SHORT COMMENT ON THE LEFT- AND RIGHT-HANDED CURRENT IN NEUTRINOLESS DOUBLE BETA DECAY

Y. IWATA, S. SARKAR

KANSAI UNIVERSITY, INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Nuclear Matrix Element Calculation for $0\nu\beta\beta$ Decay of ¹³⁶Xe in Left-**Right Symmetric Model using Nuclear Shell Model**

 \mathcal{U}_R

 e_{τ}

 e_R

If we consider all the diagrams of $0\nu\beta\beta$ decay in left-right symmetric model, the decay rate can be written as

$$\begin{split} \left[T_{1/2}^{0v}\right]^{-1} = & g_A^4 \left[C_m \left|\eta_m\right|^2 + C_N \left|\eta_N\right|^2 + C_\lambda \left|\eta_\lambda\right|^2 + C_\eta \left|\eta_\eta\right|^2 \right. \\ & + C_{mN} \left|\eta_m\right| \left|\eta_N \left|\cos(\phi_m - \phi_N) + C_{m\lambda} \left|\eta_m\right| \left|\eta_\lambda \left|\cos(\phi_m - \phi_\lambda) + C_{m\eta} \left|\eta_m\right| \left|\eta_\eta \left|\cos(\phi_m - \phi_\eta) + C_{N\lambda} \left|\eta_N\right| \left|\eta_\lambda \left|\cos(\phi_N - \phi_\lambda) + C_{N\eta} \left|\eta_N\right| \left|\eta_\eta \left|\cos(\phi_N - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \left|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \right|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \left|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \left|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \right|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \right|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \left|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta) + C_{\lambda\eta} \left|\eta_\lambda\right| \right|\eta_\eta \left|\cos(\phi_\lambda - \phi_\eta)$$

Nuclear Matrix Element (NME) (Our Interest)

Phase Space Factors which are **Calculated Accurately**

Nuclear Matrix Elements Calculation of $136Xe 0v\beta\beta$ Decay using Shell

NME of $0\nu\beta\beta$ decay is written as

 $M_{\alpha} = \langle f | \tau_{-1} \tau_{-2} \mathcal{O}_{12}^{\alpha} | i \rangle$

Transition Operators of $0\nu\beta\beta$ in left-Right

 $\mathcal{O}_{12}^{GT,\omega GT,qGT,GTN} = (\sigma_1.\sigma_2) H_{GT,\omega GT,qGT,GTN}(r,E_k)$

$$\mathcal{O}_{12}^{GTR} = ec{\sigma}_1 \cdot ec{\sigma}_2 H_{GTR}(r, E_k).$$
 $\mathcal{O}_{12}^{F, \omega F, qF, FN} = H_{F, \omega F, qF, FN}(r, E_k)$

Nuclear Matrix Element are Calculated in Shell

$$\begin{split} M_{\alpha}(J_{k}, J, E_{k}^{*}) &= \sum_{k_{1}'k_{2}'k_{1}k_{2}} \sqrt{(2J_{k}+1)(2J_{k}+1)(2J+1)} \\ \times (-1)^{j_{k1}+j_{k2}+J} \left\{ \begin{array}{c} j_{k1'} & j_{k1} & J_{k} \\ j_{k2} & j_{k2'} & J \end{array} \right\} \text{OBTD}(k, f, k_{2}', k_{2}, J_{k}) \\ \times \text{OBTD}(k, i, k_{1}', k_{1}, J_{k}) \langle k_{1}', k_{2}' : J || \tau_{-1} \tau_{-2} \mathcal{O}_{12}^{\alpha} || k_{1}, k_{2} : J \rangle \end{split}$$

Shell Model Calculation for ¹³⁶Xe $0\nu\beta\beta$ Decay

Results: Contribution of different Spin-Parity States of Intermediate Nucleus ^{136}Cs to the Nuclear Matrix Element of ^{136}Xe $0\nu\beta\beta$ in Left-Right

LEFT-RIGHT SYMMETRIC MODEL IN THE LATEST LITERATURE

IMPORTANCE OF LONG-RANGE EFFECT (NON-LEADING ORDER)

PHYSICAL REVIEW LETTERS 126, 151801 (2021)

Left-Right Symmetry and Leading Contributions to Neutrinoless Double Beta Decay

Gang Li[®],^{1,*} Michael J. Ramsey-Musolf[®],^{2,1,3,†} and Juan Carlos Vasquez[®],^{1,‡} ¹Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA ²Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China ³Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

(Received 21 October 2020; accepted 8 March 2021; published 16 April 2021)

We study the impact of the mixing (LR mixing) between the standard model W boson and its hypothetical, heavier right-handed parter W_R on the neutrinoless double beta decay ($0\nu\beta\beta$ decay) rate. Our study is done in the minimal left-right symmetric model assuming a type-II dominance scenario with charge conjugation as the left-right symmetry. We then show that the $0\nu\beta\beta$ decay rate may be dominated by the contribution proportional to this <u>LR mixing</u>, which at the hadronic level induces the leading-order contribution to the interaction between two pions and two charged leptons. The resulting long-range pion exchange contributions. Finally, we find that even if future cosmological experiments rule out the inverted hierarchy for neutrino masses, there are still good prospects for a positive signal in the next generation of $0\nu\beta\beta$ decay experiments.

DOI: 10.1103/PhysRevLett.126.151801

[SUMMARY] DOUBLE BETA DECAY WITH LEFT- AND RIGHT-HANDED WEAK CURRENTS

Without Including Higher Order Current in Neutrino Potential	Decey	qGT Type NME	qGT Type NME (With	
$f_{qGT}(q,r) = \frac{1}{\left(1 + \frac{q^2}{\Lambda_A^2}\right)^4} qr j_1(qr).$ PHYSICAL REVIEW C 98 035502 (2018)	Candidate	Higher Order Current)	Higher Order Current)(Our Calculation)	SRC Type
	⁴⁸ Ca	0.709	3.491	CD-Bonn
Including Higher Order Current in				
Neutrino Potential	⁸² Se	3.034	12.538	CD-Bonn
$\int g_A^2(q^2) = g_P^2(q^2) q^5$				
$J_{qGT}(q, r) = \left[\frac{m_{qGT}}{g_{A}^{2}}q + 3\frac{m_{N}^{2}}{g_{A}^{2}}\frac{4m_{N}^{2}}{4m_{N}^{2}}\right]$	¹³⁶ Xe	I.440	7.463	CD-Bonn
$+rac{g_A(q^2)g_P(q^2)}{g_A^2}rac{q^3}{m_N}\bigg]rj_1(q,r),$	PHYSICAL REVIEW	C 102, 034317 (2020)	PHYSICAL REVIE	W C 92 , 055502 (2015)