Symmetry studies at Research reactors

Tatsushi Shima Research Center for Nuclear Physics, Osaka University

NEWS colloquium January 20, 2023

Asymmetry in daily life

Osaka

Tokyo

Homochirality in lives on the Earth

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

"Optical isomer" or "Enantiomer"

Most amino acids are L-type, and most sugars are D-type.

 \rightarrow What is the origin? Weak interaction? Just a chance?

 \rightarrow What is the mechanism to achieve ~100% asymmetry?

Asymmetries in Nature

- Eternal expansion of the Universe
- Arrow of time; from past to future
- Matter-antimatter asymmetry in universe
- Parity violation in weak interaction
- Homochirality in terrestrial biomolecules
- and so on...

Large parity violation in compound nuclei

G.E. Mitchell et al., Phys. Rep. 354, 157 (2001)

Mixing between p-wave and s-wave resonances

$$\begin{split} A_{L} &= -2 \boxed{W} \boxed{\Gamma_{p}^{n} \cdot \sqrt{\frac{\Gamma_{p}^{n} \left(j = 1/2\right)}{\Gamma_{p}^{n}}}}_{(ratio of j=1/2 component)} \\ \text{Opnamical Enhancement} \\ (10^{2} \sim 10^{3}) \\ W &= \langle \psi_{s} | H_{w} | \psi_{p} \rangle \sim \frac{1}{\sqrt{N}} \cdot \langle \psi_{s} | H_{w} | \psi_{p} \rangle_{\text{single particle}} \\ \left| E_{p} - E_{s} \right| \propto \frac{1}{N} \\ N \text{; level density} \sim 10^{6} \text{ [/MeV] for heavy nuclei} \end{split}$$

Similar mechanism is expected to operate in violation of other symmetries such as isospin invariance and time-reversal invariance....

New research reactor@Monju site

(Fast Breede Reactor)

高速増殖原型炉もんじゅ 🔾

Mon

(株)ネッシー(NESI)

香港

New Rescarch Reactor

Philippine Sea

(urma)

Laos

Imaginary picture of new research reactor

Thermal power =10MW < ILL 58MW, JRR-3 20MW But flexibility in core structure !

Floor Design & Reactor core design

Physics Case

Nuclear Physics ;

- Precise measurement of neutron scattering lengths
 → few-nucleon systems, cluster system, etc.
- Cross section data of neutron-induced reactions
 → nuclear astrophysics
- Cross section data of neutrino-induced nuclear reactions
 → nuclear astrophysics, neutrino astronomy

Particle Physics ;

- High-intensity neutrons from epithermal to ultra-cold \rightarrow T-violation in compound neclei, nEDM, *n*- \overline{n} oscillation
- High-intensity antineutrino
 - \rightarrow Sterile neutrino search at world-shortest baseline (~3 m)

Profs. S. Yoshida, S. Umehara

n-n oscillation

Transition between neutron and antineutron is allowed if there is no magnetic field and baryon-number is violated by 2 units ($|\Delta B| = 2$); i.e. neutron and antineutron are **Majorana fermions** ; $\psi_n = \psi_{\overline{n}} \equiv C\psi_n$

Prediction by Grand Unified Theories

GUT models	Oscillation period $\tau_{n\bar{n}} = 10^6 \sim 10^{10} \text{ sec } ?$	
$SU(2)_{L} \times U(1)_{Y} (GWS)$	forbidden	
minimal SU(5)	forbidden	
$SU(4)_{C} \times SU(2)_{L} \times SU(2)_{R}$	yes	
SO(10)	too slow	
SO(10) with low-E (~100TeV) SU(4) _C	yes	
E ₆	too slow	
SUSY-SU(5)	too rapid	
SUSY-E ₆	yes	

R.N.Mohapatra, NIM A284 (1989) 1 K.S. Babu, R.N. Mohapatra, PLB518 (2001) 269

Feature of SO(10) GUT model

 $SO(10) (Spin(10)) \supset SO(6) \times SO(4)$ $SO(6) \supset SU(4) \supset SU(3)_c \times U(1)_{B-L}$ $SO(4) \supset SU(2) \times SU(2)'$ $\downarrow \qquad \downarrow$ $SU(2)_L \qquad SU(2)_R$

