EM (γ) transitions from IAS and axial-vector and vector NMEs and their weak couplings

Hiro Ejiri RCNP Osaka

Thanks the organizers for invitation to NEWS

Subjects to be discussed:

- I. Experimental aspects of DBD NMEs.
 - **1. Experimental outputs from DBD and DBD NMEs**
 - 2. Charge exchange nuclear and lepton (muon) reactions
 - **3.** Axial vector and vector weak couplings
- **II.** Electro-magnetic (EM γ) NMEs for IAS to study DBD.
 - 1. τ NMEs and weak couplings associated with DBDs.
 - M1 /E1 EM-γ NMEs for axial-vector /vector NMEs,
 - 2. IAS- γ cross sections and IAS- γ transition rates.
- **III.** Photo nuclear excitation of IAS for τ + DBD NMEs.
 - **1.** (γ, IAS)cross sections.
 - 2. Neutron angular distribution

I Experimental aspects of DBD

Neutrino-less ββ decays

The rate is product of phase, NME ,v-mass, λ , η $1/t_{1/2} = T^{0\nu} / \ln 2 = G^{0\nu} B(NW)$ $1/(t_{1/2}G^{0\nu}) = B(NW)$ $B(NW) = |M|^2$ $M = M^{0\nu} K_{\nu R}$ $G^{0\nu}$ = includes $(g_A = 1.27)^4$, $M^{0\nu}$ includes g_A^{eff} g_V^{eff} , depending on M (1/Gt corresponds to 1/ft = B(GT/F) derived experimentally) $K_{\nu R} = [\langle m_{\nu} \rangle^{2} + C_{\lambda} \langle \lambda \rangle^{2} + C_{\eta} \langle \eta \rangle^{2} + \text{ interference terms}]$ $< m > = |\Sigma m_i U_{ei}|$ $< \lambda > = (M_L/M_R)^2 |\Sigma U_{ei} V_{ei}|$ $< \eta > = tan \theta_{LR} |\Sigma U_{ei} V_{ei}|$ C_{λ} and C_{n} are phase spaces and NMEs in units of those for m_{ν} The measured $1/t_{1/2}$ gives product of NME and v-mass/ λ/η $T^{0\nu}$ and NME gives mass or $T^{0\nu}$ and m gives NME.

NMEs are keys for new physics in DBD beyond SM L-R symmetric model : $1/t_{1/2} = G^{0\nu} |M^{0\nu}|^2 K_{\nu R_2}$

$$K_{\nu R} = \left[\left(\frac{\langle m_{\nu} \rangle}{m_{e}} \right)^{2} + C_{\lambda \lambda} \langle \lambda \rangle^{2} + C_{\eta \eta} \langle \eta \rangle^{2} + C_{m \lambda} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \lambda \rangle \cos \phi_{1} + C_{m \eta} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \eta \rangle \cos \phi_{2} + C_{\eta \lambda} \langle \lambda \rangle \langle \eta \rangle \cos (\phi_{1} - \phi_{2}) \right].$$

<m>=|Σm_jU_{ej}| <λ>=(M_L/M_R)²|ΣU_{ej}V_{ej}| <η>=tanθ_{LR}|ΣU_{ej}V_{ej}|
i. Light mass process, the effective Majorana mass depends on the mass spectra NH/IH, the mixing-phases, the minimum m₁.
ii. NME within 50% for the NH/IH, within 30% for the phases. within 20% for consistency among DBD nuclei, not RIs.

$(t_{1/2})^{-1} \sim G_{01} M_m^2 m_v^2 + G_{02} M_\lambda^2 \lambda^2 + G_{09} M_\eta^2 \eta^2 + Cross \text{ terms}$

Phase spaces $G_{01}: G_{02}: G_{09} = 1: 10 : 0.5 \ 10^{5}$ (recoil term)

$$\begin{split} \mathbf{M}_{m} &= \mathbf{M}(\mathbf{GT})(\mathbf{1}\text{-}\mathbf{F}\text{+}\mathbf{T})\mathbf{M} \\ \mathbf{M}_{\lambda} &= \mathbf{Effective} \ \mathbf{NME}\text{-} \ \mathbf{M}(\mathbf{GT}) \\ \mathbf{M}_{\eta} &= \mathbf{Effective} \ \mathbf{NME}\text{-} \ \mathbf{M}(\mathbf{GT}) \end{split}$$

 $\mathbf{M}_{\lambda} \sim \mathbf{M}_{h} \sim \mathbf{M}_{m}$ in case of QRPA

Thus the v-mass sensitivity in units of me corresponds to the λ and η sensitivities smaller by the phase factors, SQRT of G_{02} and G_{09} = 3 and 700.

