Observation of low-lying isomeric states in 136Cs: A new avenue for dark matter and solar neutrino detection in xenon detectors

Brian Lenardo Associate Staff Scientist, SLAC NEWS Colloquium November 21, 2023

Outline

- 1. Large, low-background xenon detectors in particle physics
- 2. Solar neutrinos and charged-current interactions on ¹³⁶Xe
- 3. New measurements of ¹³⁶Cs excited state spectrum using ¹³⁸Ba(d,a)¹³⁶Cs reactions
- 4. New measurements of gamma ray emission from ¹³⁶Cs excited states using ¹³⁶Xe(p,n)¹³⁶Cs reactions
- 5. Implications and summary

The search for WIMP dark matter

Weakly Interacting Massive Particles Generic thermal relic dark matter

Searching for low-energy nuclear recoils in large, low-background detectors

The most sensitive searches to date use liquid-xenon-based detectors

The state-of-the-art at present

There are *multiple* multi-tonne-scale experiments (LZ, XENONnT, Panda-X) using liquid **xenon time projection chambers** to search for WIMP dark matter and other rare processes

Neutrinoless double beta decay ($0\nu\beta\beta$)

Avignone, Elliott, & Engel Rev. Mod. Phys. 80 (2008)

A rare nuclear decay: the single most sensitive probe of lepton number non-conservation and the Majorana neutrino hypothesis

- Could reveal neutrino mass mechanism
- Could provide physics for generating baryon asymmetry

Current and upcoming xenon detectors for $0\nu\beta\beta$ searches

KamLAND-Zen 800

Liquid scintillator loaded with ~800 kg of xenon enriched in $^{\rm 136}\rm Xe$

- World's most sensitive search for 0vββ
- Currently operating with upgrades planned! (KamLAND2-Zen)

The nEXO experiment

Liquid xenon time projection chamber (TPC) filled with ~5 tonnes of xenon enriched in ¹³⁶Xe

- Currently under development
- Projected sensitivity T_{1/2} > 10²⁸ years

What the future could look like

Will require new sources of xenon (see recent workshop @ SLAC!), but exciting possibilities

60m

Dimensions not

Slide from Alvine Kamaha

20-40 tonnes

active: "slow Xe

delivery rate" & early science

eight<diameter

AR: aspect ratio

Overburden: 4300 m.w.e. (Homestake)

Slide from Biörn Wonsak

 \rightarrow ~1200 \forall /MeV $\rightarrow \Delta E$ ~3% at 1MeV (conservative underestimation for Xe light yield)

· 90% PMT coverage

100-tonne-scale dark matter experiments?

XLZD: Detector Conceptual Design & Size

So, what other physics can we do with these detectors?

Solar neutrinos

Neutrinos provide direct information about nuclear processes in the sun's core, and can shed light on its composition

Borexino,

Nature 587 (2020)

Borexino: a groundbreaking experiment

Neutrino-electron elastic scattering in ultra-low-background liquid scintillator Myriad "firsts" in solar neutrino physics

- Real-time detection of ⁷Be neutrinos
- Comprehensive measurement of pp-chain
- First (and only) detection of CNO cycle
 - Direct measure of solar metallicity in core
- Pioneered many experimental techniques and performed comprehensive tests of solar models

Figure from "*Comprehensive measurement of pp-chain solar neutrinos*", Borexino Collaboration, *Nature* **562** (2018)

What can we still learn about solar neutrinos?

Neutrino CC interactions with $\beta\beta$ isotopes

A (negligible) background for $0\nu\beta\beta$ searches...