 $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \times \mathrm{U}(1)_{B-L} \to \mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

- Parity violation in weak interaction is naturally explained by spontaneous symmetry breaking of $U(1)_{B-L}$, not *ad hoc* !
- $|\Delta B|=1$, $|\Delta L|=1$ are naturally suppressed. \rightarrow explain slow proton decay
- Neutrinos can be Majorana type.
 → Seesaw mechanism can be used to explain light neutrino masses.
- $|\Delta L|=2$ is allowed \rightarrow "Leptogenesis" for origin of baryon asymmetry.

n-n conversion and Onbb

Mass of right-handed neutrino (heavy);

$$M_R \sim \frac{\langle v_R \rangle^2}{M_{Pl}}$$
 $(\langle v_R \rangle; \text{ VEV of Higgs which couples to } v_R)$

Mass of left-handed neutrino (light);

$$m_{v} \sim \frac{m_{l}^{2}}{M_{R}} \implies m_{v} \sim M_{Pl} \left(\frac{m_{l}}{\langle v_{R} \rangle}\right)^{2}$$
 ("Seesaw" mechanism)

Neutron-antineutron oscillation period;

$$\tau_{n\bar{n}}^{-1} = \delta m \propto \left\langle v_{B-L} \right\rangle \propto \sim \left\langle v_R \right\rangle \implies m_v \sim C \cdot M_{Pl} \cdot \tau_{n\bar{n}}^2$$

C is model-dependent.

The smaller Majorana neutrino mass, the shorter $n-\overline{n}$ oscillation period !

$n \rightarrow \overline{n}$ conversion probability

$$i\frac{\partial}{\partial t}\begin{pmatrix}\psi_{n}(t)\\\psi_{\bar{n}}(t)\end{pmatrix} = \begin{pmatrix}E_{n}-\boldsymbol{\mu}_{n}\cdot\boldsymbol{B}-i\Gamma_{\beta}/2 & \varepsilon\\ \varepsilon & E_{n}+\boldsymbol{\mu}_{n}\cdot\boldsymbol{B}-i\Gamma_{\beta}/2\end{pmatrix}\begin{pmatrix}\psi_{n}(t)\\\psi_{\bar{n}}(t)\end{pmatrix}$$

For
$$\psi_n(0) = 1$$
, $\psi_{\overline{n}}(0) = 0$,
 $|\psi_{\overline{n}}(t)|^2 = \frac{4\varepsilon^2}{\omega^2 + 4\varepsilon^2} \exp(-\Gamma_{\beta}t) \cdot \sin^2\left(\frac{1}{2}\sqrt{\omega^2 + 4\varepsilon^2}t\right)$
where $\omega = 2|\boldsymbol{\mu}_n \cdot \boldsymbol{B}|$, $\varepsilon = \frac{1}{\tau_{n\overline{n}}}$

--- Conversion is suppressed by external magnetic field.

ILL experiment (Baldo-Ceolin et al., Z. Phys. C63 (1994) 409)

Cold neutron; $E_n = 2 \text{meV} (\text{T}=25\text{K})$, $\Phi_n = 1.25 \times 10^{11} \text{ n/sec}$ Flight path ; $L_{TOF} = 76.5\text{m}$, $t_{TOF} = 0.1 \text{ sec}$ P < 0.01 Pa, B < 10 nTTarget; graphite film (130µm) Detector efficiency ; $\varepsilon = 0.52$ Measurement time ; $t_{meas} = 2.4 \times 10^7 \text{ sec}$

 $\tau_{n\overline{n}}$ > 8.6 × 10⁷ sec

Plan at European Spallation Source (5MW)