Muto et al., Z. Phys. A 334 187

Current limits

Current limits (GERDA PRL 125 252502, KamLAND PRL 130 051801)

may reach IH mass, by a factor ~ 3 in v-mass and >10² in NT/B

DBD EXPs: M^{0v} =2~3.5 smooth function of A, depends little on individual nuclei. DBD isotopes should be selected by detector requirements, ton scale isotopes N and low-BG B. H. Ejiri, L. Jokiniemi, J. Suhonen P R C Lettere 2 102 2022

8

NME is crucial for DBD exps. T=G(Mm_v^{eff})² G includes $(g_A=1.27g_v)^4$

1. v- mass –sensitivity (m to be measured) $m = k /M [B/N]^{\frac{1}{4}} k = G^{-1/2}$ M = NME, B = BG/ty N=Isotope mass 40% less in M requires 10 more in N 2. **Identification of the v-less DBD** Not new RI peak, but DBD peak, Two DBD isotopes give the same v-mass, within 40%, in intensity NMEs should be known within 20 %.

 $m_v = 2 m_0 [B/NT]^{\frac{1}{4}}$ m₀ ~ 40 meV /M^{0v} with ε =0.5 for Ge, Se. Mo. Cd. Te. Xe

H(r₁₂)~1/r₁₂ v potential for v-exchange, M^{0v}=Σ_J M(J) J= Multipole sum
M(J) = Σ_k M_k(J), Sum over all intermediate state k. Key elements :
1. Absolute values for GT and V multipole NMEs

2, Effective g_A and g_V for effects beyond models

Experimental inputs on DBD NMES to help theories.

- 1. Model NMEs depend on the models, the parameters (weak couplings etc), H_{ij}, etc.
- 2. The region of NMEs do not mean the possible region of the NMEs
- 3. Adjusted g_A , g_{pp} etc for $2\nu\beta\beta$ do not guarantee the right 0ν NMEs.

4. Shell model interactions are not adjusted to fit to β-γ NMEs. ⁷¹Ga,⁶⁹Ga, ⁷¹Ga,⁶⁹Ga,⁷¹

and g_A parameters for given 2νββ NME (Ejiri Jokiniemi, Suhonen PR C Lett. 2023) Initial and final (ground state) nuclei with relevant nucleons and meson /isobar clouds are quite different.

- 1. Particle knock-out reaction cross sections ~ 0.6 of SP
- EM NMEs e^{eff} for E1 (τrY1) ~0.3 e and e^{eff} for E2 (r²Y₂) ~>> e due to destructive and constructive nuclear core polarizations i.e. GR interference or nuclear correlations.
- 3. $M(\beta) = g_w^{eff} M(Model)$ for effects not included in the model. $g_v^{eff} \sim 0.3$ for QP model $g_A^{eff} \sim 0.25$ for QP model nuclear and non-nuclear $\tau, \tau\sigma$ correlations $g_A^{eff} \sim 0.6$ for QRPA non-nucleonic nuclear medium

Comparison of NMEs by pnQRPA, ISM, IBM2

$$M^{0\nu} = \left(\frac{g_{\rm A}^{\rm eff}}{g_{\rm A}}\right)^2 \left[M_{\rm GT}^{0\nu} + \left(g_{\rm V}/g_{\rm A}^{\rm eff}\right)^2 M_{\rm F}^{0\nu} + M_{\rm T}^{0\nu}\right]$$

QRPA P.R. C98 024608 2018 Jokiniemi, Ejiri Suhonen (g_A =1.0) ISM J. Menendez, et al. Nucl. Phys. A 818 139 2009. m-4 g_A =1.27 IBM J. Barea, . Kotila F. Iachello PR C 87 014315 2013 g_A =1.27

QRPA Large and smooth as A

ISM Small and smooth as A.