Charged-current reactions on ¹³⁶Xe

"Stimulated beta decay" provides a new detection channel for neutrinos with xenon detectors

- Very low threshold mass difference between ¹³⁶Xe and ¹³⁶Cs nuclei is ~90 keV
- *Relatively high cross section* larger than elastic v +
 e scattering by a factor of ~2
- Opportunities for final-state tagging ¹³⁶Cs could be tagged via emission of characteristic γ-rays

Charged-current reactions on ¹³⁶Xe

$$\nu_e + {}^{136} \mathrm{Xe} \rightarrow {}^{136} \mathrm{Cs}^* + e^-$$

"Stimulated beta decay" provides a new detection channel for neutrinos with xenon detectors

- Very low threshold mass difference between ¹³⁶Xe and ¹³⁶Cs nuclei is ~90 keV
- Relatively high cross section larger than elastic v +
 e scattering by a factor of ~2

Opportunities for final-state tagging - ¹³⁶Cs could be tagged via emission of characteristic γ -rays

If possible, could allow *background-free measurements* of these interactions

Charged-current events in xenon detectors

Charged-current events in xenon detectors

In addition to low-energy neutrinos: fermionic dark matter

Fermionic dark matter absorption on nuclei via a new charged-current interaction:

Larger exposure and *background reduction via*¹³⁶Cs tagging would allow **dramatically increased sensitivity**

World-leading DM limits from EXO-200

What would I look for in a large xenon detector?

¹³⁶Xe ground state has $J^{\pi} = 0^+$

Charged-current reactions preferentially populates the lowest-lying $J^{\pi} = 1^+$ state in ¹³⁶Cs

However, nuclear data in ¹³⁶Cs is sparse

¹³⁶Xe ground state has $J^{\pi} = 0^+$

Charged-current reactions preferentially populates the lowest-lying $J^{\pi} = 1^+$ state in ¹³⁶Cs

However, nuclear data in ¹³⁶Cs is sparse

¹³⁶Xe ground state has $J^{\pi} = 0^+$

Charged-current reactions preferentially populates the lowest-lying $J^{\pi} = 1^+$ state in ¹³⁶Cs

However, nuclear data in ¹³⁶Cs is sparse Nuclear shell model calculations predict a much more complex level scheme

¹³⁶Xe ground state has $J^{\pi} = 0^+$

Charged-current reactions preferentially populates the lowest-lying $J^{\pi} = 1^+$ state in ¹³⁶Cs

However, nuclear data in ¹³⁶Cs is sparse Nuclear shell model calculations predict a much more complex level scheme

Tagging ¹³⁶Cs via gamma cascade

Tagging ¹³⁶Cs via gamma cascade

Other reasons to be interested in the nuclear structure of ¹³⁶Cs

Low-energy ¹³⁶Cs states relevant for calculations of the half-life and spectral shape of ¹³⁶Xe $2\nu\beta\beta$

Muon capture to excited states in intermediate nuclei

Probes nuclear physics at momentum transfers relevant for $0\nu\beta\beta$

Ordinary muon capture

A dearth of data for ¹³⁶Cs

The relevant energy levels have never been measured!

Experiments to date have been highly selective

- Charge exchange targeting 1⁺ states
- Heavy ion interactions targeting high-spin states
- Studies of 8⁻ isomer at 518 keV

To explore the physics we've discussed, we need new data!