NNBAR: Free Search for $n \rightarrow \overline{n}$

- NNBAR: Leverage 3 decades of advances: moderator design, neutronics, detection, reconstruction techniques
 ×1000 sensitivity of ILL <u>arXiv:2006.04907</u>
 - · Collaboration: 26 institutions across 8 countries
- European Spallation Source (5MW in 2030+): Large Beam Port constructed specifically for NNBAR
 - NNBAR highlighted in Monday plenary on <u>European Strategy</u>
- <u>HighNESS (3M€ EU grant</u>): moderator study,
 n detector prototyping, CDR for upgrade of the ESS including NNBAR beamline+experiment
- Staged program ORNL HIBEAM NNBAR

Total gain vs III		> 1000
Run Time	ILL run = 1 year	3
Length	\propto time, quadratic sensitivity	5
Angular Acceptance	2D = quadratic sensitivity	40
Moderator Area	Large aperture required	2
Moderator Temperature	Colder neutron <tof>, quadratic sensitivity</tof>	≥ 1
Brightness		≥ 1

"The Large Beam Port is an opportunity to broaden the ESS mission"

Rikard Linander, Head of the ESS Target Division

Intra-nuclear n-n conversion

Super-Kamiokande (K. Abe et al., PRD103, 012008 (2021)) proton decay ($\Delta B = 1$) : $p \rightarrow e^+ + \pi_0 > 1.6 \times 10^{34}$ y

n-īn oscillation in ^{16}O nucleus (ΔB = 2) : $\tau_{n\bar{n}}$ (^{16}O) > 3.6 × 10^{32} y

 $\Rightarrow \tau_{n\bar{n}}$ (free) > 4.7 × 10⁸ sec (90%CL) (3 × 10⁸ sec in 2003)

--- huge suppression by nuclear potential !

Hyper-Kamiokande

fiducial mass = $5 \times SK \rightarrow$ proton decay > $\sim 10^{35}$ y n- \overline{n} oscillation in ${}^{16}O$ > $\sim 10^{33}$ y

 $\Rightarrow \tau_{n\bar{n}} \text{ (free)} > 1.4 \times 10^9 \text{ sec} \qquad \because \quad \tau_{n\bar{n}} \propto \frac{1}{\sqrt{P_{-}}}$

Sensitivity for n-n conversion

A. Addazi et al., J. Phys. G: Nucl. Part. Phys. 48 (2021) 070501

Exp. Sensitivity vs Theor. Prediction

Post-Sphaleron Baryogenesis; K.S. Babu et al., Phys. Rev. D87, 115019 (2013)

Ultra Cold Neutron

Kinetic energy; $E_n < 200$ neV, Velocity; $v_n < 6.5$ m/s

 \Rightarrow de Broglie wavelength $\lambda_n > 60 \text{ nm}$

>> interatomic distances in solid/liquid

--- Coherent scattering is dominant.

Ultra Cold Neutron

$$P_{n\bar{n}} \approx \left(\frac{t_s}{\tau_{n\bar{n}}}\right)^2, \quad Y_{\bar{n}} = \varepsilon \cdot \Phi_n \cdot P_{n\bar{n}} \cdot t_{meas}$$
$$\Rightarrow \quad \tau_{n\bar{n}} = \left(\frac{\varepsilon \cdot \Phi_n \cdot t_{meas}}{Y_{\bar{n}}}\right)^{1/2} \cdot t_s$$

UCN beam intensity ; $\Phi_n = 10^8 \text{ n/sec}$ Storage time ; $t_s = 500 \text{ sec} >> 0.5 \text{ sec in NNBar@ESS}$ Detector efficiency ; $\varepsilon = 0.5$ Measurement time ; $t_{meas} = 2 \times 10^7 \text{ sec}$

$\tau_{n\bar{n}} \sim 1.5 \times 10^{10} \text{ sec (!)}$

D.G. Phillips II et al., Phys. Rep. 612, 1-45 (2016)

However...

