the idea.)

Reference: David Attwood, "Undulator equation and radiated power", University of California, Berkeley, http://www.coe.berkeley.edu/AST/srms

Step1: Production of photons with arbitrary energy by an undulator

B[T]	λu [cm]	K-value	N	I [A]	Stored beam energy Ee [GeV]	Obtained photon energy [eV]	Power [W]
0.04	12	0.448176	35	1	0.24	4.33	0.0173
0.04	12	0.448176	35	1	0.26	5.09	0.0204
0.04	12	0.448176	35	1	0.3	6.77	0.0271
0.04	12	0.448176	35	1	0.34	8.70	0.0348
0.04	12	0.448176	35	1	0.37	10.3	0.0412
0.04	12	0.448176	35	1	0.39	11.4	0.0458
0.04	12	0.448176	35	1	0.43	13.9	0.0557
0.04	12	0.448176	35	1	0.45	15.2	0.0610
0.04	12	0.448176	35	1	0.47	16.6	0.0665

Step2: Calculation for the number of inverse Compton photons

$$N_{\gamma} = L_0 \cdot \sigma_{th}$$

$$L_0 : \text{Luminosity:} \qquad L_0 = \frac{N_e \cdot N_L \cdot f_c}{4 \cdot \pi \cdot \sigma^2}$$

 σ_{th} : Thomson cross section

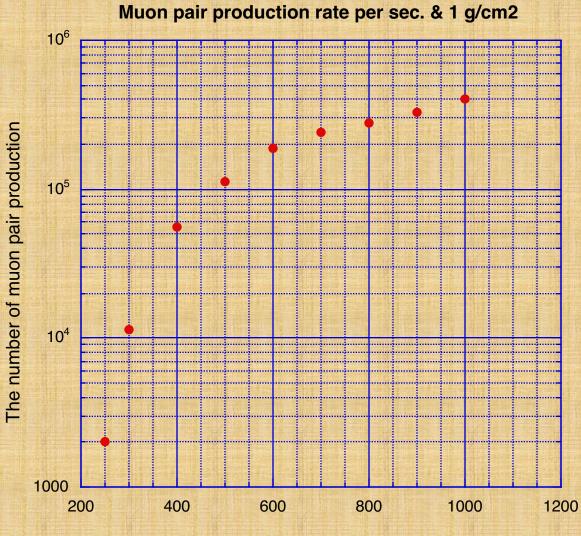
 N_e : the number of electrons,

 N_{L} : the number of photons,

 $f_{c: revolution frequency,}$

 σ^2 : transverse spot size.

 $\sigma_{th} = \frac{8\pi}{3} \gamma_e^2 = 0.665 barn = 6.65 \times 10^{-25} cm^2 = 6.65 \times 10^{-29} m^2$ classical electron radius $r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.817 \times 10^{-15} m$


Finally, we need to multiply N_{γ} and cross section for muon pair production, we obtain total number of muon pair.

Step3: Muon pair production rate per 1 sec. & 1 g/cm²

en	ray ergy eV]	Cross section [µb] (Reference: A.I. Titov et al.)	Na(Av)/A (per 1g/cm^2)	Muon pair production
25	0	0.8	2.445E-9	2.02E3/sec
30	0	4.5	1.376E-8	1.13E4
40	0	22	6.725E-8	5.55E4
50	0	45	1.376E-7	1.13E5
60	0	75	2.293E-7	1.89E5
70	0	95	2.904E-7	2.39E5
80	0	110	3.363E-7	2.77E5
90	0	130	3.974E-7	3.28E5
10	00	160	4.891E-7	4.03E5

Target material : Gold

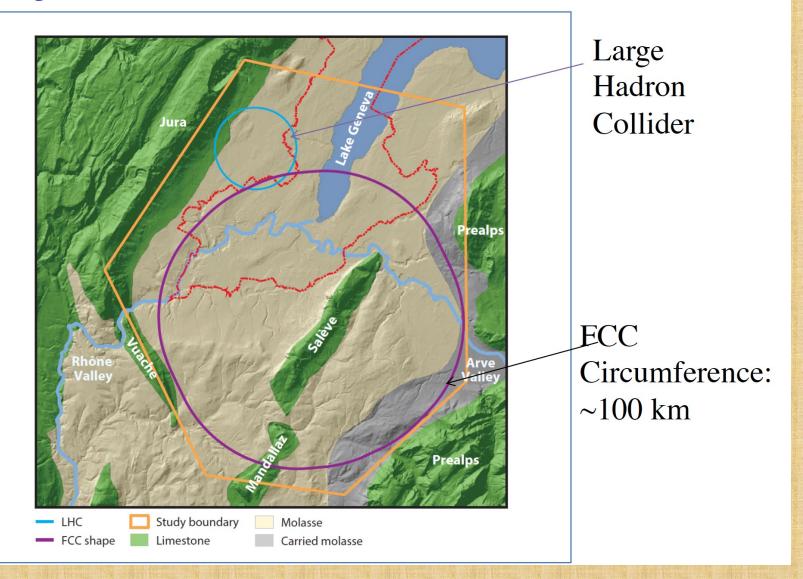
Reference: A.I.Titov et al., PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 111301 (2009)

Photon energy [MeV]

Obtained results:

The number of muon pair is roughly $\sim 10^{5}/(\text{sec} \cdot 1\text{g/cm}^{2})$

This number is not good enough for muon collider.