Screenshot of NNDC nuclear data table for ¹³⁶Cs

eferences: A ¹³⁶ Cs IT decay (17.5 S) B ¹³⁶ Xe (³ He,t) C ¹³⁸ Ba (µ ⁻ , 2nγ) D ²³⁸ U (¹² C, Fγ), ²⁰⁸ Pb (¹⁸ O, Fγ)								
E(level) (keV)	XREF	Jп(level)	$T_{1/2}$ (level)	E(y) (keV)	I(Y)	M (y)	Final l	evel
0.0	A	5+	13.01 d 5 % $\beta^- = 100$					
104.8 3	А	4+		104.8	100	(E2)	0.0	5
517.9 1	A D	8-	17.5 s 2 % IT > 0 % $\beta^- = ?$	413.1 <i>3</i> 517.9 <i>1</i>	0.072 100	M4 E3	104.8 0.0	4
583.9 5	D	9-		66.0 5	100	M1	517.9	8
590 5	В	1+						
850 <i>5</i>	В	1+						
1000 5	в	(2-)						
1910 5	в	1+						
1982.3 6	D	(11-)		1398.4 3	100		583.9	9
2010 5	в	1+						
2243.9 6	D	(12-)		261.6 2	100		1982.3	(1
2290 5	в	1+						
2360 5	в	1+						
2450 5	в	1+						
2500 5	В	1+						
2550 5	в	1+						
2600 5	в	1+						
2710 5	В	1+						
2810 5	в	1+						
2910 5	в	1+						
2927.6 7	D	(12-)		945.3 4	100		1982.3	(1
2973.7 7	D	(13-)		729.8 3	100		2243.9	(1
3257.8 7	D	(13-)		330.2 <i>3</i> 1013.7 <i>5</i>	100 <i>25</i> 100 <i>40</i>		2927.6 2243.9	(1) (1)
3380.1 7	D	(14-)		406.4 3	100		2973.7	(1
3420 5	В	1+						
3486.8 7	D	(14-)		229.0 4	100 25		3257.8	(1)

New measurements of ¹³⁶Cs nuclear structure

(d,a) reactions on a ¹³⁸Ba target, led by UWC

B. Rebeiro (now at GANIL)

S. Triambak University of Western Cape

Spectra and J[#] assignments

B. Rebeiro et al., Phys. Rev. Lett. 131 052501 (2023)

A key result: comparison with nuclear models

FIG. 2. Comparison between theory and experiment for the low-lying energy spectrum of ¹³⁶Cs. The shell-model results were obtained with the GCN5082, SN100PN, and QX effective interactions.

B. Rebeiro et al., Phys. Rev. Lett. 131 052501 (2023)

A key result: comparison with nuclear models

The low-lying level structure

Low-lying level structure now much more clear!

- Many new states discovered, and matched to theory
- Spin/parity assignments proposed based on angular info
- Used to benchmark nuclear Hamiltonians relevant for shell model calculations

But, what about gamma emission? Are any of these states long-lived?

Refs. [10),17]		This Letter				
E_x (keV)	J^{π}	E_x (keV)	L	L'	Assigned J ⁿ		
0.0	5+	0.0	4	6	5+		
		74(2)	4		3+		
104.8(3)	4+	$104(2)^{a}$	4		4+		
81		140(3)	2	4	3+		
		314(2)	4		(4^{+})		
		$423(3)^{b}$	4		(4^+)		
431(2)	(3^{+})	432(3)	2		(2^+)		
		460(3)	4		(3^+)		
517.9(1)	8-	517(3)	7	9	8-		
583.9(5)	9-						
591(2)	1+	589(3)	0	2	1^{+}		

The TUNL measurements: targeting gamma emission

We want an experiment which:

- 1. Populates the low-lying 1^+ excited states in 136 Cs
- 2. Detects low-energy (<100 keV) gamma rays emitted by the ¹³⁶Cs nucleus
- 3. Has timing sensitivity to identify and measure long-lived excited states

¹³⁶Xe(p,n)¹³⁶Cs charge-exchange reactions

Charge-exchange can mimic neutrino interactions using a low-energy accelerator

- Kinematics can be used to determine excitation energy
- Selection rules prefer 1⁺ states at forward neutron angles

Our Collaboration

Scott Haselschwardt

Brian Lenardo

Tim Daniels

Calvin Howell

Collin Malone

Jay Runge

Forrest Friesen

nike

Werner Tornow

Sean Finch

35

Pilot experiment at TUNL, August 2021

- 10 MV tandem accelerator produces pulsed proton beam @ 7 MeV
- Existing array of neutron detectors used to measure excitation energy via time-of-flight information

Pilot experiment results

Raw gamma ray spectra

Coincidence analysis to build level scheme

S.J. Haselschwardt et al., Phys. Rev. Lett. 131 052502 (2023)

Coincidence analysis to build level scheme

No direct spin/parity assignments from the gammas, but:

- Confirms energies of excited states and gamma ray emission properties
 - Transition strengths can be compared to spin/parity assignments in other measurements
- Provides ~10x better energy resolution
 - Resolves two states near 420 keV that are unresolved in charged-particle experiments

Timing analysis

Several transitions observed with extended time distributions

Three of these can be placed in the level scheme reconstructed from coincidences

Timing analysis

Lifetime fits for the three transitions shown

S.J. Haselschwardt et al., Phys. Rev. Lett. 131 052502 (2023)

Results

Two isomeric transitions placed in the level scheme

- Lowest-lying state is indeed the longest-lived, with tau = 157ns
- A second state (140 keV) is also isomeric, with tau = 90 ns

Relative intensities indicate that the first 1+ state decays through an isomeric state 99% of the time

 Nearly always a delayed coincidence signal for CC interactions in Xe detectors!

S.J. Haselschwardt et al., Phys. Rev. Lett. 131 052502 (2023)

Extended level structure

Data up to ~1.1 MeV available in the <u>Supplemental Material</u>

Data up to ~3 MeV available in principle, but not yet analyzed

Implications for xenon-based detectors

Solar neutrine]			
Experiment	$\begin{array}{c} \text{Mass} \\ \text{(t)} \end{array}$	Rate ⁷ Be	${\rm (evt/yr) \atop CNO}$	
LZ* KamLAND-Zen* nEXO 80t ^{nat} Xe TPC	$0.62 \\ 0.68 \\ 3.2 \\ 7.1$	$3.7 \\ 4.0 \\ 19.0 \\ 42.1$	$0.54 \\ 0.59 \\ 2.8 \\ 6.2$	<pre> Operating In development Proposed </pre>

S.J. Haselschwardt et al., *Phys. Rev. Lett.* **131** 052502 (2023)

Implications for xenon-based detectors

lopment

Solar neutrine]			
Experiment	Mass (t)	$\frac{\rm Rate}{^7{\rm Be}}$	(evt/yr) CNO	
LZ* KamLAND-Zen* nEXO 80t ^{nat} Xe TPC	$0.62 \\ 0.68 \\ 3.2 \\ 7.1$	$3.7 \\ 4.0 \\ 19.0 \\ 42.1$	$0.54 \\ 0.59 \\ 2.8 \\ 6.2$	<pre> Operating Operating In develop Proposed</pre>

S.J. Haselschwardt et al., Phys. Rev. Lett. 131 052502 (2023)

KamLAND-Zen already investigating this!

- Largest exposure in any existing experiment
- Exploring sensitivity and mitigation of ¹⁴C background using position reconstruction
- Possible world-leading sensitivity to charged-current dark matter interactions

K. Tachibana @ TAUP

https://indico.cern.ch/event/1199289/contributions/5447348/

- 1. Branching fractions for lowest-lying states
 - a. Internal conversion coefficients still unknown

- 1. Branching fractions for lowest-lying states
 - a. Internal conversion coefficients still unknown
- 2. Where are the 2+ states?
 - a. Some tension between gamma measurements and (d,a) measurements

- 1. Branching fractions for lowest-lying states
 - a. Internal conversion coefficients still unknown

2. Where are the 2+ states?

a. Some tension between gamma measurements and (d,a) measurements

3. Higher energies (i.e. few-MeV)?

a. Useful for modeling supernova neutrino interactions and interpreting muon capture experiments

To summarize

Summary

- Xenon-based detectors are powerful tools for particle physics, and will be widely used for the foreseeable future
- Charged-current interactions on ¹³⁶Xe nuclei can be used to perform spectroscopic measurements of solar neutrinos and searches for certain models of dark matter
- Isomeric transitions in the daughter ¹³⁶Cs will permit delayed-coincidence tagging of these interactions, dramatically reducing backgrounds
- New measurements have identified these isomers and provide crucial data needed for current and future experiments

Thank you!