Ultra Cold Neutron (cont.)

$$i\frac{\partial}{\partial t}\begin{pmatrix}\psi_{n}(t)\\\psi_{\bar{n}}(t)\end{pmatrix} = \begin{pmatrix}E_{n}-i\Gamma_{\beta}/2+U_{n}(t) & \varepsilon\\ \varepsilon & E_{n}-i\Gamma_{\beta}/2+U_{\bar{n}}(t)\end{pmatrix}\begin{pmatrix}\psi_{n}(t)\\\psi_{\bar{n}}(t)\end{pmatrix}$$

For
$$\psi_n(0) = 1$$
, $\psi_{\overline{n}}(0) = 0$,
 $|\psi_{\overline{n}}(t)|^2 = \frac{4\varepsilon^2}{\omega_W^2 + 4\varepsilon^2} \exp(-\Gamma_\beta t) \cdot \sin^2\left(\frac{1}{2}\sqrt{\omega_W^2 + 4\varepsilon^2}t\right)$
where $\omega_W \equiv U_n(t) - U_{\overline{n}}(t) = O(10^{-7} [\text{eV}]) >>> \varepsilon < 10^{-25} [\text{eV}]$
 $(U_n(t) (U_{\overline{n}}(t)) \text{ is (anti)neutron-wall potential})$
 $\rightarrow P_{\overline{nn}} = |\psi_{\overline{n}}(t)|^2 \cong \begin{cases} \varepsilon^2 t^2 (\sqrt{\omega_W^2 + 4\varepsilon^2}t <<1) \\ \frac{4\varepsilon^2}{\omega_W^2 + 4\varepsilon^2} (\sqrt{\omega_W^2 + 4\varepsilon^2}t >>1) < \sim 10^{-30} \end{cases}$

→ Anti-neutron amplitude is reset to zero at every reflection. S. Marsch & K.W. MacVoy, PRD28, 2793 (1983)

Ultra Cold Neutron (corrected.)

$$\begin{split} P_{n\bar{n}} \approx & \left(\frac{t_{TOF}}{\tau_{n\bar{n}}}\right)^2 , \qquad Y_{\bar{n}} = \varepsilon \cdot \Phi_n \cdot P_{n\bar{n}} \cdot t_{meas} \cdot m \qquad \left(m \equiv \frac{t_s}{t_{TOF}}\right) \\ \Rightarrow & \tau_{n\bar{n}} = & \left(\frac{\varepsilon \cdot \Phi_n \cdot \frac{1}{m} \cdot t_{meas}}{Y_{\bar{n}}}\right)^{1/2} \cdot t_s \qquad \text{cf.} \quad \tau_{n\bar{n}} = & \left(\frac{\varepsilon \cdot \Phi_n \cdot t_{meas}}{Y_{\bar{n}}}\right)^{1/2} \cdot t_s \\ & \text{for quasi-free condition} \end{split}$$

UCN beam intensity ; $\Phi_n = 10^8 \text{ n/sec}$ Storage time ; $t_s = 500 \text{ sec}$ Flight time ; $t_{TOF} = 1 \text{ sec} \neq t_s$ Detector efficiency ; $\varepsilon = 0.5$ Measurement time ; $t_{meas} = 2 \times 10^7 \text{ sec}$ Not 500s measurement but 1s measurements for 500 times...

$$au_{n\overline{n}} \sim 7 \times 10^8 \, \mathrm{sec}$$

Exp. Sensitivity vs Theor. Prediction

Post-Sphaleron Baryogenesis; K.S. Babu et al., Phys. Rev. D87, 115019 (2013)

Ultra Cold Neutron (revisited)

For
$$\psi_n(0) = 1$$
, $\psi_{\overline{n}}(0) = 0$,
 $|\psi_{\overline{n}}(t)|^2 = \frac{4\varepsilon^2}{\omega_W^2 + 4\varepsilon^2} \exp(-\Gamma_\beta t) \cdot \sin^2\left(\frac{1}{2}\sqrt{\omega_W^2 + 4\varepsilon^2}t\right)$

$$\rightarrow P_{n\overline{n}} = |\psi_{\overline{n}}(t)|^2 \cong \begin{cases} \varepsilon^2 t^2 & \left(\sqrt{\omega_W^2 + 4\varepsilon^2}t < 1\right) \\ \frac{4\varepsilon^2}{\omega_W^2 + 4\varepsilon^2} & \left(\sqrt{\omega_W^2 + 4\varepsilon^2}t > 1\right) \end{cases}$$
R or \overline{n}
Skin depth d
F. Atchison et al.,
NIMA587, 82-88 (2008)

