Interesting Isomers
- From classic nuclear physics to dark matter -

Ralph Massarczyk (LANL)
NEWS Seminar Feb 20, 2024

LA-UR-23-30890
~+LosAlamos

/{)\ LABORATORY DIRECTED
_LQRD RESEARCH & DEVELOPMENT



Nuclear Isomers -
a crash course in nuclear physics from the first half of the 20th century

Dark Matter -
a crash course in astrophysics of the late 20th century

2 extreme cases:
a crash course in my work of the last 2 years

o  One year from most sensitive search for electron capture and B-decays

o a 15-min experiment



From nuclei to isotopes to isomers

Frederick Soddy
“"We can have isotopes with identity of atomic weight, Chemistry Nobel prize 1921

as well as of chemical character, which are different

in their stability and mode of breaking up.”(1917)




From nuclei to isotopes to isomers

“"We can have isotopes with identity of atomic weight,
as well as of chemical character, which are different

in their stability and mode of breaking up.”(1917)
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Hydrogen-1 Hydrogen-2, Hydrogen-3,
mass number: 1 deuterium tritium

mass number: 2 mass number: 3

Frederick Soddy
Chemistry Nobel prize 1921

- Isotopes -
similar proton number Z,
different neutron numbers N
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From nuclei to isotopes to isomers

e \We know over

o 3000 isotopes
A el o  From 'Hto #Lv
'YZ (Proton number) e e Only 250 are
g st considered
stable
N (Neutron number) - Isotopes -

similar proton number Z,
different neutron numbers N
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From nuclei to isotopes to isomers

We know over
3000 isotopes
From "H to 2%Lv
Only 250 are
considered
stable

Some elements
have only one
stable isotope,
others up to 10
(tin)

- Isotopes -
similar proton number Z,
different neutron numbers N 6




Properties of nuclear states - level schemes

. 52711 (8) a
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e Information of nuclear states

From a shell model point of view
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Maria Goeppert-Mayer
Physics Nobel prize 1963
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Properties of nuclear states - level schemes
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Properties of nuclear states - level schemes

5+

e Information of nuclear states
From a shell model point of view

e Spin and Parity

e Lifetimes
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Properties of nuclear states - level schemes

52711 (8) a

e Information of nuclear states
From a shell model point of view
e Spin and Parity
e Lifetimes
e Energies and transition probabilities
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Properties of nuclear states - level schemes
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Information of nuclear states

From a shell model point of view
Spin and Parity
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Energies and transition probabilities

Of course, it’s always more
complicated
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Properties of nuclear states - excitation
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Properties of nuclear states - particle seperatio
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Properties of nuclear states - deexcitation
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Properties of nuclear states - excitation
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energy

Excitation energy and shape deformation with

EXCitation and deeXCitation in a /Oca/ minima in the potentia[
nuclear level scheme



Properties of nuclear states - an example with theory
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Properties of nuclear states - an example with theory
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Physics of isomers

“"We can have isotopes with identity of atomic weight,
as well as of chemical character, which are different

in their stability and mode of breaking up.”(1917)

Spin (due to shape) 1is the important quantity (1936)

Frederick Soddy
Chemistry Nobel prize 1921

Carl Friedrich Von Weizséacker
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Physics of isomers

Frederick Soddy
“"We can have isotopes with identity of atomic weight, Chemistry Nobel prize 1921

as well as of chemical character, which are different

in their stability and mode of breaking up.”(1917)

Spin (due to shape) 1is the important quantity (1936)

Systematic studies and experimental proof on Uranium
(1938)

Lise Meitner and Otto Hahn

Today isomers we have found from 107° seconds .. >10'® years
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Properties of nuclear states - long lived isomers
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Back to the origins

as well as of chemical character,
in their stability and mode of breaking up.” (1917)

“We can have isotopes with identity of atomic weight,
which are different

180'|-a
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So why do we care ?

e The origin of Tantalum in the universe :
o  Study helps to understand the observed abundance of '®™Ta

within a wider nucleosynthesis framework X
. . 7 IC V‘37_7 \\
o Understand which candidate processes are strong enough to 2+ \_B-
. . . . . . EC./A \\
produce Ta (v-interactions, thermal excitation in early universe) 1395
,// 7 1* |
——"—/6* 18074

e Longest lived metastable state never observed to decay
o Most extreme case to study nuclear structure spin traps

o  Theory varies on predictions for half-life

a 350.9

332.3 o

y__ 4+

o  Variety of transitions possible: - 234.0
. . 2 A A
B-decay , electron capture (EC), internal conversion, —+Lo 036 .
y-transition, a-decay ——0* -

180Hf 9"

o  Ground-state '®Ta is unstable (T, ~ 8 hours)

1/2

388.8
184.1
7-

176Lu

Decay scheme of 8" Ta with possible decay
channels (red) and detection signatures (blue) 22



So why do we care ?