IBM Fluctuate much as A

Axial vector NMEs depend on models. Thus require model-dependent g_A^{eff} to incorporate the effects beyond models. and to reproduce $2\nu\beta\beta$. NMEs

QRPA Large and smooth as A
ISM Small and smooth as A.
IBM Fluctuate very much as A
Vector NMEs do depend on models.
Thus require model-dependent g_V^{eff} to incorporate the effects beyond models.

CVC 0⁺⁻0⁺ IAS : constant, but not for non-IAS states.

Single and double CERs at RCNP

 $M(\alpha, \beta^{\pm}) = (g_A^{eff})^{\pm} M(QRPA \ \alpha \beta^{\pm}) \quad \alpha = GT, SD. SQ, \cdot \cdot$

CERs: H. Ejiri, Universe 6, 225 (2020); Frontiers in Physics 9, 650421 (1921).

Nuclear and lepton CERs provide $\tau \tau \overline{\sigma}$ NMEs associated with the $\tau \sigma \sigma$ DBD NMEs, & help DBD NME model calculations and evaluations of g_A , g_V

Nuclear & μ CERs provide NMEs in the wide ranges of E=1-30 MeV P ~ 60-120 MeV/c, which are similar as DBD with r~2 fm v-exchange.

RCNP high E-resolution spectrometer

Nuclear & µ CER schemes

CERs at RCNP with 0.42 GeV ³He.

Axial vector NMEs at E=0-30 GeV. GT and SD DBD Models quenched and enhanced $\tau - \tau \sigma$ strengths at low-states and giant resonances in high E region.

 $\begin{array}{l} g_{A}^{eff}/g_{A} \ 0.65 \pm 0.1, \\ g_{ph} \ from \ SD \ GR \ -E \ and \\ g_{pp} \ from \ 2\nu\beta\beta \ exps. \end{array}$

H. Ejiri, L. Jokiniemi, J. Suhonen, Phys. Rev. C. Lett, 105 L022501 (2022). **Double Charge Exchange Reaction** H. Ejiri Universe 2022, 8, 457, Takahisa

RCNP ⁵⁶Fe(¹¹B,¹¹Li) ⁵⁶Ni at E=0.88 GeV. 1. $(V_{\tau\sigma}/V_{\tau})^2 \sim 3.4$ enhance $\tau\sigma$ GT SD excitation 2. Q value = - 50 MeV. Thus p-transfer 100 MeV/c is same as DBD, and L=1 enhances SD

GT SD NMEs derived by referring to IAS DIAS cross sections with known B(F) SCER ⁷⁶Ge (³He,t)⁷⁶As excites SD states with strength of 0.1 of QP strength. Then we get the quenching of sqrt of $0.1 = k_{\tau\sigma} \sim 0.3$ with respect to QP. DCER ⁵⁶Fe(¹¹B,¹¹Li) ⁵⁶Ni excites very little low-QP GT-SD states with strength of 0.01 of QP strength. Then the quenching of sqrt of $0.01 = (k_{\tau\sigma})^2 \sim 0.1$

Limits of nuclear CERs

1. Nuclear interactions :

Strong interactions, large cross sections , easy experiments. Complex/multi interaction operators, hard analyses of the data. Absolute NMEs are uncertain because of the absorptions and distortion, and complex interaction strength.

- Limited to relative τσ (GT) NME. E=200 MeV 0. deg. q~0
- 3. Tensor operator Mainly axial vector $T(J=i+) = \tau \sigma + \delta \tau [\sigma x Y_2]_1$

Small vector NMEs

The Nucleon-Nucleon Interaction and Nucleon-Nucleus Scattering WG Love, MA Franey, F Petrovich - Spin Excitations in Nuclei, 1984 - Springer

γ_i from ¹⁰⁰⁻ⁱNb: relative strength Life time : the absolute strength
H. Ejiri Proc. e-γ conference Sendai 1972, H. Ejiri et al., JPSJ 2014
NNR19:I. Hashim , Hashim H. Ejiri et al., PRC 97 (2018) 014617

- 1. 0-50 MeV, P=0-60 MeV/c similar to DBD E and P.
- 2. Gross strength distribution. Not individual states NMEs. Contributions of axial vector, vector, pseudoscalar NMEs. are mixed.
- 3. Absolute NMEs by life time . Large N-Z dependence

Hashim Ejiri et al. PR C 97 2018 Jokimiemi Suhonen Ejiri Hashim PL B 794 143 2019

II. EM γ-IAS for axial-vector and vector **NMEs** and their couplings associated with DND NMEs

EM and weak interactions have common spin isospin operators $T(VL) = g_V \tau^i r^L Y_L, \quad L = 1, 2,$ $T(AVL) = g_A \tau^i [\sigma \times r^{L-1} Y_{L-1}]_L, \quad L = 1, 2,$ $\overline{T(EL)} = g_{EL}r^L Y_L,$ $T(ML) = g_{S}[\sigma \times r^{L-1}Y_{L-1}]_{L} + g_{L}[j \times r^{L-1}Y_{L-1}]_{L}$ $g_{S} = \frac{e\hbar}{2Mq} [L(2L+1)]^{1/2} \left[\frac{g_{s}}{2} - \frac{g_{l}}{L+1} \right],$ $g_L = \frac{2g_l}{L+1},$ The EM couplings depend In case of a spin-stretched transition of , the M1 g factor is given effectively as $g = \sqrt{3/4\pi} (g_s/2 - g_l/2)$

Then weak NMEs are well studied by measuring corresponding EM NMEs

IAS γ by resonant p capture reactions

$$\begin{split} \langle \mathbf{f} | g_{\mathbf{v}} \boldsymbol{m}^{\beta} | \mathbf{i} \rangle &= \frac{g_{\mathbf{v}}}{e} \langle \mathbf{f} | [e \boldsymbol{m}^{\gamma}, T_{-}] | \mathbf{i} \rangle \approx \frac{g_{\mathbf{v}}}{e} \sqrt{2T_{0}} \langle \mathbf{f} | e \boldsymbol{m}^{\gamma} \frac{1}{\sqrt{2T_{0}}} T_{-} | \mathbf{i} \rangle \\ &\approx \frac{g_{\mathbf{v}}}{e} \sqrt{2T_{0}} \langle \mathbf{f} | e \boldsymbol{m}^{\gamma} | \mathbf{IA} \rangle, \end{split}$$

$$\begin{pmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \end{pmatrix}_{\theta_0} = \frac{1}{8} \hat{\lambda}^2 [|A_{J'}^{\mathrm{I}}|^2 + \sum_J |A_J^{\mathrm{D}}|^2 + \sum_J |A_J^{\mathrm{C}}|^2 + 2 \operatorname{Re}\left(A_{J'}^{\mathrm{I}} A_{J'}^{\mathrm{D}*}\right)].$$

$$A_{J'}^{\mathrm{I}} = i \frac{\sqrt{2J' + 1}}{(E - \tilde{E}) + i\frac{1}{2}\tilde{\Gamma}_{\mathrm{t}}}.$$

Ejiri H, et al. Phys. Rev. Lett. 2119 1968 373 24

CER-IAS Y transition schemes and DBD Axial-vector NMEs

IAS-γ H. Ejiri, Phys. Rev. C. Lett, 108 L011302 (2023). γ-IAS H. Ejiri, A. Titov, Phys. Rev. C 88 054010 (2013.)

EM-IAS studies : 4 merits

- EM couplings of e and μ and the interaction operators are well defined compared with nuclear ones in nuclear CERs. No distortion effect. No tensor interaction. No multipole mixing.
- 2. IAS is a sharp strong τ -GR with small non-resonant effects. Very small (30 keV) width due to isospin-forbidden n decays. Then γ -branch versus n-decay gets as large as 10⁻⁴ or so.

3. BG free exp. is possible by γ-detection in coincidence with CER to IAS.

4. Experiments are feasible by using a γ-detector array and a high energy-resolution spectrometer,

DIAS y Romeo, Menendez Pena PL B 827 136968 2022.

In case of M1 γ from IAS of ¹⁰⁰Mo.

β NMEs with α=GT, V1 are given by γ NMEs with α'=M1,E1 γ from IAS (Ejiri et al, PRL 1968) as $M^-(\alpha) \approx \sqrt{2T} M^{\text{IA}}(\alpha')$,

IAS- γ cross section (1000-100 nb) is given by product of IAS cross section (10 mb) and γ branching ratio (10 ⁻⁽⁴⁻⁵⁾) as

$$\frac{d\sigma^{\mathrm{IA}}(\alpha')}{d\Omega} = \frac{d\sigma^{\mathrm{IA}}}{d\Omega} \frac{\Gamma^{\mathrm{IA}}(\alpha')}{\Gamma(T)},$$

 γ -width (1-0.1 eV) is given by product of $(E_{\gamma})^3 = (10 \text{ MeV})^3 \sim 1000$ and the reduced γ width B^{IA} $\Gamma^{\text{IA}}(\alpha') = K_{\alpha'} E_{\alpha'}^3 B^{\text{IA}}(\alpha'),$

The reduced γ width is given by the square of the IAS γ NME

$$B^{\mathrm{IA}}(\alpha') = g_{\alpha'}^2 |M^{\mathrm{IA}}(\alpha')|^2 S^{-1},$$

 g_e^{eff} derived from Exp M (E1) /QRPA M (E1) is used to get g_V^{eff} g_m^{eff} derived from Exp M(M1) /QRPA M(M1) is used to get g_A^{eff}

IAS total widths are known experimentally.

Dark blue ; CER Exp. Present work

Light blue H.L.Harney et al, RMP 58 607 1986

It is given as a function of the isospin z component as

$$\Gamma(T) \approx 3.5T_z \,\mathrm{keV}, \quad T_z = (N-Z)/2.$$

It is a factor 30 smaller than a typical n-decay width because of the isospin forbidden for n decay. Note 141Ce IAS n width ~ 53 keV

Evaluated IAS γ widths and the cross-sections

TABLE I. M1 γ widths and the IAS γ cross sections for DBD nuclei and ⁷¹Ga for the solar ν s. Shown are E(IA)in units of MeV, E(GT) in units of MeV, B(GT), $B^{IA}(M1)$ in units of 10^{-2} , $\Gamma^{IA}(M1)$ in units of 10^{-2} eV, and $\sigma^{IA}(M1)=d\sigma^{IA}(M1)/d\Omega$ in units of nb $(10^{-9}b)/sr$.

A	E(IA)	E(GT)	B(GT)	$B^{\mathrm{IA}}(\mathrm{M1})$	$\Gamma^{\mathrm{IA}}(\mathrm{M1})$	$\sigma^{IA}(M1)$
76 Ge	8.31	1.07	0.14	1.45	6.4	41
82 Se	9.58	0.075	0.34	3.0	30.0	150
$^{96}\mathrm{Zr}$	10.9	0.69	0.16	1.25	15.3	76
$^{100}\mathrm{Mo}$	11.1	0	0.35	2.7	43.4	170
^{116}Cd	12.1	0	0.14	0.88	18.0	51
$^{128}\mathrm{Te}$	12.0	0	0.079	0.41	8.2	17
$^{130}\mathrm{Te}$	12.7	0	0.072	0.35	8.2	17
136 Xe	13.4	0.59	0.23	1.03	25	45
$^{150}\mathrm{Nd}$	14.4	0.11	0.13	0.54	18.0	35
71 Ga	8.91	0	0.085	1.2	9.8	51
A	EIA	$\overline{S} E(V)$	1) $B(V)$	1) $B^{\mathrm{IA}}(\mathrm{E1})$) $\Gamma(E1)$	$\sigma^{\rm IA}({\rm E1})$
$\frac{96}{7r}$	10.0	$\frac{2}{2}$	68		$\frac{1}{2}$	1080
100 N / L	10.9	່ ວ ວ		40	220	1080
-** MO	11.1	3	7.5	47	260	1020
130 Te	12.7	′ <u>3</u>	1.0	3.8	36	75

The M1 and E1 widths are 10-50 10^{-2} eV and 30-300 10^{-2} eV The M1 and E1 cross sections are 50-200 nb and 100-1000 nb.

IAS and IAS- γ cross sections are given below. The γ cross sections are lower by the γ -branching ratio of 10⁻⁴⁻⁵.

IAS-γ event rate per day in case of a typical case of RCNP ³He beam =20 n pA Target 40 mg/cm2, 3.2 m sr

$$R_{\gamma} = 8A^{-1}10^2 (d\sigma^{\mathrm{IA}}(\alpha')/d\Omega)\epsilon_{\gamma},$$

R ~ 50 per day for 100 nb/sr M1 γ ϵ ~6 % efficiency : feasible .

Technical Information on the Scintillation Gamma-Ray Detector Array Coupled with the Grand Raiden Spectrometer

III. Photo nuclear excitation of IAS for DBD NME

Photo nuclear reaction

IAS isospin T from Ground state with T-1

Ejiri H, Titov. A, et al., Phys. Rev, C 88 2013 054610

$$\sigma(\gamma, n) = \frac{S(2J+1)\pi}{k_{\gamma}^2} \frac{\Gamma_{\gamma}\Gamma_n}{(E-E_R)^2 + \Gamma_t^2/4},$$
 (10)

where Γ_{γ} , Γ_t , and Γ_n are the γ capture width, the total width, and the neutron decay width, *S* is the spin factor, and k_{γ} is the incident photon momentum.

The integrated photonuclear cross section is given by

$$\int \sigma(\gamma, n) dE = \frac{S(2J+1)2\pi^2}{k_{\gamma}^2} \frac{\Gamma_{\gamma} \Gamma_n}{\Gamma_t}.$$
 (11)

 $\Gamma_t \approx \Gamma_n$, where Γ_n is the sum of the neutron decay widths

$$\int \sigma(\gamma, n) dE = \pi^2 k_{\gamma}^{-2} \Gamma_{\gamma},$$

$$\sigma(\gamma, n)dE = 2.9 \times 10^{-3} \text{ MeV fm}^2$$
 (E1), (14)

$$\sigma(\gamma, n)dE = 2.7 \times 10^{-3} \text{ MeV fm}^2$$
 (M1). (15)

Then the counting rates with a typical target of 10 g/cm² are $Y(E1) = 1.7 \times 10^{-6} \epsilon N_{\gamma}/\text{s}$ and $Y(M1) = 1.6 \times 10^{-6} \epsilon N_{\gamma}/\text{s}$,

$$N_{\gamma} \approx 10^{8-9} / (\text{MeV s}).$$

100 Ru + $\gamma = ^{100}$ T = 99 Tc + n Angular correlation of n

Ejiri H, Titov. A, et al., Phys. Rev, C 88 2013 054610

$$E(\gamma) = \frac{4\gamma_{\rm e}^2 E(l)}{1 + 4\gamma_{\rm e} E(l)/m + \gamma_{\rm e}^2 \theta^2},$$

where *m* denotes the electron mass and $\gamma_e = E(e)/m$ is the Lorentz factor of the incident electron with the energy E(e).

H. Ejiri, T. Shima et al JPSJ 80 2011, YAG 1.4 eV, E(e)=1 GeV. E=10-20 MeV.

(3)

HIYS

Intra-cavity Compton Backscattering of FEL photons by electrons circulating in the 1.2GeV Duke Storage R

HIGS flux performance table for high-flux, quasi-CW $E = 2 \sim 70 \text{ MeV}$ AE /E $\sim 1\%$ $\Phi \sim 10^7 / \text{MeV}/\text{s}$ ($\rightarrow 10^9$)								
HIGS Flux Perf	formance Projection	Total Flux						
		CW Operation	$(\Delta E_{\gamma} / E_{\gamma} = 5\%)$	λ [nm]	Linear Pol. with OK-4			
		Two-Bunch (*)	FWHM) ^{(#), (@)}		Circular Pol with OK-5			
No-loss Mode: E_{γ}	, < ~16 MeV							
$E_{\gamma} = 1 - 2 \text{ MeV}$	(E _e = 237 – 336 MeV)	$1 \ge 10^8 - 4 \ge 10^8$	$6 \ge 10^6 - 2.4 \ge 10^7$	1064	Linear and Circular ^{(a), (b)}			
$E_{\gamma} = 2 - 2.9 \text{ MeV}$	(E _e = 336 – 405 MeV)	$4 \ge 10^8 - 1 \ge 10^9$	$2.4 \ge 10^7 - 6 \ge 10^7$	1064	Linear and Circular ^{(a), (b)}			
$E_{\gamma} = 2 - 3 \text{ MeV}$	(Ee = 288 – 353 MeV)	$2 \ge 10^8 - 6 \ge 10^8$	$1.2 \ x \ 10^7 - 3.6 \ x \ 10^7$	780	Linear and Circular ^{(a), (b)}			
$E_{\gamma} = 3 - 5.4 \text{ MeV}$	(E _e = 353 - 474 MeV)	$6 \ge 10^8 - 2 \ge 10^9$	$3.6 \ge 10^7 - 1.2 \ge 10^8$	780	Linear ^{(a), (b)}			
$E_{\gamma} = 3 - 6.3 \text{ MeV}$	(E _e = 353 – 512 MeV)	$6 \ge 10^8 - 3 \ge 10^9$	$3.6 \ge 10^7 - 1.8 \ge 10^8$	780	Circular ^{(a), (b)}			
$E_{\gamma} = 5 - 8 \text{ MeV}$	$(E_e = 380 - 481 MeV)$	$4 \times 10^8 - 1 \times 10^9$	$2.4 \ge 10^7 - 6 \ge 10^7$	540	Linear and Circular ^{(a), (b)}			
$E_{\gamma} = 8 - 11 \text{ MeV}$	$(E_e = 481 - 565 \text{ MeV})$	$1 \ge 10^9 - 2 \ge 10^9$	$6 \times 10^7 - 1.2 \times 10^8$	540	Linear ^{(a), (b)}			
$E_{\gamma} = 8 - 13 \text{ MeV}$	$(E_e = 481 - 615 \text{ MeV})$	$1 \times 10^9 - 4 \times 10^9$	$6 \ge 10^7 - 2.4 \ge 10^8$	540	Circular ^{(a), (b)}			

4. Concluding remarks

- 1. DBD exp. rate $(1/t_{1/2})$ provides $1/(G t_{1/2}) = B(M^{0\nu} m\lambda \eta)$ with B = reduced nuclear weak width =product of $M^{0\nu}$ and $m\lambda\eta$, as SBD $1/(f t_{1/2}) = B(GT/F)$. Then $M^{0\nu}$ is crucial.
- 2. CE (³He,t) reactions with E/A~0.1 GeV are mainly axial-vector GT-SD, no absolute values , and the tensor term interference.
- 3. IAS-E1 /M1 γ provides τ^- GT / V1 β NMEs with the g_{v} , g_A since the EM couplings and transition operators are well known. Photo-nuclear excitation of IAS provides the τ^+ side NME.
- 4. Small γ width of eV –sub-eV is overcome by using sharp IAS with small width around 30 keV to get some 10⁻⁴ γ branch. Measurements of γ rays in coincidence with CER to IAS makes BG-free measurement. The experiments are quite feasible.

Thanks for your attention.

$\begin{array}{c} \mbox{Renormalization/reductions of axial vector } \beta \& \gamma \\ \mbox{coupling/NME with respect to QRPA} \end{array}$

H, Ejiri J. Suhonen J. Phys. G. 42 2015 H. Ejiri N. Soucouti, J. Suhonen PL B 729 2014 . L. Jokiniemi J. Suhonen H. Ejiri AHEP2016 ID8417598 L. Jokiniemi J. Suhonen. H. Ejiri and I. Hashim PL B 794 143 (2019)

42

Fig. 29. Effective values of g_A in different theoretical β and $2\nu\beta\beta$ analyses for the nuclear mass range A = 41 - 136. The quoted references are *Suhonen2017* [216], *Caurier2012* [233], *Faessler2007* [242], *Suhonen2014* [243] and *Horoi2016* [235]. These studies are contrasted with the ISM β -decay studies of *M*-*P1996* [229], *Iwata2016* [230], *Kumar2016* [231] and *Siiskonen2001* [228]. For more information see the text and Table 3 in Section 3.1.2 and the text in Section 3.1.3.

. Ejiri H, Suhonen J and Zuber Z 2019 Phys. Rep. 797 1