Wall

UCN; $E_n=0.18\mu eV$, $\lambda_n=67nm$, $v_n=6m/s$, penetration depth d~10nm

 \rightarrow t ~10ns, ω_w ~10⁻⁷eV $\rightarrow \omega_w$ ·t =10⁻¹⁵ eV·s ~ \hbar =6.6×10⁻¹⁶ eV·s

B. O. Kerbikov, A. E. Kudryavtsev, and V. A. Lensky, JETP 98, 417-426 (2004)

Inside wall;

$$i\frac{\partial}{\partial t}\begin{pmatrix}\psi_{n}(t)\\\psi_{n}^{-}(t)\end{pmatrix} = \begin{pmatrix}E_{n} - i\Gamma_{\beta}/2 + U_{n}(t) & \varepsilon \\ \varepsilon & E_{n} - i\Gamma_{\beta}/2 + U_{n}^{-}(t)\end{pmatrix}\begin{pmatrix}\psi_{n}(t)\\\psi_{n}^{-}(t)\end{pmatrix}$$
where $\omega_{W} \equiv U_{n}(t) - U_{n}^{-}(t) = O(10^{-7}[eV]) >>> \varepsilon < 10^{-22} [eV]$

$$v \equiv \frac{1}{2}\sqrt{\omega_{W}^{2} + 4\varepsilon^{2}} \quad \left(\cong \frac{1}{2}\omega_{W}, \text{ if } \varepsilon \text{ is extremely small}\right)$$

$$\begin{pmatrix}\psi_{n}(t_{W})\\\psi_{n}^{-}(t_{W})\end{pmatrix} = \exp\left[-\left(iE_{n} + \frac{\Gamma_{\beta}}{2}\right)t_{W}\right] \cdot \left(\begin{array}{c}\cos vt_{W} + \frac{i\omega_{W}}{2v}\sin vt_{W}} & -\frac{i\varepsilon}{v}\sin vt_{W}\\ -\frac{i\varepsilon}{v}\sin vt_{W}} & \cos vt_{W} - \frac{i\omega_{W}}{2v}\sin vt_{W}}\right)\begin{pmatrix}\psi_{n}(0)\\\psi_{n}^{-}(0)\end{pmatrix}$$

$$\varepsilon \sim 10^{-25} [eV], \quad v \cong \frac{1}{2}\omega_{W} \sim 10^{-7} [eV], \quad t_{W} \sim 10^{-8} [s] = 1.5 \times 10^{7} [eV^{-1}]$$

$$\Rightarrow \quad vt_{W} \cong 1.5$$

$$\Rightarrow \mathbf{R} = \begin{pmatrix}0.0707 + 0.9975i & 0\\ 0 & 0.0707 - 0.9975i \end{pmatrix} = 0.0707\mathbf{I} + 0.9975i\sigma_{3}$$

$$\left(\cos v t_{W}\right)^{500} > \sim 0.5 \quad \Leftrightarrow \quad v t_{W} < 0.05$$

$$\Leftrightarrow \quad v \sim \omega_{W} = U_{n} - U_{\overline{n}} < 3 \times 10^{-9} \text{ [eV] is required.} \quad \left(U_{n}, U_{\overline{n}} \sim 10^{-7} \text{ [eV]}\right)$$

 U_n , $U_{\overline{n}}$ are Fermi's pseudo potentials ;

$$U_{j} = \frac{2\pi}{m} \rho_{A} \cdot \operatorname{Re}(a_{jA})$$

j; neutron or antineutron

- *m* ; mass of neutron (antineutron)
- ρ_A ; number of nucleus A in the unit volume of the wall
- a_{jA} ; coherent scattering length of neutron or antineutron with target nucleus A

$$(\cos vt_W)^{500} > \sim 0.5 \iff vt_W < 0.05 \iff \omega_W \sim v < 3 \times 10^{-9} [eV]$$

$$\omega_{W} = U_{nA} - U_{\bar{n}A} = \frac{2\pi}{m_{n}} \rho_{A} \left(a_{nA} - a_{\bar{n}A} \right)$$