* Two years ago, I found an interesting article published at CERN

* CERN's future project is electron and positron collider.

- * Circumference is around 100 km.
- * It is named Futue Cicular Colliders (FCC).

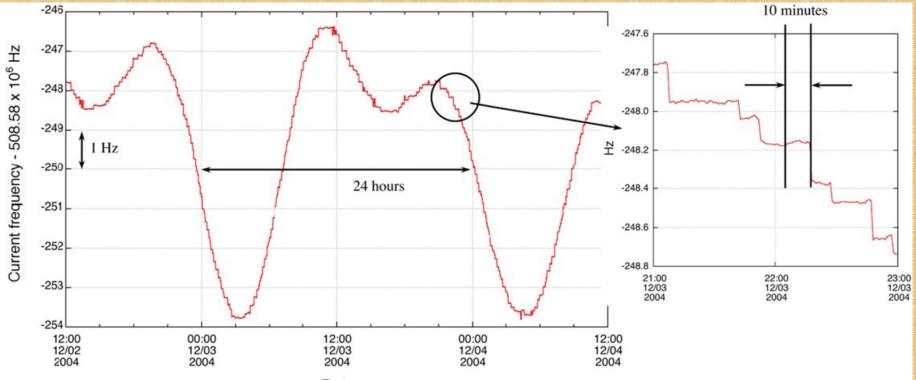
(e⁺/e⁻ collider, furthermore pp collider)

Proposal location of the FCC at CERN

	Z	WW	ZH	ti	ī a
Circumference (km)			97.756		
Bending radius (km)			10.76		
Free length to IP l^* (m)			2.2		
Solenoid field at IP (T)			2		
Full crossing angle at IP, θ (mrad)			30		
SR power per beam (MW)			50		
Beam energy (GeV)	45.6	80	120	175	182.5
Beam current (mA)	1,390	147	29	6.4	5.4
Bunches per beam	16,640	2,000	328	59	48
Average bunch spacing (ns)	19.6	163	994	2,763	3,396
Bunch population (10 ¹¹)	1.7	1.5	1.8	2.2	2.3
Horizontal emittance, ε_x (nm)	0.27	0.84	0.63	1.34	1.46
Vertical emittance, ε_y (pm)	1.0	1.7	1.3	2.7	2.9
Horizontal β_x^* (m)	0.15	0.2	0.3	1.0	
Vertical β_y^* (mm)	0.8	1.0	1.0	1.6	
Energy spread in collision, σ_{δ} (%)	0.132	0.131	0.165	0.186	0.192
Bunch length in collision, σ_z (mm)	12.1	6.0	5.3	2.62	2.54
Piwinski angle (SR/BS), ϕ	8.2/28.5	3.5/7.0	3.4/5.8	0.8/1.1	0.8/1.0
Energy loss per turn (GeV)	0.036	0.34	1.72	7.8	9.2
RF frequency (MHz)		400		400.	/800
RF voltage (GV)	0.1	0.75	2.0	4.0/5.4	4.0/6.9
Longitudinal damping time (turns)	1,273	236	70.3	23.1	20.4
Energy acceptance (DA) (%)	±1.3 ±1.3		±1.7	-2.8, +2.4	
Polarization time t_p (min)	15,000	900	120	18.0	14.6
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	230	28	8.5	1.8	1.55
Vertical beam–beam parameter, ξ _y	0.133	0.113	0.118	0.128	0.126
Beam lifetime (min)	>200	>200	18	24	18

Table 5Machine parameters of the FCC-ee for different beam energies (2)

.


^aA common RF system is used for *tī* operation. Abbreviations: BS, beamstrahlung; DA, dynamic aperture; FCC-ee, Future Circular Collider electron-positron collider; IP, interaction point; RF, radio-frequency; SR, synchrotron radiation.

III. Summary

(1) There is no future project for paticle physicists except ILC in Japan. I do not think that ILC is a feasible project.

(2) Therefore, I have considered a new muon collider, however, obtained result was negative.

(3) I think FCC (Future Circular Colliders) at CERN is very attractive project. Physicists in Japan should join it.

Date