The origin of Tantalum in the universe :
o  Study helps to understand the observed abundance of '®°"Ta
within a wider nucleosynthesis framework
o Understand which candidate processes are strong enough to
produce Ta (v-interactions, thermal excitation in early universe)

Longest lived metastable state never observed to decay
o Most extreme case to study nuclear structure spin traps

o  Theory varies on predictions for half-life

o  Variety of transitions possible:
B-decay , electron capture (EC), internal conversion,
y-transition, a-decay

o  Ground-state '®Ta is unstable (T, ~ 8 hours)

172
Search for Dark Matter interaction
o  Additional energy from the isomer allows reaction with particles
that would not interact otherwise
o  Candidates: Strongly Interacting DM, Inelastic DM
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channels (red) and detection signatures (blue)
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DM ? again ??7?
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DM ? again ??7?
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é what is dark matter

Dark matter is a mysterious and invisible substance that makes up a significant portion of the
universe's mass and seems to exert a gravitational force on visible matter, such as galaxies
and galaxy clusters. Despite its name, dark matter does not emit, absorb, or reflect
electromagnetic radiation (like light), which is why it's considered "dark" and remains mostly
undetectable using conventional methods of observation.

Here are some key points about dark matter:

1. Abundance: Dark matter is thought to constitute approximately 27% of the universe's total
mass-energy content, making it one of the most substantial components of the cosmos.

2. Gravitational Effects: The primary evidence for dark matter comes from its gravitational
effects on visible matter. For instance, galaxies rotate at speeds that would be impossible if
their mass were only accounted for by visible stars and gas. The additional mass from dark
matter is required to explain these observations.

3. Cosmic Microwave Background: The cosmic microwave background radiation, a relic of the
early universe, also supports the existence of dark matter. Its distribution of temperature
fluctuations can be explained more accurately when dark matter is taken into account.

4. Particle Nature: Despite extensive efforts, the exact nature of dark matter remains unknown.
Itis generally believed to consist of some type of particle, but these particles have not been
directly observed. Various candidates for dark matter particles include axions, WIMPs
(Weakly Interacting Massive Particles), and sterile neutrinos.

5. Dark Matter Halo: Dark matter is distributed throughout the universe in a web-like structure,
forming what is often called a "dark matter halo" around galaxies. This halo is thought to
provide the gravitational scaffolding that allows galaxies to form and maintain their structure.

6. Unaffected by Electromagnetism: Dark matter does not interact via the electromagnetic
force, which means it doesn't emit, absorb, or scatter light. This property makes it extremely
challenging to detect directly.

Scientists continue to conduct experiments and observations in the hopes of detecting or
identifying dark matter particles and better understanding their properties. The existence of
dark matter is a crucial component of current cosmological models, helping explain the

observed large-scale structure and dynamics of the universe. However, many questions about
dark matter remain unanswered, making it one of the most significant unsolved mysteries in
astrophysics and cosmology.

17
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DM ? again ??7?
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Inelastic dark matter motivation

e What if the DM species evade direct
detection ?

e Production in colliders possible, but very
low

e No reason that there is no a whole DM
zoo of particles or composite DM

Production

time

Dark Matter Standard Model
Particles Particles

Dark Matter Standard Model
Particles Particles

time

Annihilation

Scattering
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Inelastic dark matter motivation

e What if the DM species evade direct
detection ?

e Production in colliders possible, but very
low

e No reason that there is no a whole DM
zoo of particles or composite DM

e Based on Tucker-Smith & Weiner (2001)
or Alves et al (2010)

Production

time

Dark Matter Standard Model
Particles Particles

\*/

Dark Matter Standard Model
Particles Particles

time

Annihilation

P

time

Scattering
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e Based on Tucker-Smith & Weiner (2001)
or Alves et al (2010)
e Requires additional “energy” in the

system P N
o  Sufficiently fast DM interacts with standard l112
detectors measuring nuclear recoils
OR
o Deexcitation of isomers \j
(no velocity requirement) 1 (U N
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Nuclear Isomers -
a crash course in nuclear physics from the first half of the 20th century

Dark Matter -
a crash course in astrophysics of the late 20th century

2 extreme cases:
a crash course in my work of the last 2 years

o  One year from most sensitive search for electron capture and B-decays

o a 15-min experiment
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A bit of (ancient) history...

In greek mythology Tantalus
offended the gods...

... SO he was punished to be
trapped in a pond
under a fruit tree.

He could not reach up to eat.

He could not lean down to drink.

Tantalus trapped as punishment.

Illustration from
www.Symmetrymagazine.org/article/majorana-demonstrator-finds-tantalizing-new-purpose



A bit of (modern) history...