(Hereafter *a* denotes only real part for simplicity)

$$\Rightarrow \omega_{W} = \frac{2\pi}{m_{n}} \Big[\rho_{A} \Big(a_{nA} - a_{\bar{n}A} \Big) + \rho_{B} \Big(a_{nB} - a_{\bar{n}B} \Big) \Big]$$
, for compound or alloy made of nuclei A and B

=0

,when
$$x = \frac{\rho_B}{\rho_A + \rho_B} = \frac{\left(a_{nA} - a_{\bar{n}A}\right)}{\left(a_{nA} - a_{\bar{n}A}\right) - \left(a_{nB} - a_{\bar{n}B}\right)}$$

To achieve $|\omega_W/U_{n,\bar{n}}| < 3\%$, one has to know antineutron-nucleus scattering lengths $a_{\bar{n}A}$, $a_{\bar{n}B}$ with accuracy of better than ~3% !

Coherent neutron scattering length

https://www.nist.gov/ncnr/neutron-scattering-lengths-list

Neutron scattering lengths and cross sections						
lsotope	conc	Col[t m]	Inc b	Coh xs	Inc xs	Scatt xs
Н		-3.7390		1.7568	80.26	82.02
1H	99.985	-3.7406	25.274	1.7583	80.27	82.03
2H	0.015	6.671	4.04	5.592	2.05	7.64
3H	(12.32 a)	4.792	-1.04	2.89	0.14	3.03
He		3.26(3)		1.34	0	1.34
3He	0.00014	5.74-1.483i	-2.5+2.568i	4.42	1.6	6
4He	99.99986	3.26	0	1.34	0	1.34
Li		-1.90		0.454	0.92	1.37
6Li	7.5	2.00-0.261i	-1.89+0.26i	0.51	0.46	0.97
7Li	92.5	-2.22	-2.49	0.619	0.78	1.4
Be	100	7.79	0.12	7.63	0.0018	7.63
В		5.30-0.213i		3.54	1.7	5.24
10B	20	-0.1-1.066i	-4.7+1.231i	0.144	3	3.1
11B	80	6.65	-1.3	5.56	0.21	5.77
С		6.6460		5.551	0.001	5.551
12C	98.9	6.6511	0	5.559	0	5.559
13C	1.1	6.19	-0.52	4.81	0.034	4.84

(up to ²⁴⁸Cm)

Coherent antineutron scattering length

Optical potential model

E. Friedman, Nucl. Phys. A925, 141-149 (2014). K.V. Protasov, W.M. Snow et al., Phys. Rev. D102, 075025 (2020).

$$V(z) = -\frac{4\pi\hbar^2}{2\mu} \left(1 + \frac{\mu}{m} \frac{A - 1}{A} \right) \cdot a_0 \left(\rho_n(z) + \rho_p(z) \right)$$
$$\rho_{p,n}(z) = \frac{\rho_{p_0,n_0}}{1 + \exp\left(\frac{z - R_{p,n}}{a_{p,n}}\right)} \quad \text{(Woods-Saxon)}$$

Available experimental data

- ✓ $\bar{p} + A$ annihilation cross section
- ✓ $\bar{n} + A$ annihilation cross section
- ✓ $\bar{p} + A$ scattering cross section
- Spectroscopic data of antiprotonic atoms
- ✓ n + A scattering cross section

K.V. Protasov, W.M. Snow et al., Phys. Rev. D102, 075025 (2020).

 $\bar{p} + {}^{12}C$ elastic scattering cross section

OPM with single diffuseness parameter is consistent also with $\bar{p}C$ atomic data

$$\implies a_{\overline{n+A}} = (1.54 \pm 0.03) \cdot A^{0.311 \pm 0.05} - (1.00 \pm 0.04) i \text{ [fm]}$$

error ~3% !