180
Ta

8,70ns

> 10" YEArS  —
E =753 keV
=9

-v‘ —..
8.2 hours
ground state
F=1

Level scheme of 189mTg

Electromagnetic decay

requires AJ = 8;
magnetic 8-pole
radiation

1

Ta disks after arrival underground

For nuclear physics Tantalum
(named 1802)
is one of the rarest elements and
has two isotopes...

... one of them ('8°MTa) is trapped
in an isomeric state while the
ground state decays.

It can not go to a higher state due
to energy.

It can not go down to a lower
state due to spins

33



What is needed for a measurement...

E 1023
5 vV EC A B I'y/IC]
= 1020
E’T\ ........
17
10 . mwce g% &
o4 Nal Ge(Li) B
X v v£kXk
A
10''{  mass spectrometry
v

1960 1970 1980 1990 2000 2010 2020
(Publication) year

History of Tantalum decay measurements with
predictions (dashed lines), from arxiv 2305.17238

Til 1985 ground state and isomer switched
2006 the spin of the isomer was determined

Large exposure (material and time)
o only 1-2 ppm of earth’s crust
is Ta
o 99.98% is '®'Ta
e Detector with excellent energy
resolution

e If possible multiple detectors,
that can detect coincidences

e Aclean, ultra low-background system

and environment

Perfect use of MJD facility after enriched
detector removal




What is needed for a measurement...

e Large exposure (material and time)

resolution
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Atomic number 7

Perfect use of MJD facility after enriched
detector removal




Experimental searches - the decay of 18°™Ta

e 1-2ppm of earth’s crust is Ta

e 99.98%is '®'Ta

e Best previous measurement used
~1kg of "Ta (~0.2 g of 189MTg)

e All the '®Ta is metastable:

the only naturally occurring
long-lived isomer

Testing basic nuclear physics
on the extremes

36



Sanford

Und

ENERY 220 MAJORANA DEMONSTRATOR &

Searching for neutrinoless double-beta decay of "°Ge in HPGe detectors, probing additional physics
beyond the standard model, and informing the design of the next-generation LEGEND experiment

Source & Detector:
o  Array of p-type, point contact detectors 30 kg of 88%
enriched "°Ge crystals
o Included 6.7 kg of "8Ge inverted coaxial, point contact
detectors in final run
o  Enriched detectors removed in 2021 for LEGEND
o 14 kg of natural Ge crystals
Excellent Energy Resolution: 2.5 keV FWHM @ 2039 keV
Low Analysis Threshold: 1 keV
Low Background: 2 modules within a compact graded shield
and active muon veto using ultra-clean materials

Radon
Enclosure .............. [

Schematics of the MJD
Final Result, (PRL 130, 062501, 2023) experiment
o 65 kg-yr exposure

o Median T,, Sensitivity: 8.1 x 10?° yr (90% C.1.)

o Limit: T,,> 8.3 x 10% yr (90% C.I) 37



Installation and preparation

Material cleaning following MJD standards
120 disks, each 180g, 2mm thick
Limit for mass:

MJD geometry

Efficiency

38



Installation

39



Reconfiguring of the DEMONSTRATOR

e 17.4kg installed ~ 2 g '®MTg,
(x10 more than best previous measurement)
e 23 active detectors
(before only one or two detector configurations)
e Detectors and Ta arranged to maximize efficiency
e Operating since May 2022

(left) cleaning and
installation in the
MJD strings

(right) schematic
arrangement of
detectors, green,
and Ta, grey, and
photograph of the full
detector array
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Data Overview and Analysis

Data Set of 348 days (98.2% live)

Background contributions from:

O

natural radioactivity within the
Tantalum disks (~ pBg/g,, )
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F  Activity

234Pa 230Th 214Pb 214Bi
Isotope
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Data Overview and Analysis

Data Set of 348 days (98.2% live)

Background contributions from:

O
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natural radioactivity within the

Tantalum disks (~ pBg/g,, )
surface activation in Ta
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Data Overview and Analysis

Data Set of 348 days (98.2% live)
Background contributions from:

o natural radioactivity within the
Tantalum disks (~ pBg/g,, )
o surface activation in Ta
m '8Ta (T, =114 days)

1/2
m 12Hf (T,,,=70 days) - knockout
of1pand 5n!

Background improving over time
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counts

A look in a few region of interests
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Energy (keV)

Multiplicity analysis
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First year results

e Current improvements
o Efficiency (x 2-3)
o Mass (x 12)
o Background
e multiplicity analysis allows
high sensitivity search

EC

>1.6x 10"

Previous Limits

MJD - 2023 >1.3x10"0 "™

Theory 1023

Atotal = AEC + Ag— + Ay + Arc + Aa + ADM

p Y IC
>1.1x10"® | >45x10" | >45x10"
>1.5x10"°"  >6.0x107  >2.9x10"

10% 10° e

Overview on results, all numbers in years,
** limits derived from detector coincidences

o

>1.1x10"1"

1 025
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First year results

e Current improvements
o Efficiency (x 2-3)
° Mass (x12) Atotal = AEC + Ag— + Ay + A
o Background
e multiplicity analysis allows
high sensitivity search

Aa + ADM

o

>4.5x 10"

Previous Limits

MJD - 2023 > > 6.0 x 107 >2.9x 10" >1.1x101°"

Theory 1031 1078 10%°
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Dark matter induced d itati
drK matier induce eexcitation Y T N
e No observation of '8™Ta decay — no DM-induced decay gy o
e Improved sensitivities to strongly interacting DM (siDM) 7 ’
e Additional sensitivities to more complex DM with multiple states
e and/or particles via inelastic scattering
10724 - = T 3 10724 o T
3 RTINS . E 1 O e e R L 7
1020y . ; 1 102 b e /
2y LR ! Limits on siDM (lef) and ™7 | et //
102} ‘\'/, \\\ < i I inelastic scattering (right) P A ’,/
t;l—\ \\‘ ST //' L<l—\ - 4”’
§10—30 | i \\\\ —”——’ ; §,10730 L —__——’ -
= IO DBt O R = ===z ANt
10732} Co’nb/,,ed Hooper et al. 10-32 8 el e Bramante et al.
G g, | 11T Lehnert et al. ious Iimit31 2 ¢ e N Py Lehnert et al.
10734} ; Is no 39.5 keV PreV; 04, 181806 10734} no 39.5 keV
fou =10~ —== 0 93.3 or 103.6 keV PPR‘R’D 4, 11 5;)0206 —== 0 93.3 or 103.6 keV
1036 : . - ' - 1 g6 — . . ' ' :
10° 10! 102 il 10 10° pRD o7, i 100 200 300 400 500 600 700
M, (GeV) oM (keV)
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Dark matter induced deexcitation

e No observation of '®™Ta decay — no DM-induced decay

e Improved sensitivities to strongly interacting DM (siDM)

e Additional sensitivities to more complex DM with multiple states

e and/or particles via inelastic scattering
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Improvements by
two orders
of magnitude and
complementary to
other searches
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- 'bc/o =
= 1023 eo
5 VEC AB m7y/ IC] <%
-'—1 1020 ..................................................................................................
Tantalum Results F .
10 Coli) X HPGe xX X
agn . e( Ll
e Most sensitive search for half-life 0 g Na; o X n
. . A
measurements in isomers world-wide 10" i soectrometry
i i i 1960 1970 1980 1990 2000 2010 2020
e First data improved previous measurements (Publication) year
by 1-2 orders of magnitude Figure taken and updated from 2305.17238

e Background continues to improve
e Estimated final sensitivity has the potential

to discover the decay

€
e Los Alamos Q 3~ LABORATORY DIRECTED
NATIONAL LABORATORY LDR D RESEARCH & DEVELOPMENT Sam Meijer having fun cleaning Tantalum

EST.1943
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e Data taking continues (planned mid 2025) 10 SRS v K n
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e Update data analysis 10" | e
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Other isomers ?

e A wide number of isomers exis

e Most are short lived
o Hard to access experimentally
o Mostly low energy transitions
e One candidate
o 178Hf

o 2isomers
o  Higher excitation energy

Proton Number

1200

100

Neutron Number

T T T
140

T T
160
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Experimental searches - '"8MHf

e Different approach
o Short half life
o high activity
e Portable Ge detector and short
measurement time (15mins)
e Search of new transitions next to Standard

transitions
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Experimental searches - "778MHf 9 = Nrat x (o), ®,) x (6 AP €l?)

e Different approach
o Short half life

o high activity ol LR ;’m =\
e Portable Ge detector and short THE e W Y
. . 20F o
measurement time (15mins) R T My - ot
> ] E4 :
e Search of new transitions next to Standard £ | o - B
transitions : i
5 ol gt —&8/9V4-s Isomer
| ] 1 | | l% § 515
- :- 1 1 1 1 - | 6+4
§ 10° 0 R i Bl o o W 4 — Decay scheme of the Hf
% 102_ 1300 1320 :E(:‘:?gy(Laer(; 1380 1400 | 2+—_—‘ isomer
ol oI
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Experimental searches - 1"8MHf

e Different approach
o  Short half life
o high activity
e Portable Ge detector and short
measurement time (15mins)
e Search of new transitions next to Standard
transitions
e Results background limited
No observation of excess signals

e Complimentary to larger and longer efforts

o, [em?)
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Summary

e The physics of isomers is almost a century old

e While a lot of isomers are studied, the most extreme cases remain unexplored
e Testing classic nuclear physics in the extrema

e A door into dark sector that is allows us to look for DM types that are not

accessible in larger efforts
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