K.V. Protasov, W.M. Snow et al., Phys. Rev. D102, 075025 (2020).

$$\omega_{W} = \frac{2\pi}{m_{n}} \Big[\rho_{A} \left(a_{nA} - a_{\bar{n}A} \right) + \rho_{B} \left(a_{nB} - a_{\bar{n}B} \right) \Big] = 0 \quad \text{, for compound or alloy} \\ \text{made of nuclei A and B} \\ \text{,when } x = \frac{\rho_{B}}{\rho_{A} + \rho_{B}} = \frac{\left(a_{nA} - a_{\bar{n}A} \right)}{\left(a_{nA} - a_{\bar{n}A} \right) - \left(a_{nB} - a_{\bar{n}B} \right)} \quad \text{, when } x = \frac{\rho_{B}}{\rho_{A} + \rho_{B}} = \frac{\left(a_{nA} - a_{\bar{n}A} \right)}{\left(a_{nA} - a_{\bar{n}A} \right) - \left(a_{nB} - a_{\bar{n}B} \right)}$$

$$\operatorname{Re}(a_{\bar{n}A}) = (1.54 \pm 0.03) \cdot A^{0.311 \pm 0.05}$$
 [fm]

For example,

Element	Atomic Mass	a _{nA} [fm]	$a_{\overline{n}A}$ [fm]	Molar Ratio
Al	27	3.449	4.29	0.59
Mg	24.3	5.375	4.15	0.41

Ultra Cold Neutron (revival)

$$P_{n\bar{n}} \approx a^{2m} \left(\frac{t_s}{\tau_{n\bar{n}}}\right)^2, \quad m \equiv \frac{t_s}{t_{TOF}}, \quad Y_{\bar{n}} = \varepsilon \cdot \Phi_n \cdot P_{n\bar{n}} \cdot t_{meas}$$
$$\Rightarrow \quad \tau_{n\bar{n}} = a^m \cdot \left(\frac{\varepsilon \cdot \Phi_n \cdot t_{meas}}{Y_{\bar{n}}}\right)^{1/2} \cdot t_s$$

UCN beam intensity ; $\Phi_n = 10^8$ n/sec Storage time ; $t_s = 500$ sec Flight time ; $t_{TOF} = 1$ sec Detector eff. ; $\varepsilon = 0.5$ Meas. time ; $t_{meas} = 2 \times 10^7$ sec

$$\tau_{n\overline{n}} \sim \mathbf{1.0^{+0.6}}_{-0.83} \times \mathbf{10^{10} \text{ sec}} \qquad \left(\omega_{W} = (3\pm3)\times10^{-9} \text{ [eV]}\right)$$

Best condition; $m = -\frac{1}{\log a} \implies \tau_{n\overline{n}} = \left[\frac{1}{e} \cdot \left(\varepsilon \cdot \Phi_{n} \cdot t_{meas.}\right)^{1/2} \cdot t_{TOF}\right] \cdot \frac{1}{\log(a^{-1})}$
 $\tau_{n\overline{n}} \sim \mathbf{1.16} \times \mathbf{10^{10} \text{ sec}} \quad (m=1000)$
$$\tau_{N\overline{n}} \sim \mathbf{1.16} \times \mathbf{10^{10} \text{ sec}} \quad (m=1000)$$

Exp. Sensitivity vs Theor. Prediction

Post-Sphaleron Baryogenesis; K.S. Babu et al., Phys. Rev. D87, 115019 (2013)

Summary

- Planned research reactor is expected to provide unique opportunity for physics researches thanks to custom-made structure of the core. It will become operative in ~2030.
- Flag-ship experiment; search for $n-\overline{n}$ oscillation with UCN.
- UCN with high efficiencies in production, storage, and detection has a potential to survey oscillation period of >10¹⁰ s.

We need...

- UCN production rate; 10⁸ /s
- UCN bottle with 50m³ and storage time ~500s
- Low BG; ~1 event/y
- Nuclear physics with antinucleon;
 - Spectroscopic data of antiprotonic atoms
 - > Antineutron scattering data
 - ➤ Check of annihilation cross section data ...

Stay